BP神经网络实验详解(MATLAB实现)

合集下载

基于遗传算法的BP神经网络MATLAB代码

基于遗传算法的BP神经网络MATLAB代码

基于遗传算法的BP神经网络MATLAB代码以下是基于遗传算法的BP神经网络的MATLAB代码,包括网络初始化、适应度计算、交叉运算、突变操作和迭代训练等。

1.网络初始化:```matlabfunction net = initialize_network(input_size, hidden_size, output_size)net.input_size = input_size;net.hidden_size = hidden_size;net.output_size = output_size;net.hidden_weights = rand(hidden_size, input_size);net.output_weights = rand(output_size, hidden_size);net.hidden_biases = rand(hidden_size, 1);net.output_biases = rand(output_size, 1);end```2.适应度计算:```matlabfunction fitness = calculate_fitness(net, data, labels)output = forward_propagation(net, data);fitness = sum(sum(abs(output - labels)));end```3.前向传播:```matlabfunction output = forward_propagation(net, data)hidden_input = net.hidden_weights * data + net.hidden_biases;hidden_output = sigmoid(hidden_input);output_input = net.output_weights * hidden_output +net.output_biases;output = sigmoid(output_input);endfunction result = sigmoid(x)result = 1 ./ (1 + exp(-x));end```4.交叉运算:```matlabfunction offspring = crossover(parent1, parent2)point = randi([1 numel(parent1)]);offspring = [parent1(1:point) parent2((point + 1):end)]; end```5.突变操作:```matlabfunction mutated = mutation(individual, mutation_rate) for i = 1:numel(individual)if rand < mutation_ratemutated(i) = rand;elsemutated(i) = individual(i);endendend```6.迭代训练:```matlabfunction [best_individual, best_fitness] =train_network(data, labels, population_size, generations, mutation_rate)input_size = size(data, 1);hidden_size = round((input_size + size(labels, 1)) / 2);output_size = size(labels, 1);population = cell(population_size, 1);for i = 1:population_sizepopulation{i} = initialize_network(input_size, hidden_size, output_size);endbest_individual = population{1};best_fitness = calculate_fitness(best_individual, data, labels);for i = 1:generationsfor j = 1:population_sizefitness = calculate_fitness(population{j}, data, labels);if fitness < best_fitnessbest_individual = population{j};best_fitness = fitness;endendselected = selection(population, data, labels);for j = 1:population_sizeparent1 = selected{randi([1 numel(selected)])};parent2 = selected{randi([1 numel(selected)])};offspring = crossover(parent1, parent2);mutated_offspring = mutation(offspring, mutation_rate);population{j} = mutated_offspring;endendendfunction selected = selection(population, data, labels) fitnesses = zeros(length(population), 1);for i = 1:length(population)fitnesses(i) = calculate_fitness(population{i}, data, labels);end[~, indices] = sort(fitnesses);selected = population(indices(1:floor(length(population) / 2)));end```这是一个基于遗传算法的简化版BP神经网络的MATLAB代码,使用该代码可以初始化神经网络并进行迭代训练,以获得最佳适应度的网络参数。

BP神经网络原理及其MATLAB应用

BP神经网络原理及其MATLAB应用

BP神经网络原理及其MATLAB应用BP神经网络(Back Propagation Neural Network)是一种基于梯度下降算法的人工神经网络模型,具有较广泛的应用。

它具有模拟人类神经系统的记忆能力和学习能力,可以用来解决函数逼近、分类和模式识别等问题。

本文将介绍BP神经网络的原理及其在MATLAB中的应用。

BP神经网络的原理基于神经元间的权值和偏置进行计算。

一个标准的BP神经网络通常包含三层:输入层、隐藏层和输出层。

输入层负责接收输入信息,其节点数与输入维度相同;隐藏层用于提取输入信息的特征,其节点数可以根据具体问题进行设定;输出层负责输出最终的结果,其节点数根据问题的要求决定。

BP神经网络的训练过程可以分为前向传播和反向传播两个阶段。

前向传播过程中,输入信息逐层传递至输出层,通过对神经元的激活函数进行计算,得到神经网络的输出值。

反向传播过程中,通过最小化损失函数的梯度下降算法,不断调整神经元间的权值和偏置,以减小网络输出与实际输出之间的误差,达到训练网络的目的。

在MATLAB中,可以使用Neural Network Toolbox工具箱来实现BP神经网络。

以下是BP神经网络在MATLAB中的应用示例:首先,需导入BP神经网络所需的样本数据。

可以使用MATLAB中的load函数读取数据文件,并将其分为训练集和测试集:```data = load('dataset.mat');inputs = data(:, 1:end-1);targets = data(:, end);[trainInd, valInd, testInd] = dividerand(size(inputs, 1), 0.6, 0.2, 0.2);trainInputs = inputs(trainInd, :);trainTargets = targets(trainInd, :);valInputs = inputs(valInd, :);valTargets = targets(valInd, :);testInputs = inputs(testInd, :);testTargets = targets(testInd, :);```接下来,可以使用MATLAB的feedforwardnet函数构建BP神经网络模型,并进行网络训练和测试:```hiddenLayerSize = 10;net = feedforwardnet(hiddenLayerSize);net = train(net, trainInputs', trainTargets');outputs = net(testInputs');```最后,可以使用MATLAB提供的performance函数计算网络的性能指标,如均方误差、相关系数等:```performance = perform(net, testTargets', outputs);```通过逐步调整网络模型的参数和拓扑结构,如隐藏层节点数、学习率等,可以进一步优化BP神经网络的性能。

BP神经网络matlab教程

BP神经网络matlab教程
第二步随机选取第个输入样本及对应期望输出第三步计算隐含层各神经元的输入和输出第四步利用网络期望输出和实际输出计算误差函数对输出层的各神经元的偏导hohoyiyiihih第五步利用隐含层到输出层的连接权值输出层的和隐含层的输出计算误差函数对隐含层各神经元的偏导数hohoihih第八步计算全局误差第九步判断网络误差是否满足要求
w
N 1 ho
w o (k )hoh (k )
N ho
2.4.2 BP网络的标准学习算法
第七步,利用隐含层各神经元的 h (k )和 输入层各神经元的输入修正连接权。
e e hih (k ) wih (k ) h (k ) xi (k ) wih hih (k ) wih w
p
i 1
h 1,2,
o 1,2,
,p
q
yio (k ) whohoh (k ) bo
o 1,2,
yoo (k ) f( yio (k ))
h 1
q
2.4.2 BP网络的标准学习算法
第四步,利用网络期望输出和实际输出, 计算误差函数对输出层的各神经元的偏导 o (k ) 数 。 ( w ho (k ) b ) e e yio yi (k )
输入样本---输入层---各隐层---输出层
判断是否转入反向传播阶段:
若输出层的实际输出与期望的输出(教师信号)不 符
误差反传
误差以某种形式在各层表示----修正各层单元 的权值
网络输出的误差减少到可接受的程度 进行到预先设定的学习次数为止
2.4.2 BP网络的标准学习算法
网络结构 输入层有n个神经元,隐含层有p个神经元, 输出层有q个神经元 变量定义 x x1, x2 , , xn 输入向量; 隐含层输入向量; hi hi1 , hi2 , , hi p 隐含层输出向量; ho ho1 , ho2 , , ho p 输出层输入向量; yi yi1 , yi2 , , yiq 输出层输出向量; yo yo1 , yo2 , , yoq 期望输出向量; d o d1 , d 2 , , d q

BP神经网络matlab实现的基本步骤

BP神经网络matlab实现的基本步骤

1、数据归一化2、数据分类,主要包括打乱数据顺序,抽取正常训练用数据、变量数据、测试数据3、建立神经网络,包括设置多少层网络(一般3层以内既可以,每层的节点数(具体节点数,尚无科学的模型和公式方法确定,可采用试凑法,但输出层的节点数应和需要输出的量个数相等),设置隐含层的传输函数等。

关于网络具体建立使用方法,在后几节的例子中将会说到。

4、指定训练参数进行训练,这步非常重要,在例子中,将详细进行说明5、完成训练后,就可以调用训练结果,输入测试数据,进行测试6、数据进行反归一化7、误差分析、结果预测或分类,作图等数据归一化问题归一化的意义:首先说一下,在工程应用领域中,应用BP网络的好坏最关键的仍然是输入特征选择和训练样本集的准备,若样本集代表性差、矛盾样本多、数据归一化存在问题,那么,使用多复杂的综合算法、多精致的网络结构,建立起来的模型预测效果不会多好。

若想取得实际有价值的应用效果,从最基础的数据整理工作做起吧,会少走弯路的。

归一化是为了加快训练网络的收敛性,具体做法是:1 把数变为(0,1)之间的小数主要是为了数据处理方便提出来的,把数据映射到0~1范围之内处理,更加便捷快速,应该归到数字信号处理范畴之内。

2 把有量纲表达式变为无量纲表达式归一化是一种简化计算的方式,即将有量纲的表达式,经过变换,化为无量纲的表达式,成为纯量比如,复数阻抗可以归一化书写:Z = R + jωL = R(1 + jωL/R) ,复数部分变成了纯数量了,没有量纲。

另外,微波之中也就是电路分析、信号系统、电磁波传输等,有很多运算都可以如此处理,既保证了运算的便捷,又能凸现出物理量的本质含义。

神经网络归一化方法:由于采集的各数据单位不一致,因而须对数据进行[-1,1]归一化处理,归一化方法主要有如下几种,供大家参考:1、线性函数转换,表达式如下:复制内容到剪贴板代码:y=(x-MinValue)/(MaxValue-MinValue)说明:x、y分别为转换前、后的值,MaxValue、MinValue分别为样本的最大值和最小值。

实验一、BP及RBP神经网络逼近

实验一、BP及RBP神经网络逼近

实验一、BP及RBF神经网络逼近一、实验目的1、了解MATLAB集成开发环境2、了解MATLAB编程基本方法3、熟练掌握BP算法的原理和步骤4、掌握工具包入口初始化及调用5、加深BP、RBF神经网络对任意函数逼近的理解二、实验内容1、MATLAB基本指令和语法。

2、BP算法的MATLAB实现三、实验步骤1、熟悉MATLAB开发环境2、输入参考程序3、设置断点,运行程序,观察运行结果四、参考程序1. BP算法的matlab实现程序%lr为学习步长,err_goal期望误差最小值,max_epoch训练的最大次数,隐层和输出层初值为零lr=0.05;err_goal=0.0001;max_epoch=10000;a=0.9;Oi=0;Ok=0;%两组训练集和目标值X=[1 1;-1 -1;1 1];T=[1 1;1 1];%初始化wki,wij(M为输入节点j的数量;q为隐层节点i的数量;L为输出节点k的数量)[M,N]=size(X);q=8;[L,N]=size(T);wij=rand(q,M);wki=rand(L,q);wij0=zeros(size(wij));wki0=zeros(size(wki));for epoch=1:max_epoch%计算隐层各神经元输出NETi=wij*X;for j=1:Nfor i=1:qOi(i,j)=2/(1+exp(-NETi(i,j)))-1;endend%计算输出层各神经元输出NETk=wki*Oi;for i=1:Nfor k=1:LOk(k,i)=2/(1+exp(-NETk(k,i)))-1;endend%计算误差函数E=((T-Ok)'*(T-Ok))/2;if (E<err_goal)break;end%调整输出层加权系数deltak=Ok.*(1-Ok).*(T-Ok);w=wki;wki=wki+lr*deltak*Oi';wki0=w;%调整隐层加权系数deltai=Oi.*(1-Oi).*(deltak'*wki)';w=wij;wij=wij+lr*deltai*X';wij0=w;endepoch %显示计算次数%根据训练好的wki,wij和给定的输入计算输出X1=X;%计算隐层各神经元的输出NETi=wij*X1;for j=1:Nfor i=1:qOi(i,j)=2/(1+exp(-NETi(i,j)))-1;endend%计算输出层各神经元的输出NETk=wki*Oi;for i=1:Nfor k=1:LOk(k,i)=2/(1+exp(-NETk(k,i)))-1;endendOk %显示网络输出层的输出2、BP逼近任意函数算法的matlab实现程序⏹X=-4:0.08:4;⏹T=1.1*(1-X+2*X.^2).*exp(-X.^2./2);⏹net=newff(minmax(X),[20,1],{'tansig','purelin'});⏹net.trainParam.epochs=15000;⏹net.trainParam.goal=0.001;⏹net=train(net,X,T);⏹X1=-1:0.01:1;⏹y=sim(net,X1);⏹figure;⏹plot(X1,y,'-r',X,T,':b','LineWidth',2);3.RBF能够逼近任意的非线性函数⏹X=-4:0.08:4;⏹T=1.1*(1-X+2*X.^2).*exp(-X.^2./2);⏹net=newrb(X,T,0.002,1);⏹X1=-1:0.01:1;⏹y=sim(net,X1);⏹figure;⏹plot(X1,y,'-r',X,T,':b','LineWidth',3);五、思考题1. 将结果用图画出。

PSO优化的BP神经网络(Matlab版)

PSO优化的BP神经网络(Matlab版)

PSO优化的BP神经⽹络(Matlab版)前⾔:最近接触到⼀些神经⽹络的东西,看到很多⼈使⽤PSO(粒⼦群优化算法)优化BP神经⽹络中的权值和偏置,经过⼀段时间的研究,写了⼀些代码,能够跑通,嫌弃速度慢的可以改⼀下训练次数或者适应度函数。

在我的理解⾥,PSO优化BP的初始权值w和偏置b,有点像数据迁徙,等于⽤粒⼦去尝试作为⽹络的参数,然后训练⽹络的阈值,所以总是会看到PSO优化了权值和阈值的说法,(⼀开始我是没有想通为什么能够优化阈值的),下⾯是我的代码实现过程,关于BP和PSO的原理就不⼀⼀赘述了,⽹上有很多⼤佬解释的很详细了……⾸先是利⽤BP作为适应度函数function [error] = BP_fit(gbest,input_num,hidden_num,output_num,net,inputn,outputn)%BP_fit 此函数为PSO的适应度函数% gbest:最优粒⼦% input_num:输⼊节点数⽬;% output_num:输出层节点数⽬;% hidden_num:隐含层节点数⽬;% net:⽹络;% inputn:⽹络训练输⼊数据;% outputn:⽹络训练输出数据;% error : ⽹络输出误差,即PSO适应度函数值w1 = gbest(1:input_num * hidden_num);B1 = gbest(input_num * hidden_num + 1:input_num * hidden_num + hidden_num);w2 = gbest(input_num * hidden_num + hidden_num + 1:input_num * hidden_num...+ hidden_num + hidden_num * output_num);B2 = gbest(input_num * hidden_num+ hidden_num + hidden_num * output_num + 1:...input_num * hidden_num + hidden_num + hidden_num * output_num + output_num);net.iw{1,1} = reshape(w1,hidden_num,input_num);net.lw{2,1} = reshape(w2,output_num,hidden_num);net.b{1} = reshape(B1,hidden_num,1);net.b{2} = B2';%建⽴BP⽹络net.trainParam.epochs = 200;net.trainParam.lr = 0.05;net.trainParam.goal = 0.000001;net.trainParam.show = 100;net.trainParam.showWindow = 0;net = train(net,inputn,outputn);ty = sim(net,inputn);error = sum(sum(abs((ty - outputn))));end 然后是PSO部分:%%基于多域PSO_RBF的6R机械臂逆运动学求解的研究clear;close;clc;%定义BP参数:% input_num:输⼊层节点数;% output_num:输出层节点数;% hidden_num:隐含层节点数;% inputn:⽹络输⼊;% outputn:⽹络输出;%定义PSO参数:% max_iters:算法最⼤迭代次数% w:粒⼦更新权值% c1,c2:为粒⼦群更新学习率% m:粒⼦长度,为BP中初始W、b的长度总和% n:粒⼦群规模% gbest:到达最优位置的粒⼦format longinput_num = 3;output_num = 3;hidden_num = 25;max_iters =10;m = 500; %种群规模n = input_num * hidden_num + hidden_num + hidden_num * output_num + output_num; %个体长度w = 0.1;c1 = 2;c2 = 2;%加载⽹络输⼊(空间任意点)和输出(对应关节⾓的值)load('pfile_i2.mat')load('pfile_o2.mat')% inputs_1 = angle_2';inputs_1 = inputs_2';outputs_1 = outputs_2';train_x = inputs_1(:,1:490);% train_y = outputs_1(4:5,1:490);train_y = outputs_1(1:3,1:490);test_x = inputs_1(:,491:500);test_y = outputs_1(1:3,491:500);% test_y = outputs_1(4:5,491:500);[inputn,inputps] = mapminmax(train_x);[outputn,outputps] = mapminmax(train_y);net = newff(inputn,outputn,25);%设置粒⼦的最⼩位置与最⼤位置% w1阈值设定for i = 1:input_num * hidden_numMinX(i) = -0.01*ones(1);MaxX(i) = 3.8*ones(1);end% B1阈值设定for i = input_num * hidden_num + 1:input_num * hidden_num + hidden_numMinX(i) = 1*ones(1);MaxX(i) = 8*ones(1);end% w2阈值设定for i = input_num * hidden_num + hidden_num + 1:input_num * hidden_num + hidden_num + hidden_num * output_numMinX(i) = -0.01*ones(1);MaxX(i) = 3.8*ones(1);end% B2阈值设定for i = input_num * hidden_num+ hidden_num + hidden_num * output_num + 1:input_num * hidden_num + hidden_num + hidden_num * output_num + output_num MinX(i) = 1*ones(1);MaxX(i) = 8*ones(1);end%%初始化位置参数%产⽣初始粒⼦位置pop = rands(m,n);%初始化速度和适应度函数值V = 0.15 * rands(m,n);BsJ = 0;%对初始粒⼦进⾏限制处理,将粒⼦筛选到⾃定义范围内for i = 1:mfor j = 1:input_num * hidden_numif pop(i,j) < MinX(j)pop(i,j) = MinX(j);endif pop(i,j) > MaxX(j)pop(i,j) = MaxX(j);endendfor j = input_num * hidden_num + 1:input_num * hidden_num + hidden_numif pop(i,j) < MinX(j)pop(i,j) = MinX(j);endif pop(i,j) > MaxX(j)pop(i,j) = MaxX(j);endendfor j = input_num * hidden_num + hidden_num + 1:input_num * hidden_num + hidden_num + hidden_num * output_numif pop(i,j) < MinX(j)pop(i,j) = MinX(j);endif pop(i,j) > MaxX(j)pop(i,j) = MaxX(j);endendfor j = input_num * hidden_num+ hidden_num + hidden_num * output_num + 1:input_num * hidden_num + hidden_num + hidden_num * output_num + output_num if pop(i,j) < MinX(j)pop(i,j) = MinX(j);endif pop(i,j) > MaxX(j)pop(i,j) = MaxX(j);endendend%评估初始粒⼦for s = 1:mindivi = pop(s,:);fitness = BP_fit(indivi,input_num,hidden_num,output_num,net,inputn,outputn);BsJ = fitness; %调⽤适应度函数,更新每个粒⼦当前位置Error(s,:) = BsJ; %储存每个粒⼦的位置,即BP的最终误差end[OderEr,IndexEr] = sort(Error);%将Error数组按升序排列Errorleast = OderEr(1); %记录全局最⼩值for i = 1:m %记录到达当前全局最优位置的粒⼦if Error(i) == Errorleastgbest = pop(i,:);break;endendibest = pop; %当前粒⼦群中最优的个体,因为是初始粒⼦,所以最优个体还是个体本⾝for kg = 1:max_iters %迭代次数for s = 1:m%个体有52%的可能性变异for j = 1:n %粒⼦长度for i = 1:m %种群规模,变异是针对某个粒⼦的某⼀个值的变异if rand(1)<0.04pop(i,j) = rands(1);endendend%r1,r2为粒⼦群算法参数r1 = rand(1);r2 = rand(1);%个体位置和速度更新V(s,:) = w * V(s,:) + c1 * r1 * (ibest(s,:)-pop(s,:)) + c2 * r2 * (gbest(1,:)-pop(s,:));pop(s,:) = pop(s,:) + 0.3 * V(s,:);%对更新的位置进⾏判断,超过设定的范围就处理下。

(完整版)BP神经网络matlab实例(简单而经典)

p=p1';t=t1';[pn,minp,maxp,tn,mint,maxt]=premnmx(p,t); %原始数据归一化net=newff(minmax(pn),[5,1],{'tansig','purelin'},'traingdx');%设置网络,建立相应的BP网络net.trainParam.show=2000; % 训练网络net.trainParam.lr=0.01;net.trainParam.epochs=100000;net.trainParam.goal=1e-5;[net,tr]=train(net ,pn,tn); %调用TRAINGDM算法训练BP 网络pnew=pnew1';pnewn=tramnmx(pnew,minp,maxp);anewn=sim(net,pnewn); %对BP网络进行仿真anew=postmnmx(anewn,mint,maxt); %还原数据y=anew';1、BP网络构建(1)生成BP网络=net newff PR S S SNl TF TF TFNl BTF BLF PF(,[1 2...],{ 1 2...},,,)PR:由R维的输入样本最小最大值构成的2R⨯维矩阵。

S S SNl:各层的神经元个数。

[ 1 2...]{ 1 2...}TF TF TFNl:各层的神经元传递函数。

BTF:训练用函数的名称。

(2)网络训练[,,,,,] (,,,,,,)=net tr Y E Pf Af train net P T Pi Ai VV TV(3)网络仿真=[,,,,] (,,,,)Y Pf Af E perf sim net P Pi Ai T{'tansig','purelin'},'trainrp'2、BP网络举例举例1、%traingdclear;clc;P=[-1 -1 2 2 4;0 5 0 5 7];T=[-1 -1 1 1 -1];%利用minmax函数求输入样本范围net = newff(minmax(P),T,[5,1],{'tansig','purelin'},'trainrp');net.trainParam.show=50;%net.trainParam.lr=0.05;net.trainParam.epochs=300;net.trainParam.goal=1e-5;[net,tr]=train(net,P,T);net.iw{1,1}%隐层权值net.b{1}%隐层阈值net.lw{2,1}%输出层权值net.b{2}%输出层阈值sim(net,P)举例2、利用三层BP神经网络来完成非线性函数的逼近任务,其中隐层神经元个数为五个。

MATLAB实例:BP神经网络用于回归任务

MATLAB 实例:BP 神经⽹络⽤于回归任务MATLAB 实例:BP 神经⽹络⽤于回归(⾮线性拟合)任务作者:凯鲁嘎吉 - 博客园问题描述给定多元(多维)数据X ,有真实结果Y ,对这些数据进⾏拟合(回归),得到拟合函数的参数,进⽽得到拟合函数,现在进来⼀些新样本,对这些新样本进⾏预测出相应地Y 值。

通常的最⼩⼆乘法进⾏线性拟合并不适⽤于所有数据,对于⼤多数数据⽽⾔,他们的拟合函数是⾮线性的,⼈为构造拟合函数相当困难,没有⼀定的经验积累很难完美的构造出符合条件的拟合函数。

因此神经⽹络在这⾥被应⽤来做回归(拟合)任务,进⼀步⽤来预测。

神经⽹络是很强⼤的拟合⼯具,虽然数学可解释性差,但拟合效果好,因⽽得到⼴泛应⽤。

BP 神经⽹络是最基础的⽹络结构,输⼊层,隐层,输出层,三层结构。

如下图所⽰。

整体的⽬标函数就是均⽅误差L =||f (X )−Y ||22其中(激活函数可以⾃⾏设定)f (X )=purelin W 2⋅tan sig (W 1⋅X +b 1)+b 2N : 输⼊数据的个数D : 输⼊数据的维度D 1: 隐层节点的个数X : 输⼊数据(D *N )Y : 真实输出(1*N )W 1: 输⼊层到隐层的权值(D 1*D )b 1: 隐层的偏置(D 1*1)W 2: 输⼊层到隐层的权值(1*D 1)b 2: 隐层的偏置(1*1)通过给定训练数据与训练标签来训练⽹络的权值与偏置,进⼀步得到拟合函数f (X )。

这样,来了新数据后,直接将新数据X 代⼊函数f (X ),即可得到预测的结果。

y = tansig(x) = 2/(1+exp(-2*x))-1;y = purelin(x) = x ;()MATLAB程序⽤到的数据为UCI数据库的housing数据:输⼊数据,最后⼀列是真实的输出结果,将数据打乱顺序,95%的作为训练集,剩下的作为测试集。

这⾥隐层节点数为20。

BP_kailugaji.mfunction errorsum=BP_kailugaji(data_load, NodeNum, ratio)% Author:凯鲁嘎吉 https:///kailugaji/% Input:% data_load: 最后⼀列真实输出结果% NodeNum: 隐层节点个数% ratio: 训练集占总体样本的⽐率[Num, ~]=size(data_load);data=data_load(:, 1:end-1);real_label=data_load(:, end);k=rand(1,Num);[~,n]=sort(k);kk=floor(Num*ratio);%找出训练数据和预测数据input_train=data(n(1:kk),:)';output_train=real_label(n(1:kk))';input_test=data(n(kk+1:Num),:)';output_test=real_label(n(kk+1:Num))';%选连样本输⼊输出数据归⼀化[inputn,inputps]=mapminmax(input_train);[outputn,outputps]=mapminmax(output_train);%% BP⽹络训练% %初始化⽹络结构net=newff(inputn, outputn, NodeNum);net.trainParam.epochs=100; % 最⼤迭代次数net.trainParam.lr=0.01; % 步长net.trainParam.goal=1e-5; % 迭代终⽌条件% net.divideFcn = '';%⽹络训练net=train(net,inputn,outputn);W1=net.iw{1, 1};b1=net.b{1};W2=net.lw{2, 1};b2=net.b{2};fun1=yers{1}.transferFcn;fun2=yers{2}.transferFcn;%% BP⽹络预测%预测数据归⼀化inputn_test=mapminmax('apply',input_test,inputps);%⽹络预测输出an=sim(net,inputn_test);%⽹络输出反归⼀化BPoutput=mapminmax('reverse',an,outputps);%% 结果分析figure(1)plot(BPoutput,'-.or')hold onplot(output_test,'-*b');legend('预测输出','期望输出')xlim([1 (Num-kk)]);title('BP⽹络预测输出','fontsize',12)ylabel('函数输出','fontsize',12)xlabel('样本','fontsize',12)saveas(gcf,sprintf('BP⽹络预测输出.jpg'),'bmp');%预测误差error=BPoutput-output_test;errorsum=sum(mse(error));% 保留参数save BP_parameter W1 b1 W2 b2 fun1 fun2 net inputps outputpsdemo.mclear;clc;close alldata_load=dlmread('housing.data');NodeNum=20;ratio=0.95;errorsum=BP_kailugaji(data_load, NodeNum, ratio);fprintf('测试集总体均⽅误差为:%f\n', errorsum);%%% 验证原来的或者预测新的数据num=1; % 验证第num⾏数据load('BP_parameter.mat');data=data_load(:, 1:end-1);real_label=data_load(:, end);X=data(num, :);X=X';Y=real_label(num, :);%% BP⽹络预测%预测数据归⼀化X=mapminmax('apply',X,inputps);%⽹络预测输出Y_pre=sim(net,X);%⽹络输出反归⼀化Y_pre=mapminmax('reverse',Y_pre,outputps);error=Y_pre-Y';errorsum=sum(mse(error));fprintf('第%d⾏数据的均⽅误差为:%f\n', num, errorsum);结果测试集总体均⽅误差为:5.184424第1⾏数据的均⽅误差为:3.258243注意:隐层节点个数,激活函数,迭代终⽌条件等等参数需要根据具体数据进⾏调整。

BP神经网络实验报告

BP神经网络实验报告BP神经网络实验报告一、实验目的本实验的目的是熟悉MATLAB中神经网络工具箱的使用方法,同时通过编程实现BP网络逼近标准正弦函数,来加深对BP网络的了解和认识,理解信号的正向传播和误差的反向传递过程。

二、实验原理传统的感知器和线性神经网络无法解决线性不可分问题,因此在实际应用过程中受到了限制。

而BP网络却拥有良好的繁泛化能力、容错能力以及非线性映射能力,因此成为应用最为广泛的一种神经网络。

BP算法将研究过程分为两个阶段:第一阶段是信号的正向传播过程,输入信息通过输入层、隐层逐层处理并计算每个单元的实际输出值;第二阶段是误差的反向传递过程,若在输入层未能得到期望的输出值,则逐层递归的计算实际输出和期望输出的差值(即误差),以便根据此差值调节权值。

这种过程不断迭代,最后使得信号误差达到允许或规定的范围之内。

基于BP算法的多层前馈型网络模型的拓扑结构如下图所示:BP算法的数学描述:三层BP前馈网络的数学模型如下图所示。

三层前馈网中,输入向量为X=(x1,x2.xi。

xn)T;隐层输入向量为Y=(y1,y2.___。

y_m)T;输出层输出向量为O=(o1,o2.ok。

ol)T;期望输出向量为d=(d1,d2.dk。

dl)T。

输入层到隐层之间的权值矩阵用V表示,V=(v1,v2.其中列向量vj 为隐层第j个神经元对应的权向量;v_j。

v_m)Y,隐层到输出层之间的权值矩阵用W表示,W=(w1,w2.wk。

wl),其中列向量wk为输出层第k个神经元对应的权向量。

下面分析各层信号之间的数学关系。

对于输出层,有:yj=f(netj)。

j=1,2.mnetj=∑vijxi。

j=1,2.m对于隐层,有:Ok=f(netk)。

k=1,2.l___∑wjk*yi。

k=1,2.lj=1其中转移函数f(x)均为单极性Sigmoid函数:f(x)=1/(1+e^-x),具有连续、可导的特点,且f'(x)=f(x)[1-f(x)]。

BP人工神经网络试验报告一

BP⼈⼯神经⽹络试验报告⼀学号:北京⼯商⼤学⼈⼯神经⽹络实验报告实验⼀基于BP算法的XX及Matlab实现院(系)专业学⽣姓名成绩指导教师2011年10⽉⼀、实验⽬的:1、熟悉MATLAB 中神经⽹络⼯具箱的使⽤⽅法;2、了解BP 神经⽹络各种优化算法的原理;3、掌握BP 神经⽹络各种优化算法的特点;4、掌握使⽤BP 神经⽹络各种优化算法解决实际问题的⽅法。

⼆、实验内容:1 案例背景1.1 BP 神经⽹络概述BP 神经⽹络是⼀种多层前馈神经⽹络,该⽹络的主要特点是信号前向传递,误差反向传播。

在前向传递中,输⼊信号从输⼊层经隐含层逐层处理,直⾄输出层。

每⼀层的神经元状态只影响下⼀层神经元状态。

如果输出层得不到期望输出,则转⼊反向传播,根据预测误差调整⽹络权值和阈值,从⽽使BP 神经⽹络预测输出不断逼近期望输出。

BP 神经⽹络的拓扑结构如图1.1所⽰。

图1.1 BP 神经⽹络拓扑结构图图1.1中1x ,2x , ……n x 是BP 神经⽹络的输⼊值1y ,2y , ……n y 是BP 神经的预测值,ij ω和jk ω为BP 神经⽹络权值。

从图1.1可以看出,BP 神经⽹络可以看成⼀个⾮线性函数,⽹络输⼊值和预测值分别为该函数的⾃变量和因变量。

当输⼊节点数为n ,输出节点数为m 时,BP 神经⽹络就表达了从n 个⾃变量到m 个因变量的函数映射关系。

BP 神经⽹络预测前⾸先要训练⽹络,通过训练使⽹络具有联想记忆和预测能⼒。

BP 神经⽹络的训练过程包括以下⼏个步骤。

步骤1:⽹络初始化。

根据系统输⼊输出序列()y x ,确定⽹络输⼊层节点数n 、隐含层节点数l ,输出层节点数m ,初始化输⼊层、隐含层和输出层神经元之间的连接权值ij ω和式中, l 为隐含层节点数; f 为隐含层激励函数,该函数有多种表达形式,本章所选函数为:步骤3:输出层输出计算。

根据隐含层输出H ,连接权值jk ω和阈值b ,计算BP 神经⽹络预测输出O 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

BP神经网络实验详解(MATLAB实现)
BP(Back Propagation)神经网络是一种常用的人工神经网络结构,
用于解决分类和回归问题。

在本文中,将详细介绍如何使用MATLAB实现
BP神经网络的实验。

首先,需要准备一个数据集来训练和测试BP神经网络。

数据集可以
是一个CSV文件,每一行代表一个样本,每一列代表一个特征。

一般来说,数据集应该被分成训练集和测试集,用于训练和测试模型的性能。

在MATLAB中,可以使用`csvread`函数来读取CSV文件,并将数据集
划分为输入和输出。

假设数据集的前几列是输入特征,最后一列是输出。

可以使用以下代码来实现:
```matlab
data = csvread('dataset.csv');
input = data(:, 1:end-1);
output = data(:, end);
```
然后,需要创建一个BP神经网络模型。

可以使用MATLAB的
`patternnet`函数来创建一个全连接的神经网络模型。

该函数的输入参数
为每个隐藏层的神经元数量。

下面的代码创建了一个具有10个隐藏神经
元的单隐藏层BP神经网络:
```matlab
hidden_neurons = 10;
net = patternnet(hidden_neurons);
```
接下来,需要对BP神经网络进行训练。

可以使用`train`函数来训练模型。

该函数的输入参数包括训练集的输入和输出,以及其他可选参数,如最大训练次数和停止条件。

下面的代码展示了如何使用`train`函数来训练模型:
```matlab
net = train(net, input_train, output_train);
```
训练完成后,可以使用训练好的BP神经网络进行预测。

可以使用
`net`模型的`sim`函数来进行预测。

下面的代码展示了如何使用`sim`函数预测测试集的输出:
```matlab
output_pred = sim(net, input_test);
```
最后,可以使用各种性能指标来评估预测的准确性。

例如,可以使用MATLAB的`confusionmat`函数来计算混淆矩阵,并使用`classperf`函数来计算分类性能指标,如准确率、召回率和F1分数。

下面的代码展示了如何计算这些指标:
```matlab
confusion = confusionmat(output_test, output_pred);
cp = classperf(output_test, output_pred);
accuracy = cp.CorrectRate;
recall = cp.Sensitivity;
f1 = 2*(precision*recall)/(precision+recall);
```
以上是使用MATLAB实现BP神经网络的基本步骤。

然而,为了提高模型的性能和泛化能力,还可以采取一些优化措施,如交叉验证、正则化、参数调整等等。

总结起来,这篇文章详细介绍了如何使用MATLAB实现BP神经网络的实验。

从数据准备、模型创建、训练和预测、性能评估等方面进行了详细的说明。

希望读者可以通过这篇文章对BP神经网络有一个全面的了解,并能够在实际项目中灵活应用。

相关文档
最新文档