2020年高考数学真题汇编1 集合与简易逻辑 理( 解析版)

合集下载

2020高考真题数学分类汇编—集合、常用逻辑用语含答案

2020高考真题数学分类汇编—集合、常用逻辑用语含答案

2020高考真题数学分类汇编—集合、常用逻辑用语一、选择题(共19小题)1.(2020•天津)设全集{3U =-,2-,1-,0,1,2,3},集合{1A =-,0,1,2},{3B =-,0,2,3},则()(U A B =⋂ )A .{3-,3}B .{0,2}C .{1-,1}D .{3-,2-,1-,1,3 }2.(2020•北京)已知集合{1A =-,0,1,2},{|03}B x x =<<,则(A B = )A .{1-,0,1}B .{0,1}C .{1-,1,2}D .{1,2}3.(2020•山东)某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是( )A .62%B .56%C .46%D .42%4.(2020•新课标Ⅲ)已知集合{(,)|A x y x =,*y N ∈,}y x ,{(,)|8}B x y x y =+=,则AB 中元素的个数为()A .2B .3C .4D .65.(2020•新课标Ⅲ)已知集合{1A =,2,3,5,7,11},{|315}B x x =<<,则A B 中元素的个数为( )A .2B .3C .4D .5 6.(2020•浙江)已知集合{|14}P x x =<<,{|23}Q x x =<<,则(P Q = )A .{|12}x x <B .{|23}x x <<C .{|34}x x <D .{|14}x x <<7.(2020•新课标Ⅲ)已知集合{|||3A x x =<,}x Z ∈,{|||1B x x =>,}x Z ∈,则(A B = )A .∅B .{3-,2-,2,3}C .{2-,0,2}D .{2-,2}8.(2020•新课标Ⅲ)已知集合2{|340}A x x x =--<,{4B =-,1,3,5},则(A B = )A .{4-,1}B .{1,5}C .{3,5}D .{1,3} 9.(2020•山东)设集合{|13}A x x =,{|24}B x x =<<,则(A B = )A .{|23}x x <B .{|23}x xC .{|14}x x <D .{|14}x x <<10.(2020•新课标Ⅲ)设集合2{|40}A x x =-,{|20}B x x a =+,且{|21}A B x x =-,则(a = )A .4-B .2-C .2D .411.(2020•新课标Ⅲ)已知集合{2U =-,1-,0,1,2,3},{1A =-,0,1},{1B =,2},则()(UA B =)A .{2-,3}B .{2-,2,3)C .{2-,1-,0,3}D .{2-,1-,0,2,3}12.(2020•天津)设a R ∈,则“1a >”是“2a a >”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件13.(2020•天津)已知函数()sin()3f x x π=+.给出下列结论:①()f x 的最小正周期为2π; ②()2f π是()f x 的最大值;③把函数sin y x =的图象上的所有点向左平移3π个单位长度,可得到函数()y f x =的图象. 其中所有正确结论的序号是( ) A .①B .①③C .②③D .①②③14.(2020•上海)命题p :存在a R ∈且0a ≠,对于任意的x R ∈,使得()()f x a f x f +<+(a );命题1:()q f x 单调递减且()0f x >恒成立;命题2:()q f x 单调递增,存在00x <使得0()0f x =, 则下列说法正确的是( ) A .只有1q 是p 的充分条件 B .只有2q 是p 的充分条件C .1q ,2q 都是p 的充分条件D .1q ,2q 都不是p 的充分条件15.(2020•北京)已知α,R β∈,则“存在k Z ∈使得(1)k k απβ=+-”是“sin sin αβ=”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件16.(2020•浙江)设集合S ,T ,*S N ⊆,*T N ⊆,S ,T 中至少有2个元素,且S ,T 满足:①对于任意的x ,y S ∈,若x y ≠,则xy T ∈; ②对于任意的x ,y T ∈,若x y <,则yS x∈.下列命题正确的是( ) A .若S 有4个元素,则S T 有7个元素 B .若S 有4个元素,则S T 有6个元素 C .若S 有3个元素,则S T 有5个元素 D .若S 有3个元素,则ST 有4个元素17.(2020•新课标Ⅲ)已知函数1()sin sin f x x x=+,则( ) A .()f x 的最小值为2B .()f x 的图象关于y 轴对称C .()f x 的图象关于直线x π=对称D .()f x 的图象关于直线2x π=对称18.(2020•浙江)已知空间中不过同一点的三条直线l ,m ,n .则“l ,m ,n 共面”是“l ,m ,n 两两相交”的()A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件19.(2020•上海)“αβ=”是“22sin cos 1αβ+=”的( ) A .充分非必要条件 B .必要非充分条件 C .充要条件D .既非充分又非必要条件二.多选题(共1小题)20.(2020•山东)信息熵是信息论中的一个重要概念.设随机变量X 所有可能的取值为1,2,⋯,n ,且()0(1i P X i p i ==>=,2,⋯,)n ,11ni i p ==∑,定义X 的信息熵21()log ni i i H X p p ==-∑.( )A .若1n =,则()0H X =B .若2n =,则()H X 随着1p 的增大而增大C .若1(1i p i n==,2,⋯,)n ,则()H X 随着n 的增大而增大D .若2n m =,随机变量Y 所有可能的取值为1,2,⋯,m ,且21()(1j m j P Y j p p j +-==+=,2,⋯,)m ,则()()H X H Y三.填空题(共5小题)21.(2020•上海)已知集合{1A =,2,4},集合{2B =,4,5},则A B = . 22.(2020•江苏)已知集合{1A =-,0,1,2},{0B =,2,3},则AB = .23.(2020•上海)集合{1A =,3},{1B =,2,}a ,若A B ⊆,则a = . 24.(2020•新课标Ⅲ)关于函数1()sin sin f x x x=+有如下四个命题: ①()f x 的图象关于y 轴对称. ②()f x 的图象关于原点对称. ③()f x 的图象关于直线2x π=对称.④()f x 的最小值为2. 其中所有真命题的序号是 . 25.(2020•新课标Ⅲ)设有下列四个命题:1p :两两相交且不过同一点的三条直线必在同一平面内.2p :过空间中任意三点有且仅有一个平面. 3p :若空间两条直线不相交,则这两条直线平行. 4p :若直线l ⊂平面α,直线m ⊥平面α,则m l ⊥.则下述命题中所有真命题的序号是 . ①14p p ∧ ②12p p ∧ ③23p p ⌝∨④34p p ⌝∨⌝2020高考真题数学分类汇编—集合、常用逻辑用语参考答案一、选择题(共19小题)1.(2020•天津)设全集{3U =-,2-,1-,0,1,2,3},集合{1A =-,0,1,2},{3B =-,0,2,3},则()(U A B =⋂ )A .{3-,3}B .{0,2}C .{1-,1}D .{3-,2-,1-,1,3 }【解答】解:全集{3U =-,2-,1-,0,1,2,3},集合{1A =-,0,1,2},{3B =-,0,2,3}, 则{2UB =-,1-,1},(){1U A B ∴=-⋂,1},故选:C .2.(2020•北京)已知集合{1A =-,0,1,2},{|03}B x x =<<,则(AB = )A .{1-,0,1}B .{0,1}C .{1-,1,2}D .{1,2} 【解答】解:集合{1A =-,0,1,2},{|03}B x x =<<,则{1A B =,2},故选:D .3.(2020•山东)某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是( )A .62%B .56%C .46%D .42%【解答】解:设只喜欢足球的百分比为x ,只喜欢游泳的百分比为y ,两个项目都喜欢的百分比为z ,由题意,可得60x z +=,96x y z ++=,82y z +=,解得46z =. ∴该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是46%.故选:C .4.(2020•新课标Ⅲ)已知集合{(,)|A x y x =,*y N ∈,}y x ,{(,)|8}B x y x y =+=,则AB 中元素的个数为()A .2B .3C .4D .6【解答】解:集合{(,)|A x y x =,*y N ∈,}y x ,{(,)|8}B x y x y =+=, {(A B x ∴=,*)|,}{(1,7)8,y xy x y N x y ⎧∈=⎨+=⎩,(2,6),(3,5),(4,4)}. AB ∴中元素的个数为4.故选:C .5.(2020•新课标Ⅲ)已知集合{1A =,2,3,5,7,11},{|315}B x x =<<,则AB 中元素的个数为( )A .2B .3C .4D .5【解答】解:集合{1A =,2,3,5,7,11},{|315)B x x =<<, {5A B ∴=,7,11}, AB ∴中元素的个数为3.故选:B .6.(2020•浙江)已知集合{|14}P x x =<<,{|23}Q x x =<<,则(PQ = )A .{|12}x x <B .{|23}x x <<C .{|34}x x <D .{|14}x x <<【解答】解:集合{|14}P x x =<<,{|23}Q x x =<<, 则{|23}PQ x x =<<.故选:B .7.(2020•新课标Ⅲ)已知集合{|||3A x x =<,}x Z ∈,{|||1B x x =>,}x Z ∈,则(AB = )A .∅B .{3-,2-,2,3}C .{2-,0,2}D .{2-,2}【解答】解:集合{|||3A x x =<,}{|33x Z x x ∈=-<<,}{2x Z ∈=-,1-,1,2}, {|||1B x x =>,}{|1x Z x x ∈=<-或1x >,}x Z ∈,{2A B ∴=-,2}.故选:D .8.(2020•新课标Ⅲ)已知集合2{|340}A x x x =--<,{4B =-,1,3,5},则(AB = )A .{4-,1}B .{1,5}C .{3,5}D .{1,3}【解答】解:集合2{|340}(1,4)A x x x =--<=-,{4B =-,1,3,5}, 则{1AB =,3},故选:D .9.(2020•山东)设集合{|13}A x x =,{|24}B x x =<<,则(AB = )A .{|23}x x <B .{|23}x xC .{|14}x x <D .{|14}x x <<【解答】解:集合{|13}A x x =,{|24}B x x =<<, {|14}AB x x ∴=<.故选:C .10.(2020•新课标Ⅲ)设集合2{|40}A x x =-,{|20}B x x a =+,且{|21}AB x x =-,则(a = )A .4-B .2-C .2D .4【解答】解:集合2{|40}{|22}A x x x x =-=-,1{|20}{|}2B x x a x x a =+=-,由{|21}AB x x =-,可得112a -=,则2a =-. 故选:B .11.(2020•新课标Ⅲ)已知集合{2U =-,1-,0,1,2,3},{1A =-,0,1},{1B =,2},则()(UA B =)A .{2-,3}B .{2-,2,3)C .{2-,1-,0,3}D .{2-,1-,0,2,3}【解答】解:集合{2U =-,1-,0,1,2,3},{1A =-,0,1},{1B =,2}, 则{1A B =-,0,1,2}, 则(){2UAB =-,3},故选:A .12.(2020•天津)设a R ∈,则“1a >”是“2a a >”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【解答】解:由2a a >,解得0a <或1a >, 故1a >”是“2a a >”的充分不必要条件, 故选:A .13.(2020•天津)已知函数()sin()3f x x π=+.给出下列结论:①()f x 的最小正周期为2π; ②()2f π是()f x 的最大值;③把函数sin y x =的图象上的所有点向左平移3π个单位长度,可得到函数()y f x =的图象. 其中所有正确结论的序号是( ) A .①B .①③C .②③D .①②③【解答】解:因为()sin()3f x x π=+,①由周期公式可得,()f x 的最小正周期2T π=,故①正确;②51()sin()sin 22362f ππππ=+==,不是()f x 的最大值,故②错误;③根据函数图象的平移法则可得,函数sin y x =的图象上的所有点向左平移3π个单位长度,可得到函数()y f x =的图象,故③正确.故选:B .14.(2020•上海)命题p :存在a R ∈且0a ≠,对于任意的x R ∈,使得()()f x a f x f +<+(a );命题1:()q f x 单调递减且()0f x >恒成立;命题2:()q f x 单调递增,存在00x <使得0()0f x =, 则下列说法正确的是( ) A .只有1q 是p 的充分条件 B .只有2q 是p 的充分条件C .1q ,2q 都是p 的充分条件D .1q ,2q 都不是p 的充分条件【解答】解:对于命题1q :当()f x 单调递减且()0f x >恒成立时, 当0a >时,此时x a x +>, 又因为()f x 单调递减, 所以()()f x a f x +< 又因为()0f x >恒成立时, 所以()()f x f x f <+(a ), 所以()()f x a f x f +<+(a ), 所以命题1q ⇒命题p ,对于命题2q :当()f x 单调递增,存在00x <使得0()0f x =, 当00a x =<时,此时x a x +<,f (a )0()0f x ==, 又因为()f x 单调递增, 所以()()f x a f x +<, 所以()()f x a f x f +<+(a ), 所以命题2p ⇒命题p , 所以1q ,2q 都是p 的充分条件, 故选:C .15.(2020•北京)已知α,R β∈,则“存在k Z ∈使得(1)k k απβ=+-”是“sin sin αβ=”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【解答】解:当2k n =,为偶数时,2n απβ=+,此时sin sin(2)sin n απββ=+=, 当21k n =+,为奇数时,2n αππβ=+-,此时sin sin()sin απββ=-=,即充分性成立,当sin sin αβ=,则2n απβ=+,n Z ∈或2n αππβ=+-,n Z ∈,即(1)k k απβ=+-,即必要性成立, 则“存在k Z ∈使得(1)k k απβ=+-”是“sin sin αβ=”的充要条件, 故选:C .16.(2020•浙江)设集合S ,T ,*S N ⊆,*T N ⊆,S ,T 中至少有2个元素,且S ,T 满足:①对于任意的x ,y S ∈,若x y ≠,则xy T ∈; ②对于任意的x ,y T ∈,若x y <,则yS x∈.下列命题正确的是( ) A .若S 有4个元素,则S T 有7个元素 B .若S 有4个元素,则ST 有6个元素C .若S 有3个元素,则S T 有5个元素D .若S 有3个元素,则ST 有4个元素【解答】解:取:{1S =,2,4},则{2T =,4,8},{1S T =,2,4,8},4个元素,排除C .{2S =,4,8},则{8T =,16,32},{2ST =,4,8,16,32},5个元素,排除D ;{2S =,4,8,16}则{8T =,16,32,64,128},{2ST =,4,8,16,32,64,128},7个元素,排除B ;故选:A .17.(2020•新课标Ⅲ)已知函数1()sin sin f x x x=+,则( ) A .()f x 的最小值为2B .()f x 的图象关于y 轴对称C .()f x 的图象关于直线x π=对称D .()f x 的图象关于直线2x π=对称【解答】解:由sin 0x ≠可得函数的定义域为{|x x k π≠,}k Z ∈,故定义域关于原点对称;设sin x t =,则1()y f x t t ==+,[1t ∈-,1],由双勾函数的图象和性质得,2y 或2y -,故A 错误;又有11()sin()(sin )()sin()sin f x x x f x x x-=-+=-+=--,故()f x 是奇函数,且定义域关于原点对称,故图象关于原点中心对称;故B 错误; 11()sin()sin sin()sin f x x x x xπππ+=++=--+;11()sin()sin sin()sin f x x x x xπππ-=-+=+-,故()()f x f x ππ+≠-,()f x 的图象不关于直线x π=对称,C 错误;又11()sin()cos 22cos sin()2f x x x xx πππ+=++=++;11()sin()cos 22cos sin()2f x x x xx πππ-=-+=+-,故()()22f x f x ππ+=-,定义域为{|x x k π≠,}k Z ∈,()f x 的图象关于直线2x π=对称;D 正确;故选:D .18.(2020•浙江)已知空间中不过同一点的三条直线l ,m ,n .则“l ,m ,n 共面”是“l ,m ,n 两两相交”的()A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【解答】解:空间中不过同一点的三条直线m ,n ,l ,若m ,n ,l 在同一平面,则m ,n ,l 相交或m ,n ,l 有两个平行,另一直线与之相交,或三条直线两两平行.而若“m ,n ,l 两两相交”,则“m ,n ,l 在同一平面”成立. 故m ,n ,l 在同一平面”是“m ,n ,l 两两相交”的必要不充分条件, 故选:B .19.(2020•上海)“αβ=”是“22sin cos 1αβ+=”的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分又非必要条件【解答】解:(1)若αβ=,则2222sin cos sin cos 1αβαα+=+=, ∴ “αβ= “是“22sin cos 1αβ+= “的充分条件;(2)若22sin cos 1αβ+=,则22sin sin αβ=,得不出αβ=, ∴ “αβ=”不是“22sin cos 1αβ+=”的必要条件, ∴ “αβ=”是“22sin cos 1αβ+=”的充分非必要条件.故选:A .二.多选题(共1小题)20.(2020•山东)信息熵是信息论中的一个重要概念.设随机变量X 所有可能的取值为1,2,⋯,n ,且()0(1i P X i p i ==>=,2,⋯,)n ,11ni i p ==∑,定义X 的信息熵21()log ni i i H X p p ==-∑.( )A .若1n =,则()0H X =B .若2n =,则()H X 随着1p 的增大而增大C .若1(1i p i n==,2,⋯,)n ,则()H X 随着n 的增大而增大D .若2n m =,随机变量Y 所有可能的取值为1,2,⋯,m ,且21()(1j m j P Y j p p j +-==+=,2,⋯,)m ,则()()H X H Y【解答】解:A .若1n =,则11P =,故1212()log 1log 10H x p p =-=-⨯=,故A 正确;B .若2n =,则121p p +=,121222121121()(log log )[log (1)log (1)]H x p p p p p p p p =-+=-+--,设22()[log (1)log (1)]f p p p p p =-+--,01p <<, 则22211()[(1)(1)]2(1)21pf p log p p log p p log ln p p ln p-'=-+--+-=---, 令()0f p '<,解得112p <<,此时函数()f p 单调递减, 令()0f p '>,解得102p <<,此时函数()f p 单调递增,故B 错误; C .若1(1,2,,)i P i n n ==⋯,则2211()H x n log log n n n=-=, 由对数函数的单调性可知,()H x 随着n 的增大而增大,故C 正确;D .依题意知,12(1)m P Y p p ==+,221(2)m P Y p p -==+,322(3)m P Y p p -==+,⋯,1()m m P Y m p p +==+,122122212221()[()log ()()log ()m m m m H Y p p p p p p p p --∴=-+++++ 121()log ()]m m m m p p p p +++⋯+++,又1212222222()(log log log log )m m m m H X p p p p p p p p =-++⋯++⋯+, ∴2121222221222112()()m m m m m p p p H Y H X p log p log p log p p p p p p --=++⋯++++, 又21212221121,1,,1m m m mp p p p p p p p p -<<⋯<+++, ()()0H Y H X ∴-<,()()H X H Y ∴>,故D 错误.故选:AC .三.填空题(共5小题)21.(2020•上海)已知集合{1A =,2,4},集合{2B =,4,5},则AB = {2,4} .【解答】解:因为{1A =,2,3},{2B =,4,5},则{2A B =,4}. 故答案为:{2,4}.22.(2020•江苏)已知集合{1A =-,0,1,2},{0B =,2,3},则AB = {0,2} .【解答】解:集合{0B =,2,3},{1A =-,0,1,2},则{0A B =,2}, 故答案为:{0,2}.23.(2020•上海)集合{1A =,3},{1B =,2,}a ,若A B ⊆,则a = 3 .【解答】解:3A ∈,且A B ⊆,3B ∴∈,3a ∴=,故答案为:3.24.(2020•新课标Ⅲ)关于函数1()sin sin f x x x =+有如下四个命题: ①()f x 的图象关于y 轴对称.②()f x 的图象关于原点对称.③()f x 的图象关于直线2x π=对称.④()f x 的最小值为2.其中所有真命题的序号是 ②③ .【解答】解:对于①,由sin 0x ≠可得函数的定义域为{|x x k π≠,}k Z ∈,故定义域关于原点对称,由11()sin()sin ()sin()sin f x x x f x x x -=-+=--=--; 所以该函数为奇函数,关于原点对称,所以①错②对; 对于③,由11()sin()sin ()sin()sin f x x x f x x x πππ-=-+=+=-,所以该函数()f x 关于2x π=对称,③对; 对于④,令sin t x =,则[1t ∈-,0)(0⋃,1],由双勾函数1()g t t t =+的性质,可知,1()(g t t t=+∈-∞,2][2-,)+∞,所以()f x 无最小值,④错;故答案为:②③.25.(2020•新课标Ⅲ)设有下列四个命题:1p :两两相交且不过同一点的三条直线必在同一平面内.2p :过空间中任意三点有且仅有一个平面.3p :若空间两条直线不相交,则这两条直线平行.4p :若直线l ⊂平面α,直线m ⊥平面α,则m l ⊥.则下述命题中所有真命题的序号是 ①③④ .①14p p ∧②12p p ∧③23p p ⌝∨④34p p ⌝∨⌝【解答】解:设有下列四个命题:1p :两两相交且不过同一点的三条直线必在同一平面内.根据平面的确定定理可得此命题为真命题,2p :过空间中任意三点有且仅有一个平面.若三点在一条直线上则有无数平面,此命题为假命题,3p :若空间两条直线不相交,则这两条直线平行,也有可能异面的情况,此命题为假命题,4p :若直线l ⊂平面α,直线m ⊥平面α,则m l ⊥.由线面垂直的定义可知,此命题为真命题; 由复合命题的真假可判断①14p p ∧为真命题,②12p p ∧为假命题,③23p p ⌝∨为真命题,④34p p ⌝∨⌝为真命题,故真命题的序号是:①③④,故答案为:①③④,。

历年(2020-2023)全国高考数学真题分类(集合与常用逻辑用语)汇编(附答案)

历年(2020-2023)全国高考数学真题分类(集合与常用逻辑用语)汇编(附答案)

历年(2020‐2023)全国高考数学真题分类(集合与常用逻辑用语)汇编【2023年真题】1.(2023·新课标I 卷 第1题) 已知集合{2,1,0,1,2}M =--,2{|60}N x x x =--…,则M N ⋂=( ) A. {2,1,0,1}--B. {0,1,2}C. {2}-D. {2}2. (2023·新课标I 卷 第7题) 记n S 为数列{}n a 的前n 项和,设甲:{}n a 为等差数列:乙:{}n sn为等差数列,则( )A. 甲是乙的充分条件但不是必要条件B. 甲是乙的必要条件但不是充分条件C. 甲是乙的充要条件D. 甲既不是乙的充分条件也不是乙的必要条件3.(2023·新课标II 卷 第2题)设集合{0,}A a =-,{1,2,22}B a a =--,若A B ⊆,则a =( ) A. 2B. 1C.23D. 1-【2022年真题】4.(2022·新高考I 卷 第1题)若集合{4}M x =<,{|31}N x x =…,则M N ⋂=( ) A. {|02}x x <…B. 1{|2}3x x <…C. {|316}x x <…D. 1{|16}3x x <…5.(2022·新高考II 卷 第1题)已知集合{1,1,2,4}A =-,{||1|1}B x x =-…,则A B ⋂=( ) A. {1,2}-B. {1,2}C. {1,4}D. {1,4}-【2021年真题】6.(2021·新高考I 卷 第1题)设集合{|24}A x x =-<<,{2,3,4,5}B =,则A B ⋂=( ) A. {2}B. {2,3}C. {3,4}D. {2,3,4}7.(2021·新高考II 卷 第2题)设集合{1,2,3,4,5,6},U = {1,3,6},{2,3,4}A B ==,则()U A B ⋂=ð( ) A. {3}B. {1,6}C. {5,6}D. {1,3}【2020年真题】8.(2020·新高考I 卷 第1题)设集合{|13}A x x =剟,{|24}B x x =<<,则A B ⋃=( ) A. {|23}x x <…B. {|23}x x 剟C. {|14}x x <…D. {|14}x x <<9.(2020·新高考II 卷 第2题)设集合{2,3,5,7}A =,{1,2,3,5,8}B =,则A B ⋂=( ) A. {1,3,5,7} B. {2,3} C. {2,3,5} D. {1,2,3,5,7,8}参考答案1.(2023·新课标I 卷 第1题)解:(,2][3,)N =-∞-⋃+∞,所以{2};M N ⋂=-故选.C 2. (2023·新课标I 卷 第7题) 解:方法1:为等差数列,设其首项为1a ,公差为d ,则1(1)2n n n S na d -=+,111222n S n d da d n a n -=+=+-,112n n S S dn n +-=+, 故{}nS n为等差数列,则甲是乙的充分条件,, 反之,{}nS n为等差数列,即111(1)1(1)(1)n n n n n n S S nS n S na S n n n n n n +++-+--==+++为常数,设为t 即1(1)n nna S t n n +-=+,故1(1)n n S na t n n +=-⋅+故1(1)(1)n n S n a t n n -=--⋅-,2n …两式相减有:11(1)22n n n n n a na n a tn a a t ++=---⇒-=,对1n =也成立,故{}n a 为等差数列, 则甲是乙的必要条件, 故甲是乙的充要条件,故选.C 方法2:因为甲:{}n a 为等差数列,设数列{}n a 的首项1a ,公差为.d 即1(1)2n n n S na d -=+, 则11(1)222n S n d d a d n a n -=+=+-,故{}n S n为等差数列,即甲是乙的充分条件. 反之,乙:{}n S n为等差数列.即11n n S S D n n +-=+,1(1).n SS n D n =+-即1(1).n S nS n n D =+-当2n …时,11(1)(1)(2).n S n S n n D -=-+-- 上两式相减得:112(1)n n n a S S S n D -=-=+-, 所以12(1).n a a n D =+-当1n =时,上式成立.又1112(2(1))2n n a a a nD a n D D +-=+-+-=为常数.所以{}n a 为等差数列. 则甲是乙的必要条件, 故甲是乙的充要条件,故选C3.(2023·新课标II 卷 第2题)解:A B ⊆,则220a -=,1a =,{0,1}A =-,{1,1,0}B =-,满足,选.B 4.(2022·新高考I 卷 第1题)解:因为{|016}M x x =<…,1{|}3N x x =…, 故1{|16}.3M N x x ⋂=<… 5.(2022·新高考II 卷 第1题)解:方法一:通过解不等式可得集合{|02}B x x =剟,则{1,2}A B ⋂=,故B 正确. 法二:代入排除法.1x =-代入集合{||1|1}B x x =-…,可得|1||11|21x -=--=>,1x =-,不满足,排除A 、;4D x =代入集合{||1|1}B x x =-…,可得|1||41|31x -=-=>,4x =,不满足,排除 C ,故B 正确.6.(2021·新高考I 卷 第1题)解:因为集合{}{}24,2,3,4,5A x x B =-<<=,所以{2,3}.A B ⋂= 故选.B7.(2021·新高考II 卷 第2题) 解:由题设可得U {1,5,6}B =ð, 故U (){1,6}.A B ⋂=ð 故选.B8.(2020·新高考I 卷 第1题)解:因为集合{|13}A x x =剟,{|24}B x x =<<, ={|14}.A B x x ⋃<…故选.C9.(2020·新高考II 卷 第2题)解:因为集合A ,B 的公共元素为:2,3,5 故{2,3,5}.A B ⋂= 故选:.C。

2020高考数学(理)(全国通用)大一轮复习2020高考试题汇编 第一章 集合与常用逻辑用语 Word版含解析.doc

2020高考数学(理)(全国通用)大一轮复习2020高考试题汇编 第一章 集合与常用逻辑用语 Word版含解析.doc

第一章 集合与常用逻辑用语第一节 集合题型1 集合的基本概念——暂无题型2 集合间的基本关系——暂无题型3 集合的运算1.(2017江苏01)已知集合{}1,2A =,{}2,3B a a =+,若{}1AB =,则实数a 的值为 . 解析 由题意233a +…,故由{}1A B =,得1a =.故填1.2.(2017天津理1)设集合{}1,2,6A =,{}2,4B =,{}|15C x x =∈-R 剟,则()A B C =( ).A.{}2B.{}1,2,4C.{}1,2,4,6D.{}|15x x ∈-R 剟解析 因为{1,2,6},{2,4}A B ==,所以{1,2,6}{2,4}{1,2,4,6}AB ==, 从而(){1,2,4,6}[1,5]{1,2,4}A BC =-=.故选B .3.(2017北京理1)若集合{}–2<1A x x =<,{}–13B x x x =<>或,则AB =( ). A.{}–2<1x x <- B.{}–2<3x x <C.{}–1<1x x <D.{}1<3x x <解析 画出数轴图如图所示,则{}21A B x x =-<<-.故选A.31-1-2 4.(2017全国1理1)已知集合{}1A x x =<,{}31x B x =<,则( ).A. {}0A B x x =<B. A B =RC. {}1A B x x =>D. A B =∅解析{}1A x x =<,{}{}310x B x x x =<=<,所以{}0AB x x =<,{}1A B x x =<.故选A. 5.2017全国2理2)设集合{}1,2,4A =,{}240B x x x m =-+=.若1A B =,则B =( ).A .{}1,3-B .{}1,0C .{}1,3D .{}1,5 解析 由题意知1x =是方程240x x m -+=的解,代入解得3m =,所以2430x x -+=的解为1x =或3x =,从而{}13B =,.故选C.6.(2017全国3理1)已知集合A ={}22(,)1x y x y +=,{}(,)B x y y x ==,则A B 中元素的个数为( ).A .3B .2C .1D .0 解析 集合A 表示圆221x y +=上所有点的集合,B 表示直线y x =上所有点的集合,如图所示,所以AB 表示两直线与圆的交点,由图可知交点的个数为2,即A B 元素的个数为2.故选B.7.(2017山东理1)设函数y =A ,函数()ln 1y x =-的定义域为B ,则A B =( ).A.()1,2B.(]1,2C.()2,1-D.[)2,1-解析 由240x -…,解得22x -剟,所以[]22A =-,.由10x ->,解得1x <,所以(),1B =-∞.从而{}{}{}=|22|1|21A B x x x x x x -<=-<剟?.故选D. 8.(2017浙江理1)已知集合{}11P x x =-<<,{}02Q x x =<<,那么P Q =( ).A.()1,2-B.()01,C.()1,0-D.()1,2解析 P Q 是取,P Q 集合的所有元素,即12x -<<.故选A .第二节 命题及其关系、充分条件与必要条件题型4 四种命题及真假关系1.(2017山东理3)已知命题:p 0x ∀>,()ln 10x +>;命题:q 若a >b ,则22a b >,下列命题为真命题的是( ).A.p q ∧B.p q ∧⌝C.p q ⌝∧D.p q ⌝∧⌝解析 由011x x >⇒+>,所以ln(1)0x +>恒成立,故p 为真命题;令1a =,2b =-,验证可知,命题q 为假.故选B.题型5 充分条件、必要条件、充要条件的判断1.(2017天津理4)设θ∈R ,则“ππ1212θ-<”是“1sin 2θ<”的( ). A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 解析 ππ10sin 121262θθθπ-<⇔<<⇒<.但0θ=,1sin 2θ<,不满足ππ1212θ-<,所以“ππ1212θ-<”是“1sin 2θ<”的充分不必要条件.故选A. 2.(2017北京理6)设m ,n 为非零向量,则“存在负数λ,使得λ=m n ”是“0<⋅m n ”的( ).A.充分而不必要条件B.必要而不充分条件C. 充分必要条件D.既不充分也不必要条件解析若0λ∃<,使λ=m n ,即两向量方向相反,夹角为180,则0⋅<m n .若0⋅<m n ,也可能夹角为(90,180⎤⎦,方向并不一定相反,故不一定存在.故选A.3.(2017浙江理6)已知等差数列{}n a 的公差为d ,前n 项和为n S ,则“0d >”是“465+2S S S >”的( ).A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D.既不充分也不必要条件解析 46111466151021S S a d a d a d +=+++=+,5121020S a d =+. 当0d >时,有4652S S S +>,当4652S S S +>时,有0d >.故选C .题型6 充分条件、必要条件中的含参问题——暂无第三节 简单的逻辑联结词、全称量词与存在量词题型7 判断含逻辑联结词的命题的真假——暂无题型8 全(特)称命题——暂无题型9 根据命题真假求参数的范围——暂无。

2020年高考数学真题汇编 1:集合与简易逻辑 理

2020年高考数学真题汇编 1:集合与简易逻辑 理

2020高考真题分类汇编:集合与简易逻辑1.【2020高考真题浙江理1】设集合A={x|1<x <4},集合B ={x|2x -2x-3≤0}, 则A ∩(C R B )=A .(1,4)B .(3,4) C.(1,3) D .(1,2)∪(3,4) 【答案】B 2.【2020高考真题新课标理1】已知集合{1,2,3,4,5}A =,{(,),,}B x y x A y A x y A =∈∈-∈;,则B 中所含元素的个数为( )()A 3 ()B 6 ()C 8 ()D 10【答案】D3.【2020高考真题陕西理1】集合{|lg 0}M x x =>,2{|4}N x x =≤,则M N =( )A. (1,2)B. [1,2)C. (1,2]D. [1,2] 【答案】C.4.【2020高考真题山东理2】已知全集{}0,1,2,3,4U =,集合{}{}1,2,3,2,4A B ==,则U C AB 为(A ){}1,2,4 (B ){}2,3,4 (C ){}0,2,4 (D ){}0,2,3,4 【答案】C5.【2020高考真题辽宁理1】已知全集U={0,1,2,3,4,5,6,7,8,9},集合A={0,1,3,5,8},集合B={2,4,5,6,8},则)()(B C A C U U 为(A){5,8} (B){7,9} (C){0,1,3} (D){2,4,6} 【答案】B【点评】本题主要考查集合的交集、补集运算,属于容易题。

采用解析二能够更快地得到答案。

6.【2020高考真题辽宁理4】已知命题p :∀x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≥0,则⌝p 是(A) ∃x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≤0(B) ∀x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≤0 (C) ∃x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<0 (D) ∀x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<0 【答案】C【点评】本题主要考查含有量词的命题的否定,属于容易题。

2020高考数学专题一:集合各类题型汇编讲义,高考真题及答案

2020高考数学专题一:集合各类题型汇编讲义,高考真题及答案

一、高考考试要求:有关集合的高考试题考查重点是集合与集合之间的关系近年试题加强了对集合的计算化简的考查并向无限集发展多以小題形式出现也会渗透在解答题之中相对独立。

具体理解集合、子集、补集、交集、并集的概念;了解空集和全集的意义;了解属于、包含、相等关系的意义;掌握有关的术语和符号,并会用它们正确表示一些简单的集合.二、知识回顾:(一)集合1.基本概念:集合、元素;有限集、无限集;空集、全集;符号的使用.2.集合的表示法:列举法、描述法、图形表示法.集合元素的特征:确定性、互异性、无序性.集合的性质:①任何一个集合是它本身的子集,记为;②空集是任何集合的子集,记为;③空集是任何非空集合的真子集;如果,同时,那么A = B.如果.[注]:①Z= {整数}(√) Z ={全体整数} (×)②已知集合S中A的补集是一个有限集,则集合A也是有限集.(×)(例:S=N; A=,则CsA= {0})③空集的补集是全集.④若集合A=集合B,则CBA = , CAB = CS(CAB)= D(注:CAB = ).3. ①{(x,y)|xy =0,x∈R,y∈R}坐标轴上的点集.②{(x,y)|xy<0,x∈R,y∈R二、四象限的点集.③{(x,y)|xy>0,x∈R,y∈R} 一、三象限的点集.常用结论(1)非常规性表示常用数集:如{x|x=2(n-1)n∈Z}为偶数集{x|x=4n±1n∈Z}为奇数集等.(2)①一个集合的真子集必是其子集一个集合的子集不一定是其真子集;②任何一个集合是它本身的子集;③对于集合ABC若A⊆BB⊆C则A⊆C(真子集也满足);④若A⊆B则有A=⌀和A≠⌀两种可能.(3)集合子集的个数:集合A中有n个元素则集合A有2n个子集、2n-1个真子集、2n-1个非空子集、2n-2个非空真子集.集合元素个数:card(A∪B)=card(A)+card(B)-card(A∩B)(常用在实际问题中).1.主要性质和运算律(1)包含关系:(2)等价关系:(3)集合的运算律:交换律:结合律:分配律:.0-1律:等幂律:求补律:A∩CUA=φ A∪CUA=U ðCUU=φ ðCUφ=U反演律:CU(A∩B)= (CUA)∪(CUB) CU(A∪B)= (C UA)∩(CUB)题组一常识题1.若集合A={-101},B={y|y=x2,x∈A},则A∩B=()A.{0}B.{1}C.{01} D.{0,-1}【答案】C【解析】因为B={y|y=x2,x∈A}={01},所以A∩B={01}.2.设集合,集合,则()A. B. C. D.【答案】B【解析】集合=集合则。

高考数学强基计划专题1集合与简易逻辑

高考数学强基计划专题1集合与简易逻辑

2022年高考数学尖子生强基计划专题1集合与简易逻辑 一、真题特点分析:1. 突出对思维能力的考查。

例1.【2020年武汉大学9】设A 是集合{}12345678910,,,,,,,,,的子集,只含有3个元素,且不含相邻的整数,则这种子集A 的个数为( ) A. 32B. 56C. 72D. 84答案:B 进行分类讨论例2.【2020 年清华大学】已知集合{},,1,2,3,,2020A B C ⊆,且A B C ⊆⊆,则有序集合组(),,A B C 的个数是( ).A .20202B .20203C .20204D .20205答案:C例3.【北大】已知()01,2,...,i x i n >=11.n i i x ==∏求证:))11.nni i x =≥∏【解析】不等式;柯西不等式或AM GM -平均不等式. 法一:AM GM -不等式.调和平均值n n ni n H G =≤=⎛⎫∑≤n i n ⎛⎫∑ni ≤∑ni ⎛⎫≤∑1nn i i n n +⎛⎫≤+=∑∑,即)1≤,即))1n ni ix ≤∏法二:由11.ni ix ==∏及要证的结论分析,由柯西不等式得))211i i x x ⎫≥⎪⎭,从而可设1i i y x =,且1111.n ni i i iy x ====∏∏从而本题也即证))11.n ni i y =≥∏从而))211nni ii x x ⎫+≥⎪⎭∏,即))21nnii ix y ≥∏,假设原式不成立,即))11,nni i x =<∏则))11.nni i y =<∏从而))21nnii ix y <∏,矛盾.得证.2.注重和解题技巧,考查学生应用知识解决问题的能力。

例4.【北大】10、已知实系数二次函数()f x 与()()(),g x f x g x =和()()30f x g x +=有两重根,()f x 有两相异实根,求证:()g x 没有实根. 【解析】设()2,f x ax bx c =++()2,g x dx ex f =++则由()()f x g x =,可得()()()()()()220,40.a d x b e x c f b e a d c f -+-+-=∆=----=由()()30f x g x +=可得()()()()()()223330,34330.a d x b e x c f b e a d c f +++++=∆=+-++=化简得223124,b e ac df +=+即()22434e df ac b -=-又240.b ac ->240.e df ∴-<()g x ∴没有实根.二、应试和准备策略1. 注意知识点的全面数学题目被猜中的可能性很小,一般知识点都是靠平时积累,因此,要求学生平时要把基础知识打扎实。

2020年高考数学十年真题精解(全国Ⅰ卷)专题01 集合、复数、算法、命题与简易逻辑(word档含答案)

2020年高考数学十年真题精解(全国Ⅰ卷)专题01 集合、复数、算法、命题与简易逻辑(word档含答案)

2020年高考数学十年高考真题精解(全国卷I)专题1 集合、复数、算法、命题与简易逻辑十年树木,百年树人,十年磨一剑。

本专辑按照最新2020年考纲,对近十年高考真题精挑细选,去伪存真,挑选符合最新考纲要求的真题,按照考点/考向同类归纳,难度分层精析,对全国卷Ⅰ具有重要的应试性和导向性。

三观指的观三题(观母题、观平行题、观扇形题),一统指的是统一考点/考向,并对十年真题进行标灰(调整不考或低频考点标灰色)。

(一)2020考纲(二)本节考向题型研究汇总一、考向题型研究一:集合(2019新课标I 卷T1理科)已知集合{}}242{60M x x N x x x =-<<=--<,,则M N ⋂=A .}{43x x -<<B .}{42x x -<<-C .}{22x x -<<D .}{23x x <<【答案】C【分析】本题考查集合的交集和一元二次不等式的解法,渗透了数学运算素养.采取数轴法,利用数形结合的思想解题.【解析】由题意得,{}{}42,23M x x N x x =-<<=-<<,则{}22M N x x ⋂=-<<.故选C .【点睛】不能领会交集的含义易致误,区分交集与并集的不同,交集取公共部分,并集包括二者部分.(2019新课标I 卷T2文科)已知集合U ={1,2,3,4,5,6,7},A ={2,3,4,5},B ={2,3,6,7},则B ∩∁U A =( )A.{1,6} B.{1,7} C.{6,7} D.{1,6,7}【答案】C【分析】先求出∁U A,然后再求B∩∁U A即可求解【解答】解:∵U={1,2,3,4,5,6,7},A={2,3,4,5},B={2,3,6,7},∴∁U A={1,6,7},则B∩∁U A={6,7}故选:C.【点评】本题主要考查集合的交集与补集的求解,属于基础试题.(2018新课标I卷T2理科)已知集合A={x|x2−x−2>0},则∁R A=A. {x|−1<x<2}B. {x|−1≤x≤2}C. {x|x<−1}∪{x|x>2}D. {x|x≤−1}∪{x|x≥2}【答案】B【解析】分析:首先利用一元二次不等式的解法,求出x2−x−2>0的解集,从而求得集合A,之后根据集合补集中元素的特征,求得结果.详解:解不等式x2−x−2>0得x<−1或x>2,所以A={x|x<−1或x>2},所以可以求得C R A={x|−1≤x≤2},故选B.【点睛】该题考查的是有关一元二次不等式的解法以及集合的补集的求解问题,在解题的过程中,需要明确一元二次不等式的解集的形式以及补集中元素的特征,从而求得结果.(2017新课标I卷T1文科)已知集合A={x|x<2},B={x|3﹣2x>0},则()A.A∩B={x|x<} B.A∩B=∅C.A∪B={x|x<} D.A∪B=R【答案】A【分析】解不等式求出集合B ,结合集合交集和并集的定义,可得结论. 【解析】解:∵集合A={x|x <2},B={x|3﹣2x >0}={x|x <},∴A∩B={x|x <},故A 正确,B 错误;A ∪B={x||x <2},故C ,D 错误; 故选:A .【点睛】本题考查的知识点集合的交集和并集运算,难度不大,属于基础题.(2016新课标I 卷T1理科)设集合{}2430A x x x =-+<,{}230x x ->,则A B =I(A )33,2⎛⎫--⎪⎝⎭ (B )33,2⎛⎫- ⎪⎝⎭ (C )31,2⎛⎫ ⎪⎝⎭(D )3,32⎛⎫⎪⎝⎭【答案】D【解析】,. 故.故选D .(2017新课标I 卷T1理科)已知集合A={x|x <1},B={x|3x <1},则( ) A .A∩B={x|x <0} B .A ∪B=R C .A ∪B={x|x >1} D .A∩B=∅【答案】 A{}{}243013A x x x x x =-+<=<<{}32302B x x x x ⎧⎫=->=>⎨⎬⎩⎭332A B x x ⎧⎫=<<⎨⎬⎩⎭I【分析】先分别求出集合A和B,再求出A∩B和A∪B,由此能求出结果.【解析】解:∵集合A={x|x<1},B={x|3x<1}={x|x<0},∴A∩B={x|x<0},故A正确,D错误;A∪B={x|x<1},故B和C都错误.故选:A.【点睛】本题考查交集和并集求法及应用,是基础题,解题时要认真审题,注意交集、并集定义的合理运用(2016新课标I卷T1文科)设集合A={1,3,5,7},B={x|2≤x≤5},则A∩B=( ) A.{1,3}B.{3,5} C.{5,7} D.{1,7}【答案】B【解析】取A,B中共有的元素是{3,5},故选B(2015新课标I卷T1文科)已知集合{|32==+,}A x x n∈,{6B=,8,10,12,14},则集合n NI中元素的个数为()A BA.5B.4C.3D.2【答案】D【解析】解:{|32∈=,5,8,11,14,17,}n NA x x n==+,}{2⋯,I,14},则{8A B=I中元素的个数为2个,故集合A B故选:D.(2014新课标Ⅰ卷T1理科)已知集合A={x|x2﹣2x﹣3≥0},B={x|﹣2≤x<2},则A∩B=()A .[﹣2,﹣1] B .[﹣1,2) C .[﹣1,1] D .[1,2)【答案】A【解析】A={x|x 2﹣2x ﹣3≥0}={x|x≥3或x≤﹣1},B={x|﹣2≤x <2}, 则A∩B={x|﹣2≤x≤﹣1}, 故选:A(2013新课标Ⅰ卷T1理科)已知集合A ={x |x 2-2x >0},B ={x |-5<x <5},则( ).A .A ∩B = B .A ∪B =RC .B ⊆AD .A ⊆B【答案】B【解析】:∵x (x -2)>0,∴x <0或x >2. ∴集合A 与B 可用图象表示为:由图象可以看出A ∪B =R ,故选B.(2013新课标I 卷T1文科)已知集合A ={1,2,3,4}}4,3,2,1{=A ,},|{2A n n x xB ∈==,则=B A I ( ).A .}4,1{B .}3,2{C .}16,9{D .}2,1{ 【答案】A【解析】∵B ={x |x =n 2,n ∈A }={1,4,9,16}, ∴A ∩B ={1,4}.(2012新课标I 卷T1文科)已知集合A={x |x 2−x −2<0},B={x |−1<x <1},则(A )A ̹B (B )B ̹A (C )A=B (D )A∩B=【答案】B【解析】A=(−1,2),故B ̹A ,故选B. (2011新课标I 卷T1文科)已知集合M={0,1,2,3,4},N={1,3,5},P=M∩N ,则P 的子集共有( ) A .2个B .4个C .6个D .8个【答案】B【分析】利用集合的交集的定义求出集合P ;利用集合的子集的个数公式求出P 的子集个数. 【解答】解:∵M={0,1,2,3,4},N={1,3,5}, ∴P=M∩N={1,3} ∴P 的子集共有22=4 故选:B .【点睛】本题考查利用集合的交集的定义求交集、考查一个集合含n 个元素,则其子集的个数是2n(2010新课标I 卷T2文科)设全集{}1,2,3,4,5U =,集合{}1,4M =,{}1,3,5N =,则()U N M ⋂=ð A.{}1,3 B. {}1,5 C. {}3,5 D. {}4,5 【答案】C【分析】本小题主要考查集合的概念、集合运算等集合有关知识【解析】{}2,3,5U M =ð,{}1,3,5N =,则()U N M ⋂=ð{}1,3,5{}2,3,5⋂={}3,5一、集合的基本概念1.元素与集合的关系:a A a A∈⎧⎨∉⎩属于,记为不属于,记为.2.集合中元素的特征:一个集合中的元素必须是确定的,即一个集合一旦确定,某一个元素要么是该集合中的元素,要么不是,二者必居其一,这个特性通常被用来判断涉及的总体是否能构成集合集合中的元素必须是互异的.对于一个给定的集合,它的任何两个元素都是不同3.集合的分类:有限集与无限集,特别地,我们把不含有任何元素的集合叫做空集,记作∅. 4.常用数集及其记法:注意:实数集R 不能表示为{x |x 为所有实数}或{R },因为“{ }”包含“所有”“全体”的含义. 5.集合的表示方法:自然语言、列举法、描述法、图示法. 二、集合间的基本关系集合A ,B 中元素相同或集合A ,B 互为子集空集是任何集合的子集,是任何非空集合的真子集注意:(1)若集合A 中含有n 个元素,则有2n 个子集,有21n -个非空子集,有21n -个真子集,有22n -个非空真子集.(2)子集关系的传递性,即,A B B C A C ⊆⊆⇒⊆.三、集合的基本运算 1.集合的基本运算}B}B}2.集合运算的相关结论 AAU*集合间的基本关系在高考中时有出现,常考查求子集、真子集的个数及利用集合关系求参数的取值范围问题,主要以选择题的形式出现,且主要有以下几种命题角度: (1)求子集的个数;(2)由集合间的关系求参数的取值范围.在此题型中,我们常通过数轴来表示集合之间的关系,那么如何利用数轴来求解集合间的关系?涉及到单变量的范围问题,均可考虑利用数轴来进行数形结合,尤其是对于含有参数的问题时,由于数轴左边小于右边,所以能够以此建立含参数的不等关系在同一数轴上作多个集合表示的区间时,可用不同颜色或不同高度来区分各个集合的区域。

2020届高考数学考前精练精析 第1讲 集合与简单逻辑用语(含答案)

2020届高考数学考前精练精析 第1讲 集合与简单逻辑用语(含答案)

第1讲 集合与简单逻辑用语 1. 命题“若α=π4,则tan α=1”的逆否命题是______________________________. 答案:若tan α≠1,则α≠π42. 集合M ={x|lgx>0},N ={x|x 2≤4},则M∩N=________.答案:(1,2]解析:∵ M=(1,+∞),N =[-2,2],∴ M ∩N =(1,2].3. 若命题“$x ∈R ,使得x 2+(a -1)x +1<0”是真命题,则实数a 的取值范围是______________.答案:(-∞,-1)∪(3,+∞)解析:不等式对应的二次函数开口向上,则Δ=(a -1)2-4>0.4. 若集合A ={y|y =x 13,-2≤x≤2},B =⎩⎨⎧⎭⎬⎫y ⎪⎪⎪y =2-1x ,0<x ≤1,则A∪B =______________.答案:(-∞,32]解析:集合A =[-32,32],B =(-∞,1],∴ A ∪B =(-∞,32].5. 某班有36名同学参加数学、物理、化学课外探究小组,每名同学至多参加两个小组.已知参加数学、物理、化学小组的人数分别为26、15、13,同时参加数学和物理小组的有6人,同时参加物理和化学小组的有4人,则同时参加数学和化学小组的有____________人.答案:8解析:画韦恩图.设同时参加数学和化学小组的有x 人,则20-x +11+x +4+9-x =36,x =8.6. 设p :|4x -3|≤1,q :x 2-(2a +1)x +a(a +1)≤0,若非p 是非q 的必要不充分条件,则实数a 的取值范围是________________.答案:⎣⎢⎡⎦⎥⎤0,12 解析:p :|4x -3|≤1-1≤4x-3≤1,∴ 12≤x ≤1; q :x 2-(2a +1)x +a(a +1)≤0(x -a)[x -(a +1)]≤0,∴ a ≤x ≤a +1.由题意知p 是q 的充分不必要条件,故有⎩⎪⎨⎪⎧a ≤12,a +1>1,或⎩⎪⎨⎪⎧a <12,a +1≥1,则0≤a≤12. 7. 已知a 、b 均为实数,设集合A =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪a≤x≤a+45,B =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪b -13≤x≤b ,且A 、B 都是集合{x|0≤x≤1}的子集.如果把n -m 叫做集合{x|m≤x≤n}的“长度”,那么集合A∩B 的“长度”的最小值是________.答案:215解析:⎩⎪⎨⎪⎧a≥0,a +45≤10≤a ≤15,⎩⎪⎨⎪⎧b -13≥0,b ≤113≤b ≤1,利用数轴分类讨论可得集合A∩B 的“长度”的最小值为13-15=215.8. 已知M =⎩⎨⎧⎭⎬⎫(x ,y )|y -3x -2=a +1,N ={(x ,y)|(a 2-1)x +(a -1)y =15},若M∩N=Æ,则a 的值为________.答案:1,-1,52,-4 解析:集合M 表示挖去点(2,3)的直线,集合N 表示一条直线,因此由M∩N=Æ知,点(2,3)在集合N 所表示的直线上或两直线平行,由此求得a 的值为1,-1,52,-4. 9. 设n∈N +,一元二次方程x 2-4x +n =0有正整数根的充要条件是n =________________.答案:3或4解析:令f(x)=x 2-4x +n ,n ∈N *,f(0)=n >0,∴ f (2)≤0即n≤4,故n =1,2,3,4,经检验,n =3,4适合,或直接解出方程的根,x =2±4-n ,n ∈N *,只有n =3,4适合.10. 对任意两个集合M 、N ,定义:M -N ={x|x∈M,且x N},M*N =(M -N)∪(N-M),设M ={y|y =x 2,x ∈R },N ={y|y =3sinx ,x ∈R },则M*N =____________.答案:{y|y>3或-3≤y<0}解析:∵ M={y|y =x 2,x ∈R }={y|y≥0},N ={y|y =3sinx ,x ∈R }={y|-3≤y≤3},∴ M -N ={y|y>3},N -M ={y|-3≤y<0},∴ M*N =(M -N)∪(N-M)={y|y>3}∪{y|-3≤y<0}={y|y>3或-3≤y<0}.11. 记函数f(x)=2-x +3x +1的定义域为A ,g(x)=lg[(x -a -1)(2a -x)](a<1)的定义域为B.(1) 求集合A ;(2) 若B ÍA, 求实数a 的取值范围.解:(1) 2-x +3x +1≥0Þ2x +2-(x +3)x +1≥0Þx -1x +1≥0Þ(x -1)(x +1)≥0且x ≠-1Þx ≥1或x <-1.∴ 集合A ={x|x≥1或x <-1}.(2) (x -a -1)(2a -x)>0(a<1)(x -a -1)(x -2a)<0.∵ a<1,∴ 2a <a +1.∴ 2a <x <a +1.∴ 不等式的解为2a <x <a +1.∴ 集合B ={x|2a <x <a +1}.∵ B ÍA ,∴ 2a ≥1或a +1≤-1,∴ a ≥12或a≤-2. 又a<1,则实数a 的取值范围是(-∞,-2]∪⎣⎢⎡⎭⎪⎫12,1. 12. 已知集合A ={x|x 2-3x +2≤0},集合B ={y|y =x 2-2x +a},集合C ={x|x 2-ax -4≤0}.命题p :A∩B ≠Æ;命题q :A Í C.(1) 若命题p 为假命题,求实数a 的取值范围;(2) 若命题p∧q 为真命题,求实数a 的取值范围.解:(1) A =[1,2],B =[a -1,+∞),若p 为假命题,则A∩B=Æ,故a -1>2,即a >3.(2) 命题p 为真,则a≤3.命题q 为真,即转化为当x∈[1,2]时,f(x)=x 2-ax -4≤0恒成立,(解法1)则⎩⎪⎨⎪⎧f (1)=1-a -4≤0,f (2)=4-2a -4≤0,解得a≥0. (解法2)当x∈[1,2]时,a ≥x -4x恒成立, 而x -4x 在[1,2]上单调递增,故a≥⎝ ⎛⎭⎪⎫x -4x max=0. 故实数a 的取值范围是[0,3].13. 设数列{a n}的各项都不为零,求证:对任意n∈N*且n≥2,都有1a1a2+1a2a3+…+1a n-1a n=n-1a1a n成立的充要条件是{a n}为等差数列.证明:(充分性)若{a n}为等差数列,设其公差为d,则1a1a2+1a2a3+…+1a n-1a n=1d[(1a1-1a2)+(1a2-1a3)+…+(1a n-1-1a n)]=1d⎝⎛⎭⎪⎫1a1-1a n=a n-a1da1a n=n-1a1a n.(必要性)若1a1a2+1a2a3+…+1a n-1a n=n-1a1a n,则1a1a2+1a2a3+…+1a n-1a n+1a n a n+1=na1a n+1,两式相减得1a n a n+1=na1a n+1-n-1a1a na1=na n-(n-1)a n+1. ①于是有a1=(n+1)a n+1-na n+2,②由①②得na n-2na n+1+na n+2=0,所以a n+1-a n=a n+2-a n+1(n≥2).又由1a1a2+1a2a3=2a1a3a3-a2=a2-a1,所以n∈N*,2a n+1=a n+2+a n,故{a n}为等差数列.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020高考真题分类汇编:集合与简易逻辑1.【2020高考真题浙江理1】设集合A={x|1<x <4},集合B ={x|2x -2x-3≤0}, 则A ∩(C R B )=A .(1,4)B .(3,4) C.(1,3) D .(1,2)∪(3,4) 【答案】B【解析】B ={x|2x -2x-3≤0}=}31|{≤≤-x x ,A ∩(C R B )={x|1<x <4}I }3,1|{>-<x x x 或=}43|{<<x x 。

故选B. 2.【2020高考真题新课标理1】已知集合{1,2,3,4,5}A =,{(,),,}B x y x A y A x y A =∈∈-∈;,则B 中所含元素的个数为( )()A 3 ()B 6 ()C 8 ()D 10【答案】D【解析】要使A y x ∈-,当5=x 时,y 可是1,2,3,4.当4=x 时,y 可是1,2,3.当3=x 时,y 可是1,2.当2=x 时,y 可是1,综上共有10个,选D.3.【2020高考真题陕西理1】集合{|lg 0}M x x =>,2{|4}N x x =≤,则M N =I ( ) A. (1,2) B. [1,2) C. (1,2] D. [1,2] 【答案】C.【解析】}22|{}4|{},1|{}0lg |{2≤≤-=≤=>=>=x x x x N x x x x M Θ,]2,1(=∴N M I ,故选C.4.【2020高考真题山东理2】已知全集{}0,1,2,3,4U =,集合{}{}1,2,3,2,4A B ==,则U C A B U 为(A ){}1,2,4 (B ){}2,3,4 (C ){}0,2,4 (D ){}0,2,3,4 【答案】C【解析】}4,0{=A C U ,所以}42,0{,)(=B A C U Y ,选C. 5.【2020高考真题辽宁理1】已知全集U={0,1,2,3,4,5,6,7,8,9},集合A={0,1,3,5,8},集合B={2,4,5,6,8},则)()(B C A C U U I 为(A){5,8} (B){7,9} (C){0,1,3} (D){2,4,6} 【答案】B【解析】1.因为全集U={0,1,2,3,4,5,6,7,8,9},集合A={0,1,3,5,8},集合B={2,4,5,6,8},所以{}{}9,7,3,1,0,9,7,6,4,2==B C A C U U ,所以)()(B C A C U U I 为{7,9}。

故选B 2. 集合)()(B C A C U U I 为即为在全集U 中去掉集合A 和集合B 中的元素,所剩的元素形成的集合,由此可快速得到答案,选B【点评】本题主要考查集合的交集、补集运算,属于容易题。

采用解析二能够更快地得到答案。

6.【2020高考真题辽宁理4】已知命题p :∀x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≥0,则⌝p 是(A) ∃x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≤0 (B) ∀x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≤0 (C) ∃x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<0 (D) ∀x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<0 【答案】C【解析】命题p 为全称命题,所以其否定⌝p 应是特称命题,又(f (x 2)-f (x 1))(x 2-x 1)≥0否定为(f (x 2)-f (x 1))(x 2-x 1)<0,故选C【点评】本题主要考查含有量词的命题的否定,属于容易题。

7.【2020高考真题江西理1】若集合A={-1,1},B={0,2},则集合{z ︱z=x+y,x ∈A,y ∈B }中的元素的个数为A .5 B.4 C.3 D.2 【答案】C【命题立意】本题考查集合的概念和表示。

【解析】因为B y A x ∈∈,,所以当1-=x 时,2,0=y ,此时1,1-=+=y x z 。

当1=x 时,2,0=y ,此时3,1=+=y x z ,所以集合}2,1,1{}2,1,1{-=-=z z 共三个元素,选C.8.【2020高考真题江西理5】下列命题中,假命题为 A .存在四边相等的四边形不.是正方形 B .1212,,z z C z z ∈+为实数的充分必要条件是12,z z 为共轭复数 C .若,x y ∈R ,且2,x y +>则,x y 至少有一个大于1D .对于任意01,nn n n n N C C C ∈+++L 都是偶数【答案】B【命题立意】本题考查命题的真假判断。

【解析】对于B,若21,z z 为共轭复数,不妨设bi a z bi a z -=+=21,,则a z z 221=+,为实数。

设di c z bi a z +=+=21,,则i d b c a z z )()(21+++=+,若21z z +为实数,则有0=+d b ,当c a ,没有关系,所以B 为假命题,选B.9.【2020高考真题湖南理1】设集合M={-1,0,1},N={x|x 2≤x},则M ∩N= A.{0} B.{0,1} C.{-1,1} D.{-1,0,0} 【答案】B【解析】{}0,1N =Q M={-1,0,1} ∴M ∩N={0,1}.【点评】本题考查了集合的基本运算,较简单,易得分.先求出{}0,1N =,再利用交集定义得出M ∩N.10.【2020高考真题湖南理2】命题“若α=4π,则tan α=1”的逆否命题是 A.若α≠4π,则tan α≠1 B. 若α=4π,则tan α≠1 C. 若tan α≠1,则α≠4π D. 若tan α≠1,则α=4π【答案】C【解析】因为“若p ,则q ”的逆否命题为“若p ⌝,则q ⌝”,所以 “若α=4π,则tan α=1”的逆否命题是 “若tan α≠1,则α≠4π”. 【点评】本题考查了“若p ,则q ”形式的命题的逆命题、否命题与逆否命题,考查分析问题的能力.11.【2020高考真题湖北理2】命题“0x ∃∈R Q ð,30x ∈Q ”的否定是A .0x ∃∉R Q ð,30x ∈QB .0x ∃∈R Q ð,30x ∉QC .x ∀∉R Q ð,3x ∈QD .x ∀∈R Q ð,3x ∉Q【答案】D【解析】根据对命题的否定知,是把谓词取否定,然后把结论否定。

因此选D 12.【2020高考真题广东理2】设集合U={1,2,3,4,5,6}, M={1,2,4 },则CuM= A .U B . {1,3,5} C .{3,5,6} D . {2,4,6}【答案】C【解析】}6,5,3{=M C U ,故选C.13.【2020高考真题福建理3】下列命题中,真命题是 A. 0,00≤∈∃x eR xB. 22,x R x x >∈∀ C.a+b=0的充要条件是ab=-1 D.a>1,b>1是ab>1的充分条件 【答案】D.【解析】此类题目多选用筛选法,因为0>xe 对任意R x ∈恒成立,所以A 选项错误;因为当3=x 时93,8223==且8<9,所以选项B 错误;因为当0==b a 时,0=+b a 而ab无意义,所以选项C 错误;故选D.14.【2020高考真题北京理1】已知集合A={x ∈R|3x+2>0} B={x ∈R|(x+1)(x-3)>0} 则A ∩B=A (-∞,-1)B (-1,-23)C (-23,3)D (3,+∞)【答案】D【解析】因为32}023|{->⇒>+∈=x x R x A ,利用二次不等式可得1|{-<=x x B 或}3>x 画出数轴易得:}3|{>=x x B A I .故选D .15.【2020高考真题安徽理6】设平面α与平面β相交于直线m ,直线a 在平面α内,直线b 在平面β内,且b m ⊥,则“αβ⊥”是“a b ⊥”的( )()A 充分不必要条件 ()B 必要不充分条件 ()C 充要条件 ()D 即不充分不必要条件【答案】A【命题立意】本题借助线面位置关系考查条件的判断【解析】①,b m b b a αβα⊥⊥⇒⊥⇒⊥,②如果//a m ,则a b ⊥与b m ⊥条件相同.16.【2020高考真题全国卷理2】已知集合A =,B ={1,m} ,A U B =A, 则m=A 0或3 C 1或3 【答案】B【解析】因为A B A =Y ,所以A B ⊆,所以3=m 或m m =.若3=m ,则}3,1{},3,3,1{==B A ,满足A B A =Y .若m m =,解得0=m 或1=m .若0=m ,则}0,3,1{},0,3,1{==B A ,满足A B A =Y .若1=m ,}1,1{},1,3,1{==B A 显然不成立,综上0=m 或3=m ,选B..17【2020高考真题四川理13】设全集{,,,}U a b c d =,集合{,}A a b =,{,,}B b c d =,则B C A C U U Y ___________。

【答案】{},,a c d【命题立意】本题考查集合的基本运算法则,难度较小. 【解析】},{d c A C U =,}{a B C U =,},,{d c a B C A C U U =∴Y18.【2020高考真题上海理2】若集合}012|{>+=x x A ,}2|1||{<-=x x B ,则=B A I 。

【答案】)3,21(-【解析】集合}21{}012{->=>+=x x x x A ,}31{}21{<<-=<-=x x x x B ,所以}321{<<-=x x B A I ,即)3,21(-。

19.【2020高考真题天津理11】已知集合},32|{<+∈=x R x A 集合},0)2)((|{<--∈=x m x R x B 且),,1(n B A -=I 则m =__________,n = __________.【答案】1,1-【解析】由32<+x ,得323<+<-x ,即15<<-x ,所以集合}15{<<-=x x A ,因为)1(n B A ,-=I ,所以1-是方程0)2)((=--x m x 的根,所以代入得0)1(3=+m ,所以1-=m ,此时不等式0)2)(1(<-+x x 的解为21<<-x ,所以)11(,-=B A I ,即1=n 。

相关文档
最新文档