实变函数证明题大全(期末复习)

合集下载

实变函数期末考试重点

实变函数期末考试重点

实变函数考试重点题目第一章:求极限 Eg :求1(,)n A n n=的上下极限下极限1111lim inf (,)(,)(0,)n nm n m m A n m n m ∞∞∞======+∞上极限1111lim sup (,)(,)(0,)n nm n mm A n m n m ∞∞∞======+∞P24页 第5题5、设F 是]1,0[上全体实函数所构成的集合,c F 2=.证明:(1)设)(x E χ为E 的示性函数,]}1,0[|{⊂=E E A ,F E x B E ⊂⊂=]}1,0[|)({χ,显然B A ~,于是F B A c ≤==2;(2)设]}1,0[|))(,{(∈=x x f x G f ,}|{F f G C f ∈=,}]1,0[|{R ⨯⊂=P P D ,显然D C F ⊂~,于是cD C F 2=≤=,总之,c F 2=.P30页 定理1 定理2 P35页 第2 12题2.设一元实函数)()(R C x f ∈⇒R ∈∀a ,})(|{a x f x G >=是开集,})(|{a x f x F ≥=是闭集.证明:(1)G x ∈∀0,取0)(0>-=a x f ε,因)()(0x C x f ∈,那么对于0>ε,0>∃δ,..t s δ<-||0x x 时, ε<-|)()(|0x f x f ,即a x f x f =->ε)()(0,从而G x N ⊂),(0δ,所以G 是开集.(2)F x '∈∀0,∃互异点列F x k ⊂}{..t s 0x x k →,显然a x f k ≤)(,因)()(0x C x f ∈,有a x f x f k k ≤=∞→)(lim )(0,即F x ∈0,于是F F ⊂',所以所以F 是闭集.12、设实函数)()(nC x f R ∈⇔O ∈∀G ,O ∈-)(1G f.证明:“⇒”O ∈∀G ,)(10G fx -∈∀,因O ∈∈G x f )(0,0>∃ε..t s G x f N x f ⊂∈)),(()(00ε,那么对于0>ε,0>∃δ,..t s ),(0δx N x ∈∀,均有G x f N x f ⊂∈)),(()(0ε, 从而)(1G fx -∈,于是)(),(10G fx N -⊂δ,所以O ∈-)(1G f.“⇐”n x R ∈∀0,0>∀ε,由于O ∈=)),((0εx f N G , 那么O ∈∈-)(10G fx ,这样0>∃δ..t s )(),(10G fx N -⊂δ,从而)(),(10G f x N x -⊂∈∀δ,均有)),(()(0εx f N x f ∈,即)()(nC x f R ∈.P42页 定理4P44页 定理2 定理3定理2:∀非空n E R ⊂,0>∀d ,}),(|{d E x x U <=ρ ⇒ O ∈⊂U E . 证明:显然U E ⊂.U x ∈∀,取0),(>-=E x d ρδ,),(δx U y ∈∀,有d E x E x x y E y =+<+≤),(),(),(),(ρδρρρ可见U y ∈,这样U x U x ⊂∈),(δ, ∴O ∈⊂U E .P45页 第5.6题5、设非空n E R ⊂,则),(E P ρ在n R 上一致连续.证明:0>∀ε,取εδ=,n Q P R ∈∀,,只要δρ<),(Q P ,由于),(),(),(E Q Q P E P ρρρ+≤,),(),(),(E P P Q E Q ρρρ+≤,有ερρρ<≤-),(|),(),(|Q P E Q E P ,所以, ),(E P ρ在n R 上一致连续.6、∀非空⊕C ∈21,F F ⇒)()(nC P f R ∈∃..t s 1)(0≤≤P f ,且0)(≡P f ,1F P ∈;1)(≡P f ,2F P ∈.证明:显然)(),(),(),()(211nC F P F P F P P f R ∈+=ρρρ,1)(0≤≤P f ,且0)(≡P f ,1F P ∈;1)(≡P f ,2F P ∈.P54页 定理(3)(4) P57页 第5 7题5、设实函数)(x f 在],[b a 上连续,}),(|),{(b x a x f y y x E ≤≤==,证明0*=E m . 证明:因为],[)(b a C x f ∈,于是)(x f 在],[b a 上一致连续,那么0>∀ε, 0>∃δ, ..t s 当δ<-||t s ,时,ε<-|)()(|s f t f .取δ<-na b ,将],[b a 进行n 等分,其分点为b x x x a n =<<<= 10,记],[1i i i x x I -=,])(,)([εε+-=i i i x f x f J ,显然,)(}),(|),{(11ni i ini i J II x x f y y x E ==⨯⊂∈==,∑∑==⨯=⨯≤≤ni i ini i iJ m Im J Im E m 11*)]()([)(0εε)(2)2(1a b na b ni -=⋅-=∑=,于是,由ε的任意性,知0*=E m .7、0*>E m ,证明必E x ∈∃,..t s 0>∀δ,都有0)),((*>δx N E m .证明:反证.假设E x ∈∀,0>∃x δ,使得0)),((*=x x N E m δ ,当然存在以有理数为端点的区间x I ..t s ),(x x x N I x δ⊂∈,由于}{x I 至多有可数个,记作}{k J ,有)(1∞=⊂k kJE E 那么0)(01**=≤≤∑∞=k k J E mE m ,这与条件0*>E m 不符,说明必E x ∈∃,..t s 0>∀δ,都有0)),((*>δx N E m .P65页 定理5 定理6 P68页 第4 5 9 11题4、设M ⊂}{m E ,证明m mm mmE E m inf lim )inf lim (≤.又+∞<∞=)(1m m E m ,证明m mm m mE E m sup lim )sup lim (≥.证明:因m m k k E E ↑⊂∞= ,有m mmk km m mk km mmE EEm E m inf lim lim)()inf lim (1≤==∞=∞→∞=∞=.又因m mk k E E ↓⊃∞= ,+∞<∞=)(1 m m E m ,有m mmk km m mk km mmE EEm E m sup lim lim)()sup lim (1≥==∞=∞→∞=∞=.5、设M ⊂}{m E ,+∞<∑∞=1)(m m E m ,证明0sup lim =m mmE .证明:因m mk k E E ↓⊃∞= ,+∞<≤∑∞=∞=11)()(m mm m Em E m ,有0)(lim)(lim )()sup lim (01=≤==≤∑∞=∞→∞=∞→∞=∞=mk km mk k m m mk km mEm E m E m E m,所以0sup lim =m mmE .P103页 第2题2、证明当)(x f 既是1E 上又是2E 上的非负可测函数时,)(x f 也是21E E 上的非负可测函数. 证明:由条件知 R ∈∀a ,n E x a x f x E M ∈∈>],)(;[1,n E x a x f x E M ∈∈>],)(;[2,于是],)(;[21E E x a x f x E ∈>n E x a x f x E E x a x f x E M ∈∈>∈>=],)(;[],)(;[11 所以)(x f 也是21E E 上的非负可测函数.P104页 第6 11题6、设实函数)()(n C x f R ∈,证明:M ∈∀E ,均有)()(E x f M ∈. 证明:M ∈∀E ,R ∈∀a ,显然O ∈+∞=),(a G ,下面证明M ∈-)(1G f.},)(|{)(10nx a x f x G fx R ∈>=∈∀-,因O ∈∈G x f )(0,0>∃ε..t s G x f N x f ⊂∈)),(()(00ε,这样对于0>ε,0>∃δ,..t s ),(0δx N x ∈∀,均有G x f N x f ⊂∈)),(()(0ε,从而)(1G f x -∈,于是)(),(10G f x N -⊂δ,那么M O ⊂∈-)(1G f.由于M ∈=∈>=--)(},)(|{)(11G f E E x a x f x G f,所以)()(E x f M ∈.11、设)(x f 是E 上的可测函数,)(y g 是R 上的连续函数,证明)]([x f g 是E 上的可测函数.证明:R ∈∀a ,因)()(R C y g ∈,若O ∈-∞=),(a G ,有O ∈<=-})(|{)(1a y g y G g由于})]([|{a x f g x x <∈⇔a x f g <)]([⇔)()(1G g x f -∈⇔)]([11G gfx --∈,于是M ∈=<--)]([})]([|{11G gf a x fg x ,所以)()]([E x f g M ∈.P117页 第2题2、设K x f k ≤|)(|..e a E ,)()(x f x f mk →E x ∈, 证明K x f ≤|)(|..e a E . 证明:+∈∀N m ,当mx f x f k 1|)()(|<-,K x f k ≤|)(|时,mK x f x f x f x f k k 1|)(||)()(||)(|+<+-≤,于是]1|)(|;[m K x f x m mE m +≥= ]|)(|;[]1|)()(|;[K x f x m m x f x f x m k k >+≥-≤0]1|)()(|;[→≥-≤mx f x f x m k ,∞→k ,有0=m mE ,因↑}{m E ,有0lim ]|)(|;[==≥∞→m m E K x f x m 所以K x f ≤|)(|..e a E .课件 第四章第四节 倒数第2~5题3、定理:设)()(x f x f mk →,)()(x g x f mk →E x ∈, 则)(~)(x g x f E. 证明: +∈∀N k m ,, 若mx f x f k 21|)()(|<-,mx g x f k 21|)()(|<-,有mx g x f x f x f x g x f k k 1|)()(||)()(||)()(|<-+-≤-,于是 ]1|)()(|;[m x g x f x E ≥-]21|)()(|;[]21|)()(|;[m x g x f x E m x f x f x E k k ≥-≥-⊂ ,从而]1|)()(|;[m x g x f x mE ≥-]21|)()(|;[]21|)()(|;[mx g x f x mE m x f x f x mE k k ≥-+≥-≤000=+→, 又因∞=≥-=≠1]1|)()(|;[)]()(;[m mx g x f x E x g x f x E ,有 0)]()(;[=≠x g x f x mE ,所以)(~)(x g x f E.1、设)()(x f x f mk →,)()(x g x g mk →,E x ∈, 证明)()()()(x g x f x g x f mk k ++→. 证明:已知,0>∀σ,当2|)()(|σ<-x f x f k ,2|)()(|σ<-x g x g k ,时,σ<-+-≤+-+|)()(||)()(||)]()([)]()([|x g x g x f x f x g x f x g x f k k k k ,由于)()(x f x f m k →,)()(x g x g mk →,E x ∈,有]|)]()([)]()([|;[0σ≥+-+≤x g x f x g x f x m k k0]2|)()(|;[]2|)()(|;[→≥-+≥-≤σσx g x g x m x f x f x m k k ,所以)()()()(x g x f x g x f mk k ++→.2、设)()(x f x f mk →,)()(E x g M ∈且几乎处处有限, 证明)()()()(x g x f x g x f mk →. 证明:已知,)()(x f x f mk →,)(x g 在E 上几乎处处有限,那么0>∀σ,0>∀ε,0>∃K ..t s2]|)()(|;[εσ<≥-Kx f x f x m k , 2]|)(|;[ε<≥K x g x m ]|)()()()(|;[σ≥-x g x f x g x f x m k ]]|)(||)()(|;[σ≥-≤x g x f x f x m k]|)(|;[]|)()(|;[K x g x m K x f x f x m k ≥+≥-≤σεσ<≥+≥-≤]|)(|;[]|)()(|;[K x g x m Kx f x f x m k ,所以)()()()(x g x f x g x f mk →.3、设0)(→mk x f ,证明0)(2→mk x f .证明:已知,0)(→mk x f ,那么0>∀σ,0>∀ε,..t s εσ<≥-]|)()(|;[x f x f x m k ,有εσσ<≥=≥-]|)(|;[]|0)(|;[2x f x m x f x m k k ,所以0)(2→mk x f .。

实变函数复习题

实变函数复习题

复习题1 一、判断1、若N 是自然数集,e N 为正偶数集,则N 与e N 对等。

(对)2、由直线上互不相交的开间隔所成之集是至多可列集。

(对)3、若12,,,n A A A 是1R 上的有限个集,则下式()1212n n A A A A A A ''''+++=+++成立。

(对)4、任意多个开集的交集一定是开集。

(错)5、有限点集和可列点集都可测。

(对)6、可列个零测集之并不是零测集。

(对)7、若开集1G 是开集2G 的真子集,则一定有12mG mG <。

(错) 8、对于有界集1ER ⊆,必有*m E <+∞。

(对)9、任何点集E 上的常数函数()f x =C ,x E ∈是可测函数。

(错)10、由()f x 在()1,2,k E k = 上可测可以推出()f x 在1kk E E ∞==∑上可测。

(对)二、填空1、区间(0,1)和全体实数R 对等,只需对每个()0,1x ∈,令 ()tan()2x x πϕπ=-2、任何无限集合都至少包含一个 可数子集3、设12,S S 都可测,则12S S ⋃也可测,并且当12S S ⋂为空集时,对于任意集合T 总有***1212[()]()()m T S S m T S m T S ⋂⋃=⋂+⋂4、设E 是任一可测集,则一定存在F ∂型集F ,使F E ⊂,且 ()0m E F -=5、可测集n ER ⊂上的 连续函数 是可测函数。

6、设E 是一个有界的无限集合,则E 至少有一 个聚点。

7、设π是一个与集合E 的点x 有关的命题,如果存在E 的子集M ,适合mM=0,使得π在E\M 上恒成立,也就是说,E\E[π成立]= 零测度集 ,则我们称π在E 上几乎处处成立。

8、E 为闭集的充要条件是'(E E)E E ⊂∂⊂或 。

9、设A 、B 是两个非空集合,若,A B B A ≤≤,则有 A =B。

三、证明 1、证明:若A B ⊂,且~A A C ⋃,则有~B B C ⋃。

(完整版)实变函数期末复习

(完整版)实变函数期末复习

(完整版)实变函数期末复习实变函数期末复习选择题1.设,...,],)(,[21121=-+=n nA nn 则()A.],[lim 10=∞→n n A B.],(lim 10=∞→n n A C.],(lim 30=∞→n n A D.),(lim 30=∞→n n A2.设N i i x i x A i ∈+≤≤=},:{23,则=∞=I 1i i A () A.(-1,1) B.[0,1] C.? D.{0}3.集合E 的全体聚点所组成的集合称为E 的()A.开集B.边界C.导集D.闭包4.若}{n A 是一闭集列,则Y ∞=1n n A是()A.开集B.闭集C.既非开集又非闭集D.无法判断5若)(x f 可测,则它必是()A.连续函数B.单调函数C.简单函数D.简单函数列的极限6关于简单函数与可测函数下述结论不正确的是()A.简单函数一定是可测函数B.简单函数列的极限是可测函数C.简单函数与可测函数是同一概念D.简单函数列的极限与可测函数是同一概念7设)(x f 是可测集E 上的非负可测函数,则)(x f ()A.必可积B.必几乎处处有限C.必积分确定D.不一定积分确定8设E 是可测集,则下列结论中正确的是()A.若)}({x f n 在E 上a.e 收敛于一个a.e 有限的可测函数)(x f ,则)(x f n 一致收敛于)(x fB.若)}({x f n 在E 上基本上一致收敛于)(x f ,则)(x f n a.e 收敛于)(x fC.若)}({x f n 在E 上a.e 收敛于一个a.e 有限的可测函数)(x f ,则)(x f n 基本上一致收敛于)(x fD.若)}({x f n 在E 上a.e 收敛于一个a.e 有限的可测函数)(x f ,则)(x f n ?)(x f9设)(x f 是可测集E 上可积,则在E 上()A.)(x f +与)(x f - 只有一个可积B.)(x f +与)(x f - 皆可积C.)(x f +与)(x f - 一定不可积D.)(x f +与)(x f - 至少有一个可积 10.)(x f 在可测集E 上)(L 可积的必要条件是,)(x f 为()A 、连续函数B 、几乎处处连续函数C 、单调函数D 、几乎处处有限的可测函数11设)(x D 为狄立克雷函数,则?=10)()(dx x D L ()A 、 0B 、 1C 、1/2D 、不存在 12设}{nE 是一列可测集,ΛΛn E E E 21,且+∞<1mE ,则有()(A )n n n n mE E m ∞→∞==??? ???lim 1 (B) n n n n mE E m ∞→∞=≤??? ???lim 1 (C )n n n n mE E m ∞→∞=∞→n n A lim( ) A 、Φ B 、[0, n] C 、R D 、(0, ∞)14设)1,0(n A n =, N n ∈, 则=∞→n n A lim ( )A 、(0, 1)B 、(0, n1) C 、{0} D 、Φ、填空题1、设A 为一集合,B 是A 的所有子集构成的集合;若A =n, 则B =2、设A 为一集合,B 是A 的所有子集构成的集合;若A 是一可数集, 则B =3、若c A =, c B =, 则=?B A4、若c A =, B 是一可数集, 则=?B A5、若c A =, n B =, 则=?B A6、若}{n A 是一集合列, 且c A n =, =?∞=n n A 1 7、设}{i S 是一列递增的可测集合,则=∞→)lim (n n S m _______。

实变函数(复习资料_带答案)资料

实变函数(复习资料_带答案)资料

集。
0, 开集 G E,使 m* (G E)
,则 E 是可测
(第 7 页,共 19 页)
3. (6 分)在 a, b 上的任一有界变差函数 f ( x) 都可以表示为 两个增函数之差。
5. (8 分)设 f ( x) 在 E a,b 上可积,则对任何 0 ,必存
b
在 E 上的连续函数 ( x) ,使 | f ( x) (x) | dx . a
E
四、解答题 (8 分× 2=16 分) .
1、(8分)设 f (x)
x2, x为无理数 ,则 f ( x) 在 0,1 上是否 R
1, x为有理数
可积,是否 L 可积,若可积,求出积分值。
五、证明题 (6 分× 4+10=34 分) . 1、(6 分)证明 0,1 上的全体无理数作成的集其势为 c
可测集;
二. 填空题 (3 分× 5=15 分)
1、设 An
11 [ , 2 ], n 1,2,
,则 lim An
_________。
nn
n
2、设 P 为 Cantor 集,则 P
o
,mP _____,P =________。
3、设 Si 是一列可测集,则 m i 1 Si ______ mSi i1 4、鲁津定理:
4.(8 分)设函数列 fn (x) ( n 1,2, ) 在有界集 E 上“基本上” 一致收敛于 f ( x) ,证明: fn (x) a.e.收敛于 f ( x) 。
2. x
E , 则存在 E中的互异点列
{
xn },
使 lim n
xn
x ……… .2

xn E, f ( xn ) a ………………… .3 分

实变函数证明题大全

实变函数证明题大全

1、设',()..E R f x E a e ⊂是上有限的可测函数,证明:存在定义在'R 上的一列连续函数{}n g ,使得lim ()()..n n g x f x a e →∞=于E 。

证明:因为()f x 在E 上可测,由鲁津定理就是,对任何正整数n ,存在E 的可测子集n E ,使得1()n m E E n-<, 同时存在定义在1R 上的连续函数()n g x ,使得当n x E ∈时,有()()n g x f x =所以对任意的0η>,成立[||]n n E f g E E η-≥⊂-由此可得1[||]()n n mE f g n m E E n-≥≤-<,因此lim [||]0n n mE f g n →∞-≥=即()()n g x f x ⇒,由黎斯定理存在{}n g 的子列{}k n g ,使得lim ()()k n k g x f x →∞=,..a e 于E2、设()(,)f x -∞∞是上的连续函数,()g x 为[,]a b 上的可测函数,则(())f g x 就是可测函数。

证明:记12(,),[,]E E a b =-∞+∞=,由于()f x 在1E 上连续,故对任意实数1,[]c E f c >就是直线上的开集,设11[](,)nn n E f c αβ∞=>=U ,其中(,)n n αβ就是其构成区间(可能就是有限个,nα可能为-∞nβ可有为+∞)因此222211[()][]([][])n n n n n n E f g c E g E g E g αβαβ∞∞==>=<<=><I U U 因为g 在2E 上可测,因此22[],[]n n E g E g αβ><都可测。

故[()]E f g c >可测。

3、设()f x 就是(,)-∞+∞上的实值连续函数,则对于任意常数a ,{|()}E x f x a =>就是一开集,而{|()}E x f x a =≥总就是一闭集。

实变函数(复习资料_带答案)资料

实变函数(复习资料_带答案)资料

2页,共19页) 3、若|()|fx是可测函数,则()fx必是可测函数 4.设()fx在可测集E上可积分,若,()0xEfx,则()0Efx 四、解答题(8分×2=16分). 1、(8分)设2,()1,xxfxx为无理数为有理数 ,则()fx在0,1上是否R可积,是否L可积,若可积,求出积分值。 2、(8分)求0ln()limcosxnxnexdxn 五、证明题(6分×4+10=34分). 1、(6分)证明0,1上的全体无理数作成的集其势为c
6页,共19页) 又()0,mEF所以()fx是EF上的可测函数,从而是E上的 可测函数……………………..10分 《实变函数》试卷二 一.单项选择题(3分×5=15分) 1.设,MN是两集合,则 ()MMN=( ) (A) M (B) N (C) MN (D) 2. 下列说法不正确的是( ) (A) 0P的任一领域内都有E中无穷多个点,则0P是E的聚点 (B) 0P的任一领域内至少有一个E中异于0P的点,则0P是E的聚点 (C) 存在E中点列nP,使0nPP,则0P是E的聚点 (D) 内点必是聚点 3. 下列断言( )是正确的。 (A)任意个开集的交是开集;(B) 任意个闭集的交是闭集; (C) 任意个闭集的并是闭集;(D) 以上都不对; 4. 下列断言中( )是错误的。 (A)零测集是可测集; (B)可数个零测集的并是零测集; (C)任意个零测集的并是零测集;(D)零测集的任意子集是可测集; 5. 若()fx是可测函数,则下列断言( )是正确的 (A) ()fx在,abL可积|()|fx在,abL可积; (B) (),|()|,fxabRfxabR在可积在可积 (C) (),|()|,fxabLfxabR在可积在可积; (D) (),()fxaRfxL在广义可积在a,+可积 二. 填空题(3分×5=15分) 1、设11[,2],1,2,nAnnn,则nnAlim_________。 2、设P为Cantor集,则 P ,mP_____,oP=________。 3、设iS是一列可测集,则11______iiiimSmS 4、鲁津定理:__________________________________________ 5、设()Fx为,ab上的有限函数,如果_________________则称()Fx为,ab上的绝对连续函数。 三.下列命题是否成立?若成立,则证明之;若不成立,则说明原因或举出反例.(5分×4=20分) 1、由于0,10,10,1,故不存在使0,101和,之间11对应的映射。

实变函数(复习资料,带答案)

实变函数(复习资料,带答案)

《实变函数》试卷一一、单项选择题(3分×5=15分) 1、下列各式正确的是( )(A )1lim n k n n k n A A ∞∞→∞===⋃⋂; (B )1lim n k n k n n A A ∞∞==→∞=⋂⋃;(C )1lim n k n n k nA A ∞∞→∞===⋂⋃; (D )1lim n k n k nn A A ∞∞==→∞=⋂⋂;2、设P 为Cantor 集,则下列各式不成立的是( ) (A )=P c (B) 0mP = (C) P P ='(D) P P =3、下列说法不正确的是( )(A) 凡外侧度为零的集合都可测(B )可测集的任何子集都可测(C) 开集和闭集都是波雷耳集 (D )波雷耳集都可测 4、设{}()n f x 是E 上的..a e 有限的可测函数列,则下面不成立的是( )(A )若()()n f x f x ⇒, 则()()n f x f x → (B){}sup ()n nf x 是可测函数(C ){}inf ()n nf x 是可测函数;(D )若()()n f x f x ⇒,则()f x 可测5、设f(x)是],[b a 上有界变差函数,则下面不成立的是( )(A) )(x f 在],[b a 上有界 (B) )(x f 在],[b a 上几乎处处存在导数(C ))('x f 在],[b a 上L 可积 (D)⎰-=b aa fb f dx x f )()()('二. 填空题(3分×5=15分)1、()(())s s C A C B A A B ⋃⋂--=_________2、设E 是[]0,1上有理点全体,则'E =______,oE =______,E =______.3、设E 是n R 中点集,如果对任一点集T 都_________________________________,则称E 是L 可测的 4、)(x f 可测的________条件是它可以表成一列简单函数的极限函数.(填“充分”,“必要”,“充要”)5、设()f x 为[],a b 上的有限函数,如果对于[],a b 的一切分划,使_____________________________________,则称()f x 为[],a b 上的有界变差函数。

(完整版)实变函数(复习资料_带答案)

(完整版)实变函数(复习资料_带答案)

《实变函数》试卷一一、单项选择题(3分×5=15分) 1、下列各式正确的是( )(A )1lim n k n n k n A A ∞∞→∞===⋃⋂; (B )1lim n k n k n n A A ∞∞==→∞=⋂⋃;(C )1lim n k n n k nA A ∞∞→∞===⋂⋃; (D )1lim n k n k nn A A ∞∞==→∞=⋂⋂;2、设P 为Cantor 集,则下列各式不成立的是( )(A )=P c (B) 0mP = (C) P P =' (D) P P =ο3、下列说法不正确的是( )(A) 凡外侧度为零的集合都可测(B )可测集的任何子集都可测(C) 开集和闭集都是波雷耳集 (D )波雷耳集都可测 4、设{}()n f x 是E 上的..a e 有限的可测函数列,则下面不成立的是( )(A )若()()n f x f x ⇒, 则()()n f x f x → (B){}sup ()n nf x 是可测函数(C ){}inf ()n nf x 是可测函数;(D )若()()n f x f x ⇒,则()f x 可测5、设f(x)是],[b a 上有界变差函数,则下面不成立的是( )(A) )(x f 在],[b a 上有界 (B) )(x f 在],[b a 上几乎处处存在导数(C ))('x f 在],[b a 上L 可积 (D)⎰-=b aa fb f dx x f )()()('二. 填空题(3分×5=15分)1、()(())s s C A C B A A B ⋃⋂--=_________2、设E 是[]0,1上有理点全体,则'E =______,oE =______,E =______.3、设E 是n R 中点集,如果对任一点集T 都_________________________________,则称E 是L 可测的4、)(x f 可测的________条件是它可以表成一列简单函数的极限函数.(填“充分”,“必要”,“充要”)5、设()f x 为[],a b 上的有限函数,如果对于[],a b 的一切分划,使_____________________________________,则称()f x 为[],a b 上的有界变差函数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
证明:因为 ,所以,对任意 ,有


又由 ( )得, 。所以,
,即 ( )。
12、证明: 上的连续函数必为可测函数。
证明:设 是 上的连续函数,由连续函数的局部保号性,对任意实数 , 是开集,从而是可测集。所以, 是 上的可测函数。
13、证明: 上的单调函数必为可测函数。
证明:不妨设 是 上的单调递增函数,对任意实数 ,记 ,由单调函数的特点得,当 时, ,显然是可测集;当 时, ,也显然是可测集。故 是 上的可测函数。
现将 等分,记分点为 ,使得每一等份的长度小于 。易得 ,即 是 上的有界变差函数。又 ,
所以, ,即 是 上的有界变差函数。
20、若 是 上的有界变差函数,则
(1)全变差函数 是 上的递增函数;
(2) 也是 上的递增函数。
证明:(1)对任意 , ,注意到 ,有

即 是 上的递增函数。
(2)对任意 , ,注意到 ,有
证明:记 ,由于 在 上连续,故对任意实数 是直线上的开集,设 ,其中 是其构成区间(可能是有限个, 可能为 可有为 )因此 因为 在 上可测,因此 都可测。故 可测。
3、设 是 上的实值连续函数,则对于任意常数 , 是一开集,而 总是一闭集。
证明:若 ,因为 是连续的,所以存在 ,使任意 ,
,即任意 是开集若 且 ,由于 连续, ,
证明:由 得,(1) 。(2)由(1),注意到 ,由积分的绝对连续性得, ,从而注意到

所以, 。
17、若 是 上的单调函数,则 是 上的有界变差函数,且

证明:不妨设 是 上的单调增函数,任取 的一个分割


所以, 。
18、若 在 上满足:存在正常数 ,使得对任意 ,都有

则(1) 是 上的有界变差函数,且 ;
5、设 是E上的可测函数列,则其收敛点集与发散点集都是可测的。
证:显然, 的收敛点集可表示为
= .
由 可测 及 都可测,所以 在 上可测。
从而,对任一自然数 , 可测。故
可测。既然收敛点集 可测,那么发散点集 也可测。
6、设 ,存在两侧两列可测集{ },{ },使得 且 ( - )→0,(n→∝)则 可测.

即 是 上的递增函数。
21、证明Jordan分解定理: 是 上的有界变差函数 可表示成 上的两个增函数之差。
证明:“充分性”显然成立。下证“必要性”。
事实上, ,由上题 和 都是 上的递增函数。
14、设 , 是 的可测子集,且 ,若 ,则 。
证明:因为 是 的可测子集,且 ,所以, ,从而由 得, 。又 ,由积分的绝对连续性, 。
15、设 ,若对任意有界可测函数 都有 ,则 于 。
证明:由题设,取 ,显然 为 上的有界可测函数,从而 。所以, 于 ,即 于 。
16、设 , ,证明(1) ;(2) 。
(2) 是 上的绝对连续函数。
证明:(1)由题设,任取 的一个分割


所以, 是 上的有界变差函数,且 。
(2)在 ,任取有限个互不相交的开区间 , 。由于

于是,对任意 ,取 ,则当 时,有

即 是 上的绝对连续函数。
证明:由 是 上的绝对连续函数,取 ,存在 ,对任意有限个互不相交的开区间 , ,只要 时,有 。
即 ,因此E是闭集。
4、(1)设 求出集列 的上限集和下限集
证明: 设 ,则存在N,使 ,因此 时, ,即 ,所以 属于下标比N大的一切偶指标集,从而 属于无限多 ,得 ,
又显然 若有 ,则存在N,使任意 ,有 ,因此若 时,
,此不可能,所以
(2)可数点集的外测度为零。
证明:证明:设 对任意 ,存在开区间 ,使 ,且 所以 ,且 ,由 的任意性得
1、设 有限的可测函数,证明:存在定义在 上的一列连续函数 ,使得 于E。
证明:因为 在 上可测,由鲁津定理是,对任何正整数 ,存在 的可测子集 ,使得 ,同时存在定义在 上的连续函数 ,使得当 时,有 所以对任意的 ,成立 由此可得 ,因此 即 ,由黎斯定理存在 的子列 ,使得 , 于E
2、设 上的连续函数, 为 上的可测函数,则 是可测函数。
证明:对于任意 , ,所以
又因为 ,
所以对于任意 ,
令 →∝,由 →0得 所以 是可测的又由于 可测,有 也是可测的所以 是可测的。
7、设在 上 ,而 成立, ,则有
设 ,则 。
所以
因为 ,所以

8、证明: 。
证明:因为 , ,所以, , ,从而
反之,对任意 ,即对任意 ,有
为无限集,
从而 为无限集或 为无限集至少有一个成立,即 或 ,所以, , 。综上所述, 。
9、证明:若 , ( ),则 于 。
证明:由于 ,而

所以,

由 , ( )得
, 。
所以, ,从而 ,即 于 。
10、、证明:若 , ( ),则 ( )。
证明:对任意 ,由于

所以,由 可得,
和 至少有一个成立。
从而

所以,

又由 , ( )得,
, 。
所以,
,即 ( )。
11、若 ( ),则 ( )。
相关文档
最新文档