第六节 定积分应用

合集下载

定积分的简单应用 课件

定积分的简单应用 课件
定积分的简单应用
1.利用定积分求平面图形的面积的步骤 (1)画出草图,在直角坐标系中画出曲线或直线的大致图 象. (2)将平面图形分割成曲边梯形,并分清在 x 轴上方与下方 的部分. (3)借助图形确定出被积函数. (4)求出交点坐标,确定积分的上、下限. (5)求出各部分的定积分,并将面积表达为定积分的代数 和,求出面积.
bF(x)dx
=a移动到x=b.则变力F(x)作的功W=
a
.
不分割型平面图形的面积的求解 如图,求曲线y=x2与直线y=2x所围图形的面积S.
[分析] 从图形上可以看出,所求图形的面积可以转化为 一个三角形与一个曲边三角形面积的差,进而可以用定积分 求出面积.为了确定出积分的上、下限,我们需要求出直线 和抛物线的交点的横坐标.
2.变速直线运动的路程
作变速直线运动的物体所经过的路程 s,等于其速度函数 v
bv(t)dt
=v(t)(v(t)≥0)在时间区间[a,b]上的定积分,即 s=
a
.
3.变力做功 一物体在恒力F(单位:N)的作用下做直线运动,如果物体
沿着与F相同的方向移动了sm,则力F所作的功为W=Fs.
如果物体在变力F(x)的作用下沿着与F(x)相同的方向从x
[解析] 解方程组yy= =x2x2,, 得x1=0,x2=2. 故所求图形的面积为
S=22xdx-2x2dx=x202
-13x3 20
=43.
0
0
分割型平面图形面积的求解
求由曲线y=
x
,y=2-x,y=-
1 3
x所围成图形
的面积.
[分析] 画出三条曲(直)线,求出交点坐标,将平面图形按
交点分割成可求积分的几部分再求解.

高等数学(上) 第3版教学课件5-6 定积分应用举例

高等数学(上) 第3版教学课件5-6 定积分应用举例
通常交流电器上注明的功率就是平均功率
《高等数学》
谢谢观看
于是 A f ( x)dx
b
A lim f ( x)dx a f ( x)dx.
o a x x dxb x
所求量U 符合下列条件时能用定积分
表达:
(1)U 是与一个变量 x的变化区间a, b有关
的量;
( 2 ) U 对 于 区 间 a, b具 有 可 加 性 , 就 是 说,如果把区间a, b分成许多部分区间,则
例8 计算从时刻 0 到 T 秒时间段内
自由落体运动的平均速度.
解:自由落体运动的速度为 v gt
根据定积分的物理意义及平均值公式得:
v 1 T
T 0
gtdt
g T
1 2
t2
T 0
1 2
gT
例9 计算纯电阻电路中正弦交流电 i m sin t
在一个周期上的平均功率.
解: 设电阻为 R ,则这个电路的电压为
积分变量,在 2,1 上任取一个小区间 x, x dx
则相应 于此小区间的窄条面积可用高为 x 1 1 x
xx
,宽为dx 的小矩形面积近似代替,从而得面积微元
根据微元法得
dA 1 x dx x
A 1 1 x dx
2 x
ln x 1 x2 1 3 ln 2
2 2 2
形的曲边是上半个(或下半个)椭圆
y
a b
a2 x2 ,
代入体积公式得:V
a b a a
a2 x2 dx
2b 2
a2
a a 2 x2 dx
0
2b 2
a2
a2 x
1 3
x3
a 0
4 3

高等数学第六章《定积分的应用》

高等数学第六章《定积分的应用》

第六章 定积分的应用一、内容提要(一)主要定义【定义】 定积分的元素法 如果(1)所求量U 是与一个变量x 的变化区间[]b a ,有关的一个整体量; (2)U 对区间[]b a ,具有可加性; (3)部分量i U ∆可表示为()i i i U f x ξ∆≈∆.则可按以下步骤计算定积分(1)选取一个变量x 或y ,并确定它的变化区间[]b a ,;(2)把区间[]b a ,分成n 个小区间, 求任一小区间[],x x dx +的部分量U ∆的近似dU .()U dU f x dx ∆≈=; (3)计算()U=baf x dx ⎰.(二)主要定理与公式根据定积分的元素法可建立一些几何和物理方面的定积分表达式. 1.平面图形面积 (1)直角坐标情形①由()(),(0),,y f x f x x a x b =≥==所围图形的面积()bas f x dx =⎰.②由()()12,,,y f x y f x x a x b ====所围图形的面积()()12 bas f x f x dx =-⎰.③由()()12,,,x y x y y c y d ϕϕ====所围图形的面积()()12dcs y y dy ϕϕ=-⎰(2)参数方程情形 由曲线l :()()x t y t ϕψ=⎧⎪⎨=⎪⎩,12t t t ≤≤,x 轴及,x a x b ==所围图形的面积 ()()21t t s t t dt ψϕ'=⎰(3)极坐标情形① 由(),,ρϕθθαθβ===所围图形的面积()212s d βαϕθθ=⎰ ② 由()()12,,,ρϕθρϕθθαθβ====所围图形的面积()()222112s d βαϕθϕθθ⎡⎤=-⎣⎦⎰ 2.体积(1)旋转体的体积① 由()0,,,y y f x x a x b ====所围图形绕x 轴旋转所得旋转体体积:()2b a V f x dx π=⎡⎤⎣⎦⎰. 当0a b ≤<时,上述曲边梯形绕y 轴旋转所得旋转体的体积: ()22bbaaV x y dx x f x dx ππ==⎰⎰.② 由(),0,,x y x y c y d ϕ====所围图形绕y 轴旋转一周形成的立体体积:()2d c V y dy πϕ=⎡⎤⎣⎦⎰ (2)平行截面面积为已知的立体的体积设以()[],A x C a b ∈表示立体Ω的过点x 且垂直于x 轴的截面面积,且立体Ω夹在平面x a x b ==与之间,则立体Ω的体积:()baV A x dx =⎰.3.平面曲线的弧长(1)光滑曲线():,l y f x a x b =≤≤的弧长为as =⎰.(2)光滑曲线()(),: ,x x t l t y y t αβ=⎧⎪≤≤⎨=⎪⎩的弧长为s βα=⎰.(3)光滑曲线():, l ρϕθαθβ=≤≤的弧长为s βαθ=⎰4.变力沿直线做功、水压力 (1)变力沿直线做功设物体在变力()F x 的作用下,沿变力的方向由x a =移到x b =,在物体的位移区间[],a b 内任一子区间[],x x dx +上功的元素为 ()dW F x dx =,全部功()baW F x dx =⎰.(2)水压力设平板铅直地放入液体中,液体的密度为ρ,平板位于液面下的深度在区间[]0,b 内任一子区间[],x x dx +上,液体深x 处的压强为p gx ρ=,压力元素()dp gx f x dx ρ=⋅. 全部压力为 ()0bp gx f x dx ρ=⋅⎰.二、典型题解析(一)填空题【例6.1】 由曲线,xxy e y e -==及直线1x =所围成图形的面积是 . 解 所求面积 ()()1112xx x x S ee dx e e e e ---=-=+=+-⎰.故应填12e e -+-. 【例6.2】 由222,82x y x y =+=所围成图形(见图6.1)面积A (上半平面部分),则A = .解 两曲线22228x y x y ⎧=⎪⎨⎪+=⎩的交点为()()2,2,2,2-.所求的面积为222)2x A dx -=⎰328226x ⎫=-⎪⎭423π=+. 故应填423π+. 【例6.3】 曲线sin 02y x x π⎛⎫=≤≤⎪⎝⎭与直线,02x y π==围成一个平面图形,此平面图形绕x 轴旋转产生的旋转体的体积 .解 2220s i n 4V x d x πππ==⎰. 故应填24π.【例6.4】 阿基米德螺线()0aeλθρλ=>从0θ=到θα=一段弧长s = .解 0s αθ=⎰ ()01eλαθλ==-⎰.)1eλα-.【例6.5】 曲线322y x x x =-++与x 轴所围成的图形的面积A = . 解 函数322(2)(1)y x x x x x x =-++=--+与x 轴的交点为()()()1,0,0,02,0-.()()023232122A x x x dx x x x dx -=--+++-++⎰⎰3712=. (二)选择题图6.122x y =228x y +=【例6.6】 曲线x y e =与其过原点的切线及y 轴所围成的图形(见图6.2)面积为[ ](A ) ()1x e ex dx -⎰; (B )()1ln ln ey y y dy -⎰;(C )()1e x x e xe dx -⎰; (D )()1ln ln y y y dy -⎰.解 曲线x y e =在任意点(),x y 的切线方程为()x x Y e e X x -=-,由于切线过原点,可以求出1x =,于是过原点的切线方程为Y eX =.所求平面图形的面积等于()1xeex dx -⎰. 故选择A.【例6.7】 由曲线()()12y x x x =--与x 轴围成的平面图形的面积为 [ ]. (A )()()()()12011212x x x dx x x x dx -----⎰⎰;(B )()()212x x x dx ---⎰;(C )()()()()12011212x x x dx x x x dx ---+--⎰⎰;(D )()()212x x x dx --⎰.解 在区间[]0,1,0y <,在区间[]1,2,0y >, 所以 ()()112S x x x dx =---⎰()()2112x x x dx +--⎰.故选择C.【例 6.8】 曲线cos 22y x x ππ⎛⎫=-≤≤ ⎪⎝⎭与x 轴围成的平面图形绕x 轴旋转一周而成的旋转体体积为 [ ](A )2π (B )π (C )212π (D )2π. 解 2222cos2V xdx ππππ-==⎰.故选择C.图6.2【例6.9】 双纽线()22222x yx y +=-围成的平面图形的面积为 [ ](A )402cos 2d πθθ⎰; (B )404cos 2d πθθ⎰;(C)2θ; (D )()2401cos 22d πθθ⎰.解 双纽线的极坐标方程为2cos 2 r θ=,(,44ππθ-≤≤35)44ππθ≤≤由对称性 2244001422S r d r d ππθθ=⨯=⎰⎰402cos 2d πθθ=⎰. 故选择A.【例6.10】 曲线()2ln 1y x =-上102x ≤≤的一段弧长l = [ ].(A); (B )1222011x dx x +-⎰; (C); (D ). 解 曲线是直角坐标表示的曲线,采用公式al =⎰.由曲线方程()2ln 1y x =-可得210x ->,221x y x -'=-,则1222011x l dx x +==-⎰. 故选择B .(三)非客观题 1. 平面图形的面积解题方法 (1)先画出草图;(2)求出交点;(3)选取积分变量、区间,找出面积元素,然后积分. (1)直角坐标情形【例6.11】求曲线22,ax y ay x ==所围(见图6.3)的面积. 解 如图所示,交点为()(),00,0A a O 及.图6.32ax y =2y ax =所围的面积()23232002)333aax x aS dx ax a aa ⎡⎤==-=⎢⎥⎣⎦⎰. 【例6.12】 求介于由曲线2121,2+==x y x y 和x 轴围成的平面图形(见图6.4)的面积.解 (法一)设此面积为S ,有12101111()d ()d 2222S x x x x x -=+++-⎰⎰0122310()()42423x x x x x -=+++-23=(法二)13122002(21)]d ()3S y y y y y =-=-+⎰23=.【例6.12】 求0,2x x π==之间由曲线sin y x =和cos y x =所围成的图形(见图6.5)的面积. 解 20sin cos A x x dx π=-⎰()40cos sin x x dx π=-⎰()544sin cos x x dx ππ+-⎰()254cos sin x x dx ππ+-⎰=【例6.13】 求抛物线243y x x =-+-及其在点()0,3-和()3,0处的切线所围成的图形(见图6.6)的面积.解 由24y x '=-+得过点()0,3-和()3,0的切线方程为1:43l y x =-和2:26l y x =-+,图 6.4图 6.24π54π2π图 6.5图 6.6且可得12,l l 交点坐标为3,32⎛⎫⎪⎝⎭,则所围图形的面积为()32204343A x x x dx ⎡⎤=---+-⎣⎦⎰()32322643x x x dx ⎡⎤+-+--+-⎣⎦⎰94=. 【例6.14】求由曲线322,0a y y a x==+所围的面积. 解 所求面积为33222202lim b b a dx S dx a dx a x a x+∞-∞→+∞==++⎰⎰ 3212limarctan b a b a aπ→+∞==. 【例6.15】确定常数k ,使曲线2y x =与直线,2,0x k x k y ==+=所围成图形的面积最小. 解 选x 为积分变量,变化区间为[],2k k +,面积元素2dA x dx =,所求面积为()()22 k kA k x dx k +=-∞<<+∞⎰,要求k 使()A k 取最小值,()A k 是积分上(下)限函数,故()()22241dA k k k dk=+-=+, 令0dA dk =,解得驻点1k =-,因为2240d Adk=>,则1k =-为()A k 在(),-∞+∞内唯一极小值点,即当1k =-时,所围成图形的面积最小. (2)参数方程情形【例6.16】求摆线()()sin ,1cos x a t t y a t =-=-()020t y π≤≤=及所围的面积. 解 所求面积为20(1cos )(1cos )S a t a t dt π=-⋅-⎰图 6.72220(12cos cos )a t t dt π=-+⎰221cos 2(12cos )2tat dt π+=-+⎰20312sin sin 224t t t π⎡⎤=-+⎢⎥⎣⎦23a π=【例6.17】求椭圆渐趋线()2233222cos ,sin c c x t y t c a b a b===-所围面积. 解 所求面积为223324sin cos c c S t t dt b a π'⎛⎫= ⎪⎝⎭⎰22322034sin cos sin c c t t tdt b aπ=⎰4422012sin (1sin )c t t dt abπ=--⎰438c abπ=.(3)极坐标情形【例6.18】求曲线2(2cos )r a θ=+所围成图形(见图6.7)的面积. 解 所求面积为()201222cos 2S a d πθθ=⋅+⎡⎤⎣⎦⎰ ()220444cos cos a d πθθθ=++⎰201cos 2444cos 2a d πθθθ+⎛⎫=++ ⎪⎝⎭⎰209sin 244sin 24a πθθθ⎡⎤=++⎢⎥⎣⎦ 218a π=【例6.19】 求心脏线1cos r θ=+与圆3cos r θ=公共部分(见图6.8)的面积. 解 由3cos 1cos θθ=+得交点坐标为3,23π⎛⎫± ⎪⎝⎭,()2232031121cos (3cos )22S d d πππθθθθ⎡⎤=++⎢⎥⎣⎦⎰⎰54π=. 【例6.20】 求由双纽线()()222222x ya x y +=-所围成且在圆周22212x y a +=内部的图形(见图6.9)的面积.解将r =代入方程22cos2r a θ=中得6πθ=.令0r =代入22cos 2r a θ=中得4πθ=,故 226410611cos 222A d a d πππθθθ=+⎰⎰ 224611sin 22264a a πππθ=⋅⋅+2(633)24a π=+-, 214(66a A A π∴==+-.【例6.21】求由曲线2cos2r r θθ==及所围成的图形的公共部分(见图6.10)的面积.解 解方程组2cos 2r r θθ⎧=⎪⎨=⎪⎩,得两曲线的交点坐标为26π⎛⎫ ⎪ ⎪⎝⎭. 所求的面积为1r =+图 6.9)2646112cos222S d dπππθθθθ=+⎰⎰[]64061112sin2sin2242πππθθθ⎡⎤=-+⎢⎥⎣⎦1626ππ=+=.2.体积的计算(1)旋转体的体积【例6.22】将抛物线24y ax=及直线x x=()x>所围成的图形绕x轴旋转,计算所得的旋转抛物体的体积.解()2,dV f x dxπ=其中()f x=所求体积()00222002x xV f x dx dx axπππ===⎰⎰.【例6.23】求曲线22,0y x x y=-=所围图形分别绕ox轴,oy轴旋转所成旋转体的体积.解所求体积为()22216215xV x x dxππ=-=⎰;()228223yV x x x dxππ=-=⎰。

定积分在物理中的应用

定积分在物理中的应用

从而变力为 F 100 x
所求的功
比例系数
F Ex
后退
主 页 目录 退 出
2017/5/13
W 100 xdx 0.5J
0
0.1
x x
5
第六节 定积分在物理中的应用
例 2 一圆柱形蓄水池 高为 5 米,底半径为 3 米,池内盛满了水. 问要把池内的水全部 吸出,需作多少功?
点击图片任意处播放\暂停
o a
x
x dx
F ( x)
b
x
本节 重点 与难 点
本节 复习 指导
W dW F ( x )dx
a a
b
b
后退
主 页 目录 退 出
2017/5/13
4
本节 知识 引入 本节 目的 与要 求
本节 重点 与难 点
本节 复习 指导
第六节 定积分在物理中的应用 例1 设弹簧在1N力的作用下伸长0.01米,要 使弹簧伸长0.1米,需作多少功? 解 如图:建立直角坐标系。 因为弹力的大小与弹簧的 伸长(或压缩)成正比, 即 F Ex 已知 F 1N , x 0.01 o 代入上式得 E 100
ba 每个小区间的长度 x ; n (2)求和:设各分点处的函数值为 y0 , y1 , y2 ,, yn
本节 重点 与难 点
本节 复习 指导
函数 f ( x ) 在区间[a , b] 上的平均值近似为
y0 y1 y2 yn1 ; n (3)取极限: 每个小区间的长度趋于零.
本节 重点 与难 点
本节 复习 指导
q k 那么电场对它的作用力的大小为 F k 2 ( r ra 是常数) ,当这个单位正电荷在电场中从

最新06第六节定积分的几何应用

最新06第六节定积分的几何应用

06第六节定积分的几何应用第六节定积分的几何应用分布图示★面积表为定积分的步骤★定积分的微元法★直角坐标情形★例1★例2★例3★例4★参数方程情形★例5★极坐标情形★例6★例7★例8★圆锥★圆柱★旋转体★旋转体的体积★例9★例 10★例 11 ★例 12★例 13★平行截面面积为已知的立体的体积★例 14 ★例 15★内容小结★课堂练习★习题5-6内容要点:一、微元法定积分的所有应用问题,一般总可按“分割、求和、取极限”三个步骤把所求的量表示为定积分的形式.可以抽象出在应用学科中广泛采用的将所求量«Skip Record If...»(总量)表示为定积分的方法——微元法,这个方法的主要步骤如下:(1) 由分割写出微元根据具体问题,选取一个积分变量,例如«Skip Record If...»为积分变量,并确定它的变化区间«Skip Record If...»,任取«Skip Record If...»的一个区间微元«Skip Record If...»,求出相应于这个区间微元上部分量«Skip Record If...»的近似值,即求出所求总量«Skip Record If...»的微元«Skip Record If...»;(2) 由微元写出积分根据«Skip Record If...»写出表示总量«Skip Record If...»的定积分«Skip Record If...»微元法在几何学、物理学、经济学、社会学等应用领域中具有广泛的应用,本节和下一节主要介绍微元法在几何学与经济学中的应用.应用微元法解决实际问题时,应注意如下两点:(1) 所求总量«Skip Record If...»关于区间«Skip Record If...»应具有可加性,即如果把区间«Skip Record If...»分成许多部分区间, 则«Skip Record If...»相应地分成许多部分量, 而«Skip Record If...»等于所有部分量«Skip Record If...»之和. 这一要求是由定积分概念本身所决定的;(2) 使用微元法的关键是正确给出部分量«Skip Record If...»的近似表达式«Skip Record If...»,即使得«Skip Record If...». 在通常情况下,要检验«Skip Record If...»是否为«Skip Record If...»的高阶无穷小并非易事,因此,在实际应用要注意«Skip Record If...»的合理性.二、平面图形的面积(1)直角坐标系下平面图形的面积(2)极坐标系下平面图形的面积曲边扇形的面积微元 «Skip Record If...»所求曲边扇形的面积 «Skip Record If...»三、旋转体:由一个平面图形绕这平面内一条直线旋转一周而成的立体称为旋转体. 这条直线称为旋转轴.旋转体的体积微元 «Skip Record If...»所求旋转体的体积 «Skip Record If...»四、平行截面面积为已知的立体的体积:如果一个立体不是旋转体,但却知道该立体上垂直于一定轴的各个截面面积,那么,这个立体的体积也可用定积分来计算.体积微元 «Skip Record If...»所求立体的体积 «Skip Record If...»例题选讲:直角坐标系下平面图形的面积例1(E01)求由«Skip Record If...»和«Skip Record If...»所围成的图形的面积.解面积微元: «Skip Record If...»所求面积: «Skip Record If...»«Skip Record If...»«Skip Record If...»例2(E02)求由抛物线«Skip Record If...»与直线«Skip Record If...»所围成的面积.解如图,并由方程组«Skip Record If...»解得它们的交点为«Skip Record If...»选«Skip Record If...»为积分变量, 则«Skip Record If...»的变化范围是«Skip Record If...»任取其上的一个区间微元«Skip Record If...»则可得到相应面积微元«Skip Record If...»从而所求面积«Skip Record If...»例3(E03)求由«Skip Record If...»和«Skip Record If...»所围成的图形的面积.解面积微元:«Skip Record If...»所求面积: «Skip Record If...»«Skip Record If...»«Skip Record If...»例4计算由曲线«Skip Record If...»和«Skip Record If...»所围成的图形的面积.解面积微元:(1) «Skip Record If...»«Skip Record If...»(2) «Skip Record If...»«Skip Record If...»所求面积:«Skip Record If...»«Skip Record If...»«Skip Record If...»例5求椭圆«Skip Record If...»所围成的面积.解椭圆面积: «Skip Record If...»面积微元: «Skip Record If...»«Skip Record If...»«Skip Record If...»«Skip Record If...»例6(E04)求双纽线«Skip Record If...»所围平面图形的面积.解面积微元:«Skip Record If...»所求面积:«Skip Record If...»例7(E05)求心形线«Skip Record If...»所围平面图形的面积«Skip Record If...»解面积微元:«Skip Record If...»所求面积:«Skip Record If...»例8求出«Skip Record If...»和«Skip Record If...»的图形的公共部分的面积(其中«Skip Record If...»).解如图(见系统演示),由对称性可知,所求面积为阴影部分面积的8倍,且线段«Skip Record If...»在直线«Skip Record If...»上. 令«Skip Record If...»代入方程«Skip Record If...»得其极坐标方程为«Skip Record If...»于是所求面积可表示为«Skip Record If...»«Skip Record If...»例9(E06)连接坐标原点«Skip Record If...»及点«Skip Record If...»的直线、直线«Skip Record If...»及«Skip Record If...»轴围成一个直角三角形. 将它绕«Skip Record If...»轴旋转构成一个底半径为«Skip Record If...»高为«Skip Record If...»的圆锥体, 计算圆锥体的体积.解体积微元:«Skip Record If...»所求体积:«Skip Record If...»«Skip Record If...»«Skip Record If...»例10(E07)计算由椭圆«Skip Record If...»围成的平面图形绕«Skip Record If...»轴旋转而成的旋转椭球体的体积.解如图所示,该旋转体可视为由上半椭圆«Skip Record If...»及«Skip Record If...»轴所围成的图形绕«Skip Record If...»轴旋转而成的立体 .取«Skip Record If...»为自变量,其变化区间为«Skip Record If...»任取其上一区间微元«Skip Record If...»相应于该区间微元的小薄片的体积,近似等于底半径为«Skip Record If...»高为«Skip Record If...»的扁圆柱体的体积,即体积微元«Skip Record If...»故所求旋转椭球体的体积为«Skip Record If...»«Skip Record If...»«Skip Record If...»«Skip Record If...»«SkipRecord If...»特别地,当«Skip Record If...»时,可得半径为«Skip Record If...»的球体的体积«Skip Record If...»例11求星行线«Skip Record If...»绕«Skip Record If...»轴旋构成旋转体的体积.解体积微元 :«Skip Record If...»所求体积:«Skip Record If...»«Skip Record If...»例12计算由连续曲线«Skip Record If...»、直线«Skip Record If...»、«Skip Record If...»及«Skip Record If...»轴所围成的曲边梯形绕«Skip Record If...»轴旋转一周而成的立体的体积.解体积微元:«Skip Record If...»所求体积:«Skip Record If...»例13(E08)求由曲线«Skip Record If...» «Skip Record If...»所围成的图形分别绕x轴和y轴旋转而成的旋转体的体积.解画出草图,并由方程组«Skip Record If...»解得交点为«Skip Record If...»及«Skip Record If...»于是,所求绕«Skip Record If...»轴旋转而成的旋转体的体积«Skip Record If...»所求绕«Skip Record If...»轴旋转而成的旋转体的体积«Skip Record If...»例14(E09)一平面经过半径为R的圆柱体的底圆中心,并与底面交成角«Skip Record If...»(图5-6-18),计算这平面截圆柱体所得立体的体积.解截面面积:«Skip Record If...»体积微元: «Skip Record If...»所求体积:«Skip Record If...»«Skip Record If...»例15求以半径为«Skip Record If...»的圆为底、平行且等于的圆直径的线段为顶、高为«Skip Record If...»的正劈锥体的体积.解取底圆所在的平面为«Skip Record If...»平面,圆心«Skip Record If...»为原点,并使«Skip Record If...»轴与正劈锥的顶平行.底圆的方程为 «Skip Record If...»过«Skip Record If...»轴上的点«Skip Record If...»作垂直于«Skip Record If...»轴的平面,截正劈锥体得等腰三角形.这截面的面积为«Skip Record If...»于是所求正劈锥体的体积为«Skip Record If...»«Skip Record If...»«Skip Record If...»«Skip Record If...»即正劈锥体的体积等于同底同高的圆柱体体积的一半.课堂练习1.求正弦曲线«Skip Record If...»和直线«Skip Record If...»及x轴所围成的平面图形的面积.2.求由曲线«Skip Record If...»及直线«Skip Record If...»所围成的平面图形的面积.3.求由抛物线«Skip Record If...»与直线«Skip Record If...»围成的图形,绕«Skip Record If...»轴旋转而成的旋转体的体积.。

六章定积分应用ppt课件

六章定积分应用ppt课件

WF(ba)
F
a
b
若F 为变力,力对
物体所作的功W=?
例1 带电量为q0与q1的正电荷分别放在空间两点, 求当q1沿a与b连线从a移到b时电场力所作的功。
解: 如图建立坐标系:在上述移动过程中,电场
对q1作用力是变化的。
(i)取r为积分变量,则 r[a,b] q0
q1
(ii)相应于[a,b]上任一小区间[r,r+dr] o a
br
的功元素
dW Fdrkq0q1dr
(iii)所求功
r2
W
b
k
a
qr0q21dr
kq0q1
(1) r
b a
kq0q1(1ab1)
例2 在底面积为S的圆柱形容器中盛有一定量的气体。在等 温条件下,由于气体膨胀,把容器中的一个活塞(面积为S) 从点a推移至b,计算在移动过程中气体压力所作的功。
解: 如图建立坐标系,活塞位置可用坐标x表示。
引力
问题的提出:从物理学知道,质量分别为m1、m2,相
距为r的两质点间的引力大小为
F Gmr1m2 2
其中G为引力系数,引力的方向沿着两质点的连线。
如何计算一根
细棒对一个质点的 引力F=?
r
o
m1
m2 x
例6 设有一长度为l、线密度为的均匀细棒,在
其中垂线上距棒a单位处有一质量为m 的质点M。
试计算该棒对质点M的引力。
x
问题的解决方法: 定积分元素法
以液面为y轴,x轴铅直向下。
设平板铅直位于液体中形状如图。
o
距离液面x、高为dx、宽为f(x) 的
矩形平板所受压力的近似值,即压力 元素为
a x x+dx

定积分及其应用

定积分及其应用

①.若a=b, 则
b
f (x)dx 0.
a
②.若a>b, 则
b
a
f(x)dx f(x)dx.
a
b
从而可消除对定积分上下限的大小限制.
四.定积分的几何意义
由定义1知, 当连续函数
f (x) 0 且a<b时, 定积分
b f ( x ) d x 表示一个在 x 轴上方的曲边梯形的面积; a
当 f (x) 0, 且 a < b时,
[a, b]的一个局部(小区间)来看, 它也是一个变量;
但因ƒ(x)连续, 从而当Δ x →0时, Δy→0,
故可将此区间的高近似看为一个常量,
从而此区间对应的小窄曲边梯形CEFH
y
y=ƒ(x)
A
C
B
Δy {
DH
的面积近似等于小窄矩形DEFH的面积.
oa
EF
x x+Δx b x
因而, 如果把区间[a, b]任意地划分为n个小区间, 并在每一
就有定积分的定义:
定义1.设ƒ(x)在[a, b]上有定义, 点 a x 0 x 1 x 2 x n 1 x n b
将区间[a, b]任意地划分为n个小区间; 每个小区间
[ xi1 , xi ]
的长度为 xi xi xi1(i1,2, ,n),在每个小区间 [ xi1 , xi ]
n
个区间上任取一点, 再以该点的高来近似代替该小区间上窄曲边 梯形的高, 从而每个窄曲边梯形就可近似地
视为一个小窄矩形, 而且全部窄矩形的面积之和也可作为曲边 梯形面积的近似值.
要想得精确值, 只需区间[a, b]的分法无限细密(即每个小区 间的长度Δ x →0)时, 全部窄矩形的面积之和的极限一定是曲边

定积分的几何应用

定积分的几何应用

的面积为
1
A
1
(2
1

x2
y

x2 )dx

2

2x

2 3
x3

0

8. 3
y = 2 - x2
(-1, 1) y = x2
(1, 1)
-1
O x x+dx 1 x
例2 求由抛物线 y 2 = 2 x 及直线 y = x – 4 所围图
形的面积.

解方程组

y2

2x,
体的体积差,
y y = f (x)
a x x+dx b x
即 (x +dx)2f (x) - (dx)2 f (x) = 2x f (x)dx - f (x)(dx)2. 上式中后一项是前一项关于 dx 的高阶无穷小, 因此体 积元素为 dV = 2 s f ( x ) dx . 旋转体的体积为
所围成的曲边梯形的面积为
b
y
A a f (x)dx.
y = f (x)
其中被积表达式 f ( x ) dx 是
直角坐标系下的面积元素, 它 表示高为 f ( x ), 底为 dx 的
dA f (x)
小矩形面积, 见图5-7.
O
a x x + dx b x
一般地, 平面图形以连续曲线 y = f ( x )与 y = g ( x ) 为上下曲边的曲边形的面积元素为dA = [ f (x) – g (x)]dx. 这样, 由 x = a , x = b , y = f ( x ) 和 y = g ( x ) 所围图形 ( 如图5 – 8 ) 的面积为
以 x 为积分变量, x [ a , b ] 取 [ x, x+dx ] [ a , b ], 在[ x , x + dx]上立体的体积可以近似看成以 y (x) 为底面 半径, 高为 dx 的小圆柱体的体积, 见图5-17, 则体积 元素为 dV = [ f ( x ) ] 2 dx. 旋转体的体积为
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
y
它所对应的面积元素
d A x1 ( y ) x 2 ( y ) d y
y dy
y
d
图形面积
d
x x2 ( y )
O
x x1 ( y )
x
A

c
x1 ( y ) x 2 ( y ) d y
c
【例题】计算被抛物线 y 所围成的图形面积. 解:抛物线 y
2
2
2 x 与直线 x y 4
x R R r h y ( R r h
h
)(
Rh R r
y
y)
h
r
圆台体积
V
πx
0
2
dy
o
R
x
h
V

0
πx dy =π(
2
Rr h
h
)
2
(
0
Rh Rr
y) dy
2
π R r 2 Rh 3 Rh 3 ( ) [( ) ( h) ] 3 h R r R r
2 0
【例题 】 ⑴ 求椭圆
x a cos t y b sin t
所围成的图形面积。
y
x
O
x
x dx
解: 图形关于两坐标轴都对称
a
0
A 4 A1 4 y d x 4
0
2

b sin t d ( a co s t )
2
4ab

0
1 sin t d t 4 a b a b 2 2
0
2
d


a
2 2π
2
a
2
(1 2 co s co s
0
2
)d

[

3 2
2 sin
sin 2 4
2
]0

3 2
πa
2
a (1 cos )
a
d
2a
O
A
3 2
πa
2
心形线与圆
A1 πa 2
πa 2
( 5π 4
2
2 π
a
1
y
d A y1 ( x ) y 2 ( x ) d x
y y1 ( x )
图形面积为
b
a
O
x
x dx b
x
A

a
y1 ( x ) y 2 ( x ) d x
y y2 ( x )
如果平面图形是由曲线 x x1 ( y ) ,x x 2 ( y ) 和 x 直线 y c ,y d 所围成(意味着 y 是自变量, 是函数),在区间[ c , d ] 内任取子区间 [ y , y d y ]

2
( )
d
2

( )d


( )


o
【例题】计算Archimedes螺线上一段弧 a 0 2 π 与极轴所围成的图形面积。
解: 取极角 为积分 变量,螺线内的面积元 素
2a
dA
1 2
d
2
1 2
a d
2 2
( ) a
⑵ 无限求和: 定义在区间 [ a , b ] 上的积分量 元的总和,即
b
I
是所有微
I
dI


a
f ( x )d x
利用微元法可以计算很多如几何的、物理 的或其它方面的无限可加量的求和问题。
二、平面图形的面积
1.在直角坐标中计算 【例题】求由抛物线 y x 4 x 5 ,横轴及 直线 x 3, x 5 所围成的图形面积
dA (
2 x x )d x ——面积元
y
y x
y x
2
dx
x
因此,两条抛物线所围成的图形面积为
1
A
(
0
x x )d x [
2
2 3
3
x
2
1 3
x ]0
3 1
1 3
类似的,若将所求面积的图形看作定义于 y 0 到 y 1 区间内,由曲线 x y ,x y 所围 y 成,则
2
y x
2

y
2
x
y
2
y
x
x 的交点坐标为
y x
2
原点 (0, 0 ) 和点 (1 ,1) , 图形定义于区间
(0 ,1)

dx
x
在垂直于 x 轴的方向 上,取区间 [ 0 ,1 ] 上任一子 区间 [ x , x d x ] , 在此子区 间上对应的面积元素为: (见图示)
体积微元为
d V π x d y π[ x ( y )] d y
2 2
y
d
y
x
此旋转体体积为
x x( y)
d
V

c
π [ x ( y )] d y
2
o
c
x
【例题】求上下底面半径分别为 r , R 高为h 的 圆台体积。 解:把圆台看作一个直角梯形(如图所示) 绕 y 轴旋转一周形成的。梯形斜边的方程为
d
图形面积
A 1 2

a
0
2
d
2
a
2

3
2π 0

4π 3
3
a
2
6
【例题】计算心形线 a (1 cos ) 所围成的图形面积并求心形线与圆 面积。 解: 心形线围成图形的面积
A 1 2

(a 0)
a
交集的

0
d
2
a
2 2π
2
(1 co s )
在区间 [ 0 , 2 ] 为 d A
y 2x
y x4
2 2 x dx
2 x ( x 4 )]d x
在区间 [ 2 ,8 ] 为 d A [
y
y 2x
x
x
x dx
y x4
y 2x
2
8
A 2
0
2 xdx
(
2
2 x x 4 )d x 1 8
第六节
定 积 分 的 应 用
一、微元法
按定积分概念,定积分
b
I

a
f ( x )d x lim
0

i 1
n
f ( i ) x i
取决于函数
f ( x ) 和它的定义区间 [ a , b ]

定积分 I 对于区间具有可加性是指区间 上对应的总量等于所有子区间[ x , x x ] 上对 应的部分量 I 之和。凡是需要用定积分来 度量的量,必须具有可加性这一基本特征。
I d I I ( x ) x f ( x )d x
按微分概念,子区间 [ x , x x ] 上部分量 I 与近 似值 d I 之差为 x 0 时,比 x 高阶的无穷小
通常把定积分度量的量 I 在 [ a , b ] 的子区间 [ x , x x ] 上所对应的部分量 I 近似为子区间长 度 x 的线性函数 I d I f ( x )d x 。
y
y y(x)
O
x
⑴ “切片”法
y x 由曲线 y y ( x ) 和直线 x a , b , 0 所围成的曲边梯形绕 x 轴旋转一周形成的旋 转体被垂直于 x 轴诸多平行平面所分割,成 为很多纵切片。在子区间 [ x , x d x ] 上的窄曲 边梯形所生成的半径为 y ( x ) 的薄圆盘形切片 就是旋转体的体积微元。
【例题 】求椭圆 解:面积元为
x a
2 2

y b
2 2
1
所围图形的面积。
y
x dS ydx b 1 dx a
2
x
O
x
x dx
x S 4 b 1 dx a 0
a
2

2

x a sin
原式
4 a b c o s d ab
2

0
sin t (1 sin t )d t
4 2
3a [

0
sin t d t
4

0
sin t d t ]
6
A
2
3πa 8
2
1 π 5 3 1 π 3πa 2 3 3a ( ) 4 2 2 6 4 2 2 32
⑶ 求旋轮线
与y
0
所围成的图形面积。
2
交集的面积
2
2

π 2
a
(1 co s ) d
2
2)a
2

(
3π 4
2)a
2
三、体积 1.旋转体的体积
一个平面图形绕此平面内一条直线旋 转一周而形成的立体称为旋转体,这条直 线称为旋转轴。圆柱(圆盘)、圆锥、球 体等都是最简单的旋转体,计算旋转体的 体积的方法有“切片”法和圆柱薄壳法
给出,这条曲线与从原点出发的两条射 , 围成一个曲边扇形。
在极角 的变化区间 [ , ] 内任取一个 微小的子区间 [ , d ] ,它所对应的微小 曲边扇形就是极坐标中的面积元素,即
dA 1 2
( )d
相关文档
最新文档