竖直平面内圆周运动的临界问题及应用
竖直面内的圆周运动(解析版)

竖直面内的圆周运动一、竖直平面内圆周运动的临界问题——“轻绳、轻杆”模型1.“轻绳”模型和“轻杆”模型不同的原因在于“轻绳”只能对小球产生拉力,而“轻杆”既可对小球产生拉力也可对小球产生支持力。
2.有关临界问题出现在变速圆周运动中,竖直平面内的圆周运动是典型的变速圆周运动,一般情况下,只讨论最高点和最低点的情况。
物理情景最高点无支撑最高点有支撑实例球与绳连接、水流星、沿内轨道的“过山车”等球与杆连接、球在光滑管道中运动等图示异同点受力特征除重力外,物体受到的弹力方向:向下或等于零除重力外,物体受到的弹力方向:向下、等于零或向上受力示意图力学方程mg+F N=mv2R mg±F N=mv2R临界特征F N=0mg=mv2minR即v min=gRv=0即F向=0F N=mg过最高点的条件在最高点的速度v≥gR v≥0【典例1】如图甲所示,轻杆一端固定在O点,另一端固定一小球,现让小球在竖直平面内做半径为R 的圆周运动。
小球运动到最高点时,杆与小球间弹力大小为F,小球在最高点的速度大小为v,其F-v2图象如图乙所示,则()A .小球的质量为aRbB .当地的重力加速度大小为RbC .v 2=c 时,小球对杆的弹力方向向上D .v 2=2b 时,小球受到的弹力与重力大小相等 【答案】: ACD【典例2】用长L = 0.6 m 的绳系着装有m = 0.5 kg 水的小桶,在竖直平面内做圆周运动,成为“水流星”。
G =10 m/s 2。
求:(1) 最高点水不流出的最小速度为多少?(2) 若过最高点时速度为3 m/s ,此时水对桶底的压力多大? 【答案】 (1) 2.45 m/s (2) 2.5 N 方向竖直向上【解析】(1) 水做圆周运动,在最高点水不流出的条件是:水的重力不大于水所需要的向心力。
这是最小速度即是过最高点的临界速度v 0。
以水为研究对象, mg =m v 20L解得v 0=Lg =0.6×10 m/s ≈ 2.45 m/s(2) 因为 v = 3 m/s>v 0,故重力不足以提供向心力,要由桶底对水向下的压力补充,此时所需向心力由以上两力的合力提供。
圆周运动中的临界问题

向心力最小时,角速度最小
向心力最大时,角速度最大
m
四、实例分析
例4:如图,长为L的绳子,下端连着质量为m的小球,上端接于天花 板上,当把绳子拉直时,绳与竖直方向夹角θ=60°。此时小球静止于光
三、解决圆周运动中临界问题的一般方法
1、对物体进行受力分析 2、找到其中可以变化的力以及它的临界值 3、求出向心力(合力或沿半径方向的合力)的临界值
4、用向心力公式求出运动学量(线速度、角速度、周期、 半径等)的临界值
四、实例分析
例1:如图,在质量为M的电动机的飞轮上,固定着一个 质量为m的重物(m的体积和大小可忽略),重物m到飞 轮中心距离为R,飞轮匀速转动时,为了使电动机的底 座不离开地面,转动的角速度ω最大为多少?
B A
O’
四、实例分析
例3:在以角速度ω匀速转动的转台上放着一质量为M的物体,通过一 条光滑的细绳,由转台中央小孔穿下,连接着一m的物体,如图所示。 设M与转台平面间的最大静摩擦力为压力的k倍,且转台不转时M不能 相对转台静止。求:
(1)如果物体M离转台中心的距离保持R不变,其他条件相同,则转台转动
A A
30°
30°
B
45°Biblioteka B 45°CCO
A
O’
水平转盘上放有质量为m的物快,当物块到转 轴的距离为r时,若物块始终相对转盘静止,物 块和转盘间最大静摩擦力是正压力的μ倍,求 转盘转动的最大角速度是多大?
物体与圆筒壁的动摩擦因数为μ ,圆筒的半 径为R,若要物体不滑下,圆筒的角速度至少 为多少?
圆周运动中的临界问题(全)

圆周运动中的“临界问题”总结一、“绳”模型——“最高点处有临界,最低点时无选择”一轻绳系一小球在竖直平面内做圆周运动.小球“刚好”“恰好”过最高点的条件是:此时,只有小球的 提供向心力,即 =m rv 2,这时的速度是做圆周运动的最小速度,vmin = . V= 是“绳”模型中小球能否顺利通过最高点继续做圆周运动的临界速度。
类此模型:竖直平面内的内轨道巩固1:游乐园里过山车原理的示意图如图所示。
设过山车的总质量为m =60kg ,由静止从斜轨顶端A 点开始下滑,恰好过半径为r=2.5m 的圆形轨道最高点B 。
求在圆形轨道最高点B 时的速度大小。
巩固2:杂技演员在做水流星表演时,用绳系着装有水的水桶,在竖直平面内做圆周运动,若水的质量m =0.5 kg ,绳长l=60cm ,求:(1)最高点水不流出的最小速率。
(2)水在最高点速率v =3 m /s 时,水对桶底的压力.巩固3:公路在通过小型水库的泄洪闸的下游时,常常要修建凹形桥,也叫“过水路面”。
如图所示,汽车通过凹形桥的最低点时A .车的加速度为零,受力平衡B .车对桥的压力比汽车的重力大C .车处于超重状态D .车的速度越大,车对桥面的压力越小二、“杆”模型————“最高点处有临界,最低点时无选择” 一轻杆系一小球在竖直平面内做圆周运动,注意v=0和v=gr 两个速度。
①当v =0时,杆对小球的支持力 小球的重力;②当0<v <gr 时,杆对小球产生 力,且该力 于小球的重力;③当v =gr 时,杆对小球的支持力 于零;④当v >gr 时,杆对小球产生 力。
V= 是“杆”模型中杆对小球是“推”“拉”的临界。
类此模型:竖直平面内的管轨道.巩固4:如图所示,长为L 的轻杆一端有一个质量为m 的小球,另一端有光滑的固定轴O ,现给球一初速度,使球和杆一起绕O 轴在竖直平面内转动,不计空气阻力,则( )A.小球到达最高点的速度必须大于gLB .小球到达最高点的速度要大于0C.小球到达最高点受杆的作用力一定为拉力D.小球到达最高点受杆的作用力一定为支持力 三、“拱形桥”模型——“最高点处有临界”小球沿球面运动,轨道对小球只能支撑,而不能产生拉力.在最高点时,若小球与球面间弹力为零,则有 = ,v= 。
圆周运动中的临界问题

(当 v rg 时,绳对球产生拉力,轨道对球产生压力)
(3)不能过最高点条件: v rg
(实际上球还没有到最高点时,就脱离了轨道)
如图所示,固定在竖直平点为轨道最高点,DB为竖
特点
在最高点时,没有物体支 撑,只能产生拉力
轻杆对小球既能产生拉 力,又能产生支持力
圆周运动的临界问题
1.竖直平面内的圆周运动 ①轻绳模型 :
能过最高点的临界条件:
小球在最高点时绳子的拉力刚好 等于0,小球的重力充当圆周运 动所需的向心力。
m gmR 2 v临界 Rg
轻绳模型
(1)小球能过最高点的临界条件:绳子和轨道对小球刚好没 有力的作用:
B、的压力 D、24N的压力
例3:长L=,质量可以忽略的的杆,其下端
固定于O点,上端连接着一个质量m=2kg的小 球A,A绕O点做圆周运动(同图5),在A通过 最高点,试讨论在下列两种情况下杆的受力:
①当A的速率v1=1m/s时:
②当A的速率v2=4m/s时:
变式训练
.一轻杆下端固定一质量为M的小球,上端连在轴 上,并可绕轴在竖直平面内运动,不计轴和空气阻 力,在最低点给小球水平速度v0时,刚好能到达最 高点,若小球在最低点的瞬时速度从v0不断增大,
2
双体转动模型
如图所示,轻细杆可绕光滑的水平轴O在竖直 面内转动,杆的两端固定有质量均为m=1kg的 小球A和B,球心到轴O的距离分别为,。已知 A球转到最低点时速度为vA=4m/s,问此时A、B 球对杆的作用力的大小和方向?
B
vB
vA
A
谢谢观赏
N
fA AB mg
变式训练
专题:圆周运动中的临界问题

专题:圆周运动中的临界问题一、竖直平面内的圆周运动 1.受力分析 小球用轻绳拉着在竖直平面内做圆周运动是典型的变速圆周运动。
如图所示,把重力分解可知,除最高点和最低点外,其他各点,小球切线方向加速度均不为零,因此小球做变速(速度、方向)圆周运动。
2.最高点的临界状态分析 (1)“绳模型”(或单圆形轨道,球在轨道内做圆周运动模型,此处简称为“单轨模型”)a.小球能通过最高点的临界条件为:mg =m Rv 2得:v =gR ,此时物体处于完全失重状态,绳上没有拉力;b.当v >gR ,小球能过最高点,绳上有拉力;c.当v <gR故球不能过最高点。
(2)“杆模型”(或双圆形轨道,球在双轨道内部运动,此处简称为“双轨模型”)因轻杆可以产生拉力,也可产生支持力,双轨模型时,内轨可产生支持力,外轨产生向下的压力。
a.小球能通过最高点的临界条件为:v =0,F =mg (F 为支持力);b.当0<v <gR 时,v 增大,F 减小且0<F<mg (F 方向沿半径向外),mg -F =m Rv 2 ;c. 当v =gR 时,F=0 ,完全失重状态;d.当v >gR 时,F 方向沿半径向内, F +mg =m Rv 2;最低点时,对于各种模型,都是拉力(或者支持力N )T -mg =m Rv 2。
例1、长L=0.5m ,质量可忽略不计的轻杆,其一端固定于O 点,另一端连有质量m =2kg 的小球,它绕O 点在竖直平面内做圆周运动。
当通过最高点时,如图所示,求下列情况下杆对小球的作用力(计算大小,并说明是拉力还是支持力) (1)当v =1m/s 时,大小为 16 N ,是 支持 力; (2)当v =4m/s 时,大小为 44 N ,是 拉力 力。
解析: 此题先求出v =gR =5.010⨯m/s =5m/s 。
(1)因为v =1m/s <5m/s ,所以轻杆作用给小球的是支持力,有mg -F =m R v 2得:F =16N ;(2)因为v =4m/s >5m/s ,所以轻杆作用给小球的是拉力,有mg +F =m Rv 2得:F =44N ;3.竖直平面内的匀速圆周运动 如果某物体固定在电动机或其他物体上绕水平轴匀速转动,则该物体将做匀速圆周运动,此时电动机或转动体对该物体的作用力与物体的重力的合力提供向心力,向心力大小不变,方向始终指向圆心。
竖直平面内的圆周运动临界问题(超级经典全面)

B、a处为拉力,b处为推力
C、a处为推力,b处为拉力
D、a处为推力,b处为推力
b
a
例:长度为L=0.5m的轻质细杆OA,A端有一质量
为m=3.0kg的小球,如图5所示,小球以O点为圆心 在竖直平面内做圆周运动,通过最高点时小球的速 率是2.0m/s,g取10m/s2,则此时细杆OA受到 ( B)
A、6.0N的拉力 C、24N的拉力
练习习题
7.质量为m的小球在竖直平面内的圆形轨道的 内侧运动如图5-8-9所示,经过最高点而不 脱离轨道的速度临界值是v,当小球以2v的速 度经过最高点时,对轨道的压力值是( )
A.0
B.mg
C.3mg
D.5mg
2、用长为l的细绳,拴着质量为m的小球,在竖直平面 内做圆周运动,则下列说法中正确的是( ) A.小球在最高点所受的向心力一定是重力 B.小球在最高点绳的拉力可能为零 C.小球在最低点绳子的拉力一定大于重力 D.若小球恰好能在竖直平面内做圆周运动,则它在最 高点的速率为
A .O
C B
2、轻杆和圆管模型 :
N
能过最高点的临界条件:
mg
v临界=0
O
杆(管的下壁)对球的支持力FN=mg
N
mg O
小结二:有支撑的物体
小球与杆相连,球在光滑封闭管中运动
1、临界条件: 由于支撑作用,小球恰能到达最高点的临界速度V临界=0,此时弹力
等于重力
FN mg
2、小球过最高点时,轻杆对小球的弹力情况:
由牛顿第二定律有
FN+mg= mv^2/L
2.6 N(1分)
(3分) ∴mvF^N2=/L
-mg=
根据牛顿第三定律可知,水对桶底的压力大小为2.6 N,方向
竖直、水平面内圆周运动中的临界问题和周期性问题(有解答)

水平面内圆周运动中的临界问题一、圆周运动问题的解题步骤:1确定研究对象2、画出运动轨迹、找出圆心、求半径3、分析研究对象的受力情况,画受力图4、确定向心力的来源5、由牛顿第二定律F n ma n 2 小V 2 / 2 \ 2m m r m(——)rr T二、临界问题常见类型:1按力的种类分类:(1 )、与弹力有关的临界问题:接触面间的弹力:从有到无,或从无到有绳子的拉力:从无到有,从有到最大,或从有到无(2)、与摩擦力有关的弹力问题:从静到动,从动到静,临界状态下静摩擦力达到最大静摩擦2、按轨道所在平面分类:(1 )、竖直面内的圆周运动(2)、水平面内的圆周运动三、竖直面内的圆周运动的临界问题1、单向约束之绳、外轨道约束下的竖直面内圆周运动临界问题:特点:绳对小球,轨道对小球只能产生指向圆心的弹力①临界条件:绳子或轨道对小球没有力的作用:mg=mv2/R宀v临界=.Rg (可理解为恰好转过或恰好转不过的速度)即此时小球所受重力全部提供向心力②能过最高点的条件:v> Rg,当v> . Rg时,绳对球产生拉力,轨道对球产生压力.③不能过最高点的条件:v v V临界(实际上球还没到最高点时就脱离了轨道做斜抛运动)例1、绳子系着装有水的木桶,在竖直面内做圆周运动,水的质量m=0.5kg,绳子长度为求:(g 取10m/s2)A、最高点水不留出的最小速度?B、设水在最高点速度为V=3m/s,求水对桶底的压力?答案:(1)、、6m/s (2)2.5N列方程求解l=60cm ,变式1、如图所示,一质量为m的小球,用长为L细绳系住,使其在竖直面内作圆周运动.(1)若过小球恰好能通过最高点,则小球在最高点和最低点的速度分别是多少?小球的受力情况分别如何?(2)若小球在最低点受到绳子的拉力为10mg,则小球在最高点的速度及受到绳子的拉力是多少?2、单向约束之内轨道约束下(拱桥模型)的竖直面内圆周运动的临界问题:汽车过拱形桥时会有限速,是因为当汽车通过半圆弧顶部时的速度V gr时,汽车对弧顶的压力FN=O,此时汽车将脱离桥面做平抛运动, 因为桥面不能对汽车产生拉力.例2、半径为R的光滑半圆球固定在水平面上,顶部有一小物体,如图所示。
竖直面内圆周运动的临界问题分析

ʏ赵世渭 吕志华当物体从一种特性变化为另一种特性时,发生质的飞跃的转折状态,叫临界状态㊂出现临界状态时,即可理解为 恰好出现 ,也可理解为 恰好不出现 ㊂竖直面内圆周运动的临界问题主要包括绳(环)约束模型㊁杆(管)约束模型和拱桥模型等,下面举例说明㊂一㊁绳(环)约束模型绳(环)约束模型的特点是绳(环)对物体只能产生指向圆心的弹力作用㊂图11.临界条件:在最高点绳(环)对物体恰好没有弹力作用㊂此时重力提供向心力,即m g =m v 2m i nr,解得v m i n =g r (可理解为恰好通过或恰好不通过最高点的速度)㊂2.能够通过最高点的条件:物体在最高点的速度v ȡg r ,绳(环)产生弹力作用㊂3.不能通过最高点的条件:物体在最高点的速度v <g r (实际上物体还没运动到最高点就已经脱离圆周做斜抛运动)㊂ 图2例1 如图2所示,长度均为L 的两根轻绳,一端共同系住质量为m 的小球,另一端分别固定在等高的A ㊁B 两点,A ㊁B 两点间的距离也为L ,重力加速度大小为g ㊂现使小球在竖直面内以A B 连线为轴做圆周运动,当小球在最高点的速率为v 时,两根绳的拉力恰好均为零,则小球在最高点的速率为2v 时,两根绳的拉力大小均为( )㊂A .3m g B .23m gC .3m gD .433m g当两根绳的拉力恰好均为零时,重力提供向心力;当小球在最高点的速率为2v 时,重力和两根绳拉力的合力提供向心力㊂根据等边三角形的几何关系可得,小球做圆周运动的半径r =32L ㊂当小球在最高点的速率为v 时,根据牛顿第二定律得m g =m v2r㊂当小球在最高点的速率为2v 时,设两根绳的拉力大小均为F ,根据牛顿第二定律得m g +2F c o s30ʎ=m(2v )2r㊂联立以上各式解得F =3m g ㊂答案:A解决本题的关键是清楚小球运动到最高点时的临界状态,抓住小球做圆周运动所需向心力的来源,结合牛顿第二定律列式求解㊂二㊁杆(管)约束模型物体在轻杆作用下的运动,或在管道中运动时,随着速度的变化,轻杆或管道对物体的作用力可以是支持力,也可以是压力,还可能为零㊂图31.临界条件:物体在最高点的速度v =0㊂2.物体运动到最高点:当m g =mv2r,即v =g r 时,轻杆或管道对物体的作用力F =0;当v >g r 时,轻杆或管道对物体产生向下的拉力;当v <g r 时,轻杆或管道对物体产生向上的弹力㊂例2 如图4所示,一轻杆一端A 固定质量为m 的小球,以另一端O 为圆心,使小球在竖直面内做半径为R 的圆周运动,重力33物理部分㊃知识结构与拓展高一使用 2021年3月图4加速度为g ㊂下列说法中正确的是( )㊂A .小球过最高点时,轻杆受到的弹力可以等于零B .小球过最高点的最小速度是g RC .小球过最高点时,轻杆对小球的作用力一定随速度的增大而增大D .小球过最高点时,轻杆对小球的作用力一定随速度的增大而减小小球过最高点时,当m g =mv2R,即v =g R 时,轻杆对小球的作用力F =0,根据牛顿第三定律可知,轻杆受到的弹力为零,选项A 正确㊂因为轻杆能够支撑小球,所以小球过最高点的速度最小可以为零,选项B 错误㊂当小球在最高点的速度v <g R 时,轻杆对小球产生向上的弹力,根据牛顿第二定律得m g -F =m v 2R ,变形得F =m g -m v2R,因此当v 增大时,F 减小,选项C 错误㊂当小球在最高点的速度v >g R 时,轻杆对小球产生向下的拉力,根据牛顿第二定律得m g +F =m v2R,变形得F =mv2R-m g ,因此当v 增大时,F 增大,选项D 错误㊂答案:A轻绳模型与轻杆模型的临界条件不同,对于轻绳模型来说物体能通过最高点的临界速度是v 临=gR ,对轻杆模型来说物体过最高点的临界速度是v 临=0㊂三㊁拱桥模型图5当汽车通过拱形桥顶部的速度v =g R 时,根据m g -N =mv2R可知,汽车对弧顶的压力N =0,汽车将脱离桥面做平抛运动,因此汽车过拱形桥时需限速,即v ɤg R ㊂例3如图6所示,半径为R 的光滑半 图6圆球固定在水平面上,顶部有一可视为质点的物体,现给它一个水平初速度v 0=g R ,则该物体将( )㊂A .沿球面下滑至M 点B .先沿球面下滑至某点N ,然后离开球面做斜下抛运动C .立即离开球面做平抛运动,且水平射程为2R D .立即离开球面做平抛运动,且水平射程为2R假设物体在最高点受重力和球面的支持力N 作用做圆周运动,根据牛顿第二定律得m g -N =mv 2R,解得N =0,即物体只受重力作用,因此物体将立即离开球面做平抛运动㊂根据平抛运动规律可得,物体做平抛运动的时间t =2Rg,水平位移x =v 0t =2R ,因此物体做平抛运动的轨迹曲率半径大于半圆球的半径,物体不可能中途落在球面上㊂答案:C解决本题的关键是利用牛顿第二定律分析出物体在最高点时受到的球面对它的支持力为零,进而判断出物体仅受重力作用,且初速度方向水平,物体离开球面做平抛运动,然后利用平抛运动规律求物体的水平射程㊂拓展:倾斜面内圆周运动的临界问题㊂在斜面上做圆周运动的物体,可能由静摩擦力提供向心力,也可能由轻绳或轻杆的作用力提供向心力㊂ 图7例4 如图7所示,一块足够大的光滑平板放置在水平面上,绕水平固定轴MN 可以调节其与水平面间的夹角㊂平板上一根长度l =0.8m 的轻质细绳的一43 物理部分㊃知识结构与拓展 高一使用 2021年3月端系住一质量m=0.2k g的小球,另一端固定在平板上的O点㊂当平板的倾角固定为α时,将小球拉至最高点,然后给小球一沿着平板并与细绳垂直的初速度v0=2m/s㊂(取g=10m/s2)(1)若小球能保持在板面内做圆周运动,倾角α的值应在什么范围内?(2)若细绳所能承受的最大拉力F= 8N,则当平板的倾角α最大时,小球经过最高点的速度最多多大小球在运动过程中,受重力㊁细绳拉力和斜面支持力作用㊂小球运动到最高点时,由细绳的拉力和小球的重力沿斜面分力的合力提供向心力㊂(1)小球恰好能过最高点的临界条件是细绳的拉力F=0,设此时平板的倾角为α0,根据牛顿第二定律得m g s i nα0=m v20l,解得α0=30ʎ,即小球能保持在板面内做圆周运动,平板的倾角α的值应满足0<αɤ30ʎ㊂(2)设小球经过最高点时的最大速度为v m a x,由(1)得平板的最大倾角α0=30ʎ,根据牛顿第二定律得F+m g s i nα0=m v2m a x l,解得v m a x=6m/s㊂与分析竖直面内圆周运动问题类似,分析斜面上的圆周运动问题也是先分析物体在最高点的受力情况,再根据牛顿第二定律列式求解㊂注意:在进行受力分析时,一般需要先将立体图转化为平面图,这是解斜面上圆周运动临界问题的难点㊂图81.如图8所示,一根轻绳系着装有水的小桶,在竖直面内绕O点做圆周运动,小桶的质量M=1k g,水的质量m=0.5k g,绳长L=0.6m,取g=10m/s2㊂求:(1)要使水桶运动到最高点时水不流出,最小速率多大(2)如果水桶运动到最高点时的速率v=3m/s,那么水桶对轻绳的拉力多大?(3)如果水桶运动到最低点时的速率v=3m/s2,那么水对桶底的压力多大?图92.如图9所示,将内壁光滑的导管弯成半径为R的圆周轨道竖直放置,其质量为2m,质量为m的小球在管内滚动㊂当小球运动到最高点时,导管刚好要离开地面,此时小球的速度多大?图103.如图10所示,质量为m的小物体(可视为质点)随水平传送带运动,A为终端皮带轮㊂已知皮带轮半径为r,传送带与皮带轮间不会打滑,当小物体可被水平抛出时()㊂A.传送带的最小速度为g rB.传送带的最小速度为g rC.皮带轮每秒的转数最少是12πg rD .皮带轮每秒的转数最少是12πg r图114.如图11所示,一倾斜的匀质圆盘绕垂直于盘面的固定对称轴以恒定角速度ω转动,盘面上离转轴2.5m处有一小物体与圆盘始终保持相对静止㊂小物体与盘面间的动摩擦因数为32(设最大静摩擦力等于滑动摩擦力),盘面与水平面间的夹角为30ʎ,取g=10m/s2㊂求ω的最大值㊂参考答案:1.(1)v m i n=6m/s;(2)T=7.5N;(3)N'=12.5N㊂2.v=3g R㊂3.A C4.ωm a x=1r a d/s㊂作者单位:山东省青州第一中学(责任编辑张巧)53物理部分㊃知识结构与拓展高一使用2021年3月。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
五、竖直平面内的圆周运动竖直平面内的圆周运动是典型的变速运动,高中阶段只分析通过最高点和最低点的情况,经常考查临界状态,其问题可分为以下两种模型. 一、两种模型 模型1:“轻绳类”绳对小球只能产生沿绳收缩方向的拉力(圆圈轨道问题可归结为轻绳类),即只能沿某一个方向给物体力的作用,如图1、图2所示,没有物体支撑的小球,在竖直平面做圆周运动过最高点的情况:(1)临界条件:在最高点,绳子(或圆圈轨道)对小球没有力的作用,v gR =0(2)小球能通过最高点的条件:v gR ≥,当v gR >时(3)小球不能过最高点的条件:v gR <,实际上球还没. 模型2:“轻杆类”有物体支撑的小球在竖直平面内做圆周运动过最高点的情况,如图3所示,(小球在圆环轨道内做圆周运动的情况类似“轻杆类”, 如图4所示,):(1)临界条件:由于硬杆和管壁的支撑作用,小球恰能到达最高点的临界速度0v =0 (2)小球过最高点时,轻杆对小球的弹力情况:①当0v =时,轻杆对小球有竖直向上的支持力N ,其大小等于小球的重力,即N mg =;②当0v gR <<时,因2v mg N m R -=,则2v N mg m R=-.轻杆对小球的支持力N 竖直向上,其大小随速度的增大而减小,其取值范围是0mg N >>. ③当v gR =时,0N =;④当v gR >时,则2v mg N m R +=,即2v N m mg R=-,杆对小球有指向圆心的拉力,其大小随速度的增大而增大,注意 杆与绳不同,在最高点,杆对球既能产生拉力,也能对球产生支持力,还可对球的作用力为零.小结 如果小球带电,且空间存在电磁场时,临界条件应是小球重力、电场力和洛伦兹力的合力作为向心力,此时临界速度v ≠gR (应根据具体情况具体分析).另外,若在月球上做圆周运动则可将上述的g 换成g 月,若在其他天体上则把g 换成g 天体.二、两种模型的应用 【例1】如图5所示,质量为m 的小球从光滑的斜面轨道的A 点由静止下滑,若小球恰能通过半径为R 的竖直圆形轨道的最高点B 而做圆周运动,问A 点的高度h 至少应为多少?【解析】此题属于“轻绳类”,其中“恰能”是隐含条件,即小球在最高点的临界速度是v Rg =临界,根据机械能守恒定律得2122mgh mg R mv =⋅+临界把v Rg =临界代入上式得:min52h R =. 【例2】如图6所示,在竖直向下的匀强电场中,一个带负电q 、质量为m 且重力大于所受电场力的小球,从光滑的斜面轨道的A 点由静止下滑,若小球恰能通过半径为R 的竖直圆形轨道的最高点B 而做圆周运动,问A 点的高度h 至少应为多少?【解析】此题属于“轻杆类”,带电小球在圆形轨道的最高点B 受到三个力作用:电场力F qE =,方向竖直向上;重力mg ;弹力N ,方向竖直向下.由向心力公式,有2Bv mg N qE m R+-=要使小球恰能通过圆形轨道的最高点B 而做圆周运动,说明小球此时处于临界状态,其速率B v 为临界速度,临界条件是0N =.由此可列出小球的临界状态方程为2Bv mg qE m R -= ①根据动能定理,有21()(2)2B mg qE h R mv -⋅-= ②解之得:min 52h R =说明 把②式中的mg qE -换成2Bv m R,较容易求出min 52h R =【例3】如图6所示,在竖直向下的匀强电场中,一个带正电q 、质量为m 且重力大于所受电场力的小球,从光滑的斜面轨道的A 点由静止下滑,若小球恰能通过半径为R 的竖直圆形轨道的最高点B 而做圆周运图1 图2图3 图4图5图6动,问A 点的高度h 至少应为多少?【解析】此题属于“轻绳类”,题中“恰能”是隐含条件,要使带电小球恰能通过圆形轨道的最高点B 而做圆周运动,说明小球此时处于临界状态,其速率B v 为临界速度,临界条件是0N =.由此可列出小球的临界状态方程为:2Bv mg qE m R+= ①根据动能定理,有21()(2)2B mg qE h R mv +⋅-= ②由上述二式解得:min 52h R =小结 上述两题条件虽然不同,但结果相同,为什么?因为电场力与重力做功具有相同的特点,重力做功仅与初、末位置的高度差有关;在匀强电场中,电场力做功也仅与沿电场力方向的距离差有关.我们不妨可以这样认为,例2中的“等效重力加速度1g ”比例1中的重力加速度g 减小,例3中的“等效重力加速度2g ”比例1中的重力加速度g 增大.例2中1v Rg =临界,211122mg h mg R mv =⋅+临界;例3中2v Rg =临界,222122mg h mg R mv =⋅+临界.把v 临界代入各自对应的式子,结果1mg 、2mg 分别都约去了,故min 52h R =. 【例4】如图7所示,一个带正电q 、质量为m 的电荷,从光滑的斜面轨道的A 点由静止下滑,若小球恰能通过半径为R 的竖直圆形轨道的最高点B (圆弧左半部分加上垂直纸面向外的匀强磁场),问点A 的高度至少应为多少?【解析】此题属于“轻绳类”,题中“恰能”是隐含条件,要使小球恰能通过圆形轨道的最高点B ,说明小球此时处于临界状态,其速率B v 为临界速率,临界条件是0N =,由此可列出小球的临界状态方程为2BB v mg qv B m R += ①2122B mgh mg R mv =⋅+, ②由①式可得: 224()2B R m g v qB qB m R ⎡⎤=±+⎢⎥⎢⎥⎣⎦因B v 只能取正值,即224()2B R m g v qB qB m R ⎡⎤=++⎢⎥⎢⎥⎣⎦则2222min242()8R m g h R qB qB R m g ⎡⎤=+++⎢⎥⎢⎥⎣⎦【例5】如图8所示,在竖直向下的均匀电场中,一个带正电q 、质量为m 的电荷,从光滑的斜面轨道的A 点由静止下滑,若小球恰能通过半径为R 的竖直圆形轨道的最高点B (圆弧左半部分加上垂直纸面向外的匀强磁场),问点A 的高度h 至少应为多少? 【解析】此题属于“轻绳类”,题中“恰能”是隐含条件,要使小球恰能通过圆形轨道的最高点B ,说明小球此时处于临界状态,其速率B v 为临界速率,临界条件是0N =,由此可列出小球的临界状态方程为 2BB v mg qv B qE m R++=①21()(2)2B mg qE h R mv +⋅-= ②由①式可得: 24()()2B R m v qB qB mg qE m R ⎡⎤=±++⎢⎥⎣⎦因B v 只能取正值,即24()()2B R m v qB qB mg qE m R ⎡⎤=+++⎢⎥⎣⎦则222min42()()8()R m h R qB qB mg qE m mg qE R ⎡⎤=++++⎢⎥+⎣⎦小结 小球受到的洛伦兹力与轨道的弹力有相同的特点,即都与速度v 的方向垂直,它们对小球都不做功,而临界条件是0N =.【例6】如图9所示,ABD 为竖直平面内的光滑绝缘轨道,其中AB 段是水平的,BD 段为半径0.2m R =的半圆,两段轨道相切于B 点,整个轨道处在竖直向下的匀强电场中,场强大小35.010V/m E =⨯.一不带电的绝缘小球甲,以速度0v 沿水平轨道向右运动,与静止在B 点带正电的小球乙发生弹性碰撞。
已知甲、乙两球的质量均为21.010kg m -=⨯,乙所带电荷量52.010C q -=⨯,g 取210m/s .(水平轨道足够长,甲、乙两球可视为质点,整个运动过程无电荷转移)(1)甲乙两球碰撞后,乙恰能通过轨道的最高点D ,求乙在轨道上的首次落点到B 点的距离;图7图 8 图 9高中物理巧学妙解王 第一章 高频热点剖析(2)在满足(1)的条件下。
求的甲的速度0v ; (3)若甲仍以速度0v 向右运动,增大甲的质量,保持乙的质量不变,求乙在轨道上的首次落点到B 点的距离范围. 【解析】(1)在乙恰能通过轨道最高点的情况下,设乙到达最高点速度为D v ,乙离开D 点到达水平轨道的时间为t ,乙的落点到B 点的距离为x ,则2D v mg qE m R += ① 212()2mg qE R t m+= ② D x v t = ③联立①②③得0.4x m =(2)设碰撞后甲、乙的速度分别为v 甲、v 乙,根据动量守恒定律和机械能守恒定律有 0mv mv mv =+乙甲 ④2220111222mv mv mv =+乙甲 ⑤ 联立④⑤得 0v v =乙 ⑥由动能定理,得22D112222mg R qE R mv mv -⋅-⋅=-乙 ⑦ 联立①⑥⑦得05()25m/s mg Eq Rv m+== ⑧(3)设甲的质量为M ,碰撞后甲、乙的速度分别为M m v v 、,根据动量守恒定律和机械能守恒定律有0M m Mv Mv mv =+ ⑨2220111222M m Mv Mv mv =+ ⑩ 联立⑨⑩得02m Mv v M m=+ ○11 由○11和M m ≥,可得 002m v v v ≤< ○12 设乙球过D 点时速度为'D v ,由动能定理得'22112222D m mg R qE R mv mv -⋅-⋅=- ○13 联立⑧○12○13得'2m/s 8m/s D v ≤< ○14 设乙在水平轨道上的落点距B 点的距离'x ,有 ''D x v t = ○15 联立②○14○15得:'0.4m 1.6m x ≤< 【例7】如图10所示,杆长为L ,一端固定一质量为m 的小球,杆的质量忽略不计,整个系统绕杆的另一端在竖直平面内做圆周运动.210m/s g =求:(1)小球在最高点A 的速度A v 为多少时,才能使杆和小球m 的作用力为零? (2)小球在最高点A 时,杆对小球的作用力F 为拉力和推力时的临界速度分别是多少? (3)若0.5kg m =,0.5m L =,0.4m/s A v =,则在最高点A 和最低点B ,杆对小球m 的作用力多大? 【解析】此题属于“轻杆类”.若杆和小球m 之间无相互作用力,那么小球做圆周运动的向心力仅由重力mg 提供,根据牛顿第二定律,有:2Av mg m L=解得A v gL =(2)若小球m 在最高点A 时,受拉力F ,受力如图11所示,由牛顿第二定律,有: 21v F mg m L+=解得1FLv gL gL m=+>若小球m 在最高点A 时,受推力F ,受力如图12所示,由牛顿第二定律,有: 22v mg F m L-=解得:2FLv gL gL m=-<可见A v gL =是杆对小球m 的作用力F 在推力和拉力之间突变的临界速度.(3)杆长0.5m L =时,临界速度0 2.2m/s v gL ==,00.4m/s<A v v =,杆对小球有推力A F ,有2AA v mg F m L-=,则 4.84N A F =.由A 至B 只有重力做功,机械能守恒.设B 点所处水平面为参考平面,则2211222A B mv mg L mv +⋅=, 解得24 4.5m/s B A v v gL =+=.在最低点B ,小球m 受拉力B F ,由2BB v F mg m L-=解得225.3N B B vF mg m L=+=.【例8】如图13所示,光滑的圆管轨道AB 部分平直,BC 部分是处于竖直平面内半径为R 的半圆,圆管截面半径r ,有质量为m 、半径比r 略小的光滑小球以水平初速度度0v 射入圆管. (1)若要小球能从C 端出来,初速0v 多大?(2)在小球从C 端出来瞬间,对管壁压力有哪几种典型情况,初速度0v 各应满足什么条件?图13【解析】本题综合考查了竖直平面内圆周运动临界问题;属于“轻杆类”. (1)小球恰好能到达最高点的条件是0C v =,由机械能守恒,初速度应满足:20122mv mg R =⋅,即04v gR =.图 10图11 图12要使小球能从C 端出来,需0C v ≥,所以入射速度04v gR ≥.(2)在小球从C 端出来瞬间,对管壁压力有以三种典型情况:①刚好对管壁无压力,此时重力恰好充当向心力,即 2Cv mg mL=. 由机械能守恒定律,知22011222Cmv mg R mv =⋅+ 联立解得: 05v gR =②对下管壁有压力,应有2Cv mg m L>,相应的入射速度0v 应满足045gR v gR ≤<.③对上管壁有压力,此时应有2Cv mg m L<,相应的入射速度0v 应满足05v gR >小结 本题中的小球不能做匀速圆周运动,它的合力除最高点与最低点过圆心外,其他条件下均不过圆心,因而在一般位置处,它具有切向加速度.【例9】如图14所示,一内壁光滑的环形细圆管位于竖直平面内,环的半径R (比细管的半径大得多),在圆管中有两个直径与细管内径相同的小球A B 、,质量分别为A B m m 、,沿环形管顺时针运动,当A 球运动到最低点时,速度为A v ,B 球恰到最高点,若要此时圆管的合力为零,B 的速度B v 为多大?【解析】本题综合考察了竖直平面内圆周运动临界问题的分析,属于“轻杆类”.在最低点对A 球进行受力分析,如图15所示,应用牛顿第二定律有2AA A A v N m g m R-=由牛顿第三定律,球A 对管有向下的压力'A A N N =,根据题意''A B N N =,即球B 对对管有向上的压力'B N ,球B 受力情况,如图16所示,由牛顿第三定律,管对球B 有向下的压力B N ,'B B N N =,对球B 应用牛顿第二定律,有:2B B B v N m g m R+=,由于A B N N =联立可得2(1)A A B A B Bm mv v gR m m =++ 三、小球在凸、凹半球上运动如图17所示,小球在凸半球上最高点运动时: (1)当0v gR <<,小球不会脱离凸半球且能通过凸半球的最高点.(2)当v gR =,因轨道对小球不能产生弹力,故此时小球将刚好脱离轨道做平抛运动.(3)当v gR >,小球已脱离凸半球最高点做平抛运动. 如图18所示,小球若通过凹半球的最低点时速度只要0v >即可.由以上分析可知,通过凸(或凹)半球最高点(或最低点)的临界条件是小球速度0v gR <<(或0v >). 【例10】如图19所示,汽车质量为41.510kg ⨯,以不变速率通过凸形路面,路面半径为15m ,若汽车安全行驶,则汽车不脱离最高点的临界速度为多少?若汽车达到临界速度时将做何种运动?水平运动位移为多少? 【解析】(1)此题属于“轻绳类”,即轨道只能沿某一方向给物体作用力,临界条件为汽车对轨道压力0N =,则汽车不脱离最高点的临界速度为0v ,则有:20v mg m R=,可得0v gR =;(2)当0v gR =时,汽车在轨道最高点仅受重力作用,且有初速度gR ,故做平抛运动,则 212R gt =,0x v t =,可得:2x R =. 【例11】小明站在水平地面上,手握不可伸长的轻绳一端,绳的另一端系有质量为m 的小球,甩动手腕,使球在竖直平面内做圆周运动.当球某次运动到最低点时,绳突然断掉,球飞离水平距离d 后落地,如图20所示.已知握绳的手离地面高度为d ,手与球之间的绳长为34d ,重力加速度为g .忽略手的运动半径和空气阻力. (1)求绳断时球的速度大小1v 和球落地时的速度大小2v .(2)问绳能承受的最大拉力多大?(3)改变绳长,使球重复上述运动。