分治法解决凸包问题

#include

typedef struct {

int x,y;

}Point;

int arrayLength=0;

int main()

{

printf("**************软件工程3班**************");

printf("*****************成冠辉*****************");

Point array[15],result[15];

InitialData(array);

printf("请输入数据:\n\n");

Put(array,arrayLength);

Qsort(array,0,arrayLength-1);

printf("排序后:\n");

Put(array,arrayLength);

GetResult(array,result);

printf("结果集为:\n");

Put(result,resultCount);

getchar();

return 0;

}

//返回分裂位置

int Partition(Point *array,int l,int r)

{

int p=l,i=l,j=r+1;

do

{

do

{

i++;

}while(array[i].x

do

{

j--;

}while(array[j].x>array[p].x);

swap(array,i,j);

}while(i

swap(array,i,j);

swap(array,p,j);

return j;

}

//用快排将x坐标的值从大到小

void Qsort(Point *array,int l,int r)

{

int s=0;

if(l

{

s=Partition(array,l,r); //分裂位置

Qsort(array,l,s-1);

Qsort(array,s+1,r);

}

}

//打印

void Put(Point *array,int length)

{

for(int i=0;i

{

printf("%d\t%d\n",array[i].x,array[i].y);

}

printf("\n");

}

void GetResult(Point *array,Point *result)

{

Add(array,result); //将首尾两个点并入result[15]

DealWithLeft(0,14,array,result); //处理array[0]->array[14]射线左边的点DealWithLeft(14,0,array,result); //处理array[14]->array[0]射线右边的点}

void InitialData(Point *array)

{

FILE *fp=freopen("input.txt","r",stdin);

char ch;

Point* currentPoint=array;

for(int i=0;ch!=EOF;i++)

{

scanf("%d%d",&array[i].x,&array[i].y);

ch=fgetc(fp);

arrayLength++;

}

fclose(fp);

}

void swap(Point *array,int i,int j)

{

if(i

{

int x=0,y=0;

x=array[i].x;

y=array[i].y;

array[i].x=array[j].x;

array[i].y=array[j].y;

array[j].x=x;

array[j].y=y;

}

}

int resultCount=0; //插入值的个数

void Add(Point *array,Point *result)

{

result[resultCount].x=array[0].x;

result[resultCount++].y=array[0].y;

result[resultCount].x=array[14].x;

result[resultCount++].y=array[14].y;

}

void Add(Point *array,Point *result,int i)

{

result[resultCount].x=array[i].x;

result[resultCount++].y=array[i].y;

}

//处理array[first]->array[final]射线左侧的点

void DealWithLeft(int first,int final,Point *array,Point *result)

{

int max=0,index=-1;

int i=first;

if(firstarray[final]射线左侧

{

for(i;i

{

int x1 = array[first].x,y1 = array[first].y;

int x2 = array[final].x,y2 = array[final].y;

int x3 = array[i].x,y3 = array[i].y;

int compute = x1*y2 + x3*y1 + x2*y3 - x3*y2 - x2*y1 - x1*y3;

if(compute > max)

{

max = compute;

index = i;

}

}

}

else

{

for(i;i>=0;i--)//array[final]->array[first]射线左侧

{

int x1 = array[first].x,y1 = array[first].y;

int x2 = array[final].x,y2 = array[final].y;

int x3 = array[i].x,y3 = array[i].y;

int compute = x1*y2 + x3*y1 + x2*y3 - x3*y2 - x2*y1 - x1*y3;

if(compute > max)

{

max = compute;

index = i;

}

}

}

if(index!=-1) //取到array[index](即最高点),这个点与array[final]、array[first]构成的三角形面积最大

{

Add(array,result,index);

DealWithLeft(first,index,array,result);

DealWithLeft(index,final,array,result);

}

}

0007算法笔记——【分治法】最接近点对问题

问题场景:在应用中,常用诸如点、圆等简单的几何对象代表现实世界中的实体。在涉及这些几何对象的问题中,常需要了解其邻域中其他几何对象的信息。例如,在空中交通控制问题中,若将飞机作为空间中移动的一个点来看待,则具有最大碰撞危险的2架飞机,就是这个空间中最接近的一对点。这类问题是计算几何学中研究的基本问题之一。 问题描述:给定平面上n个点,找其中的一对点,使得在n个点的所有点对中,该点对的距离最小。严格地说,最接近点对可能多于1对。为了简单起见,这里只限于找其中的一对。 1、一维最接近点对问题 算法思路: 这个问题很容易理解,似乎也不难解决。我们只要将每一点与其他n-1个点的距离算出,找出达到最小距离的两个点即可。然而,这样做效率太低,需要O(n^2)的计算时间。在问题的计算复杂性中我们可以看到,该问题的计算时间下界为Ω(nlogn)。这个下界引导我们去找问题的一个θ(nlogn)算法。采用分治法思想,考虑将所给的n个点的集合S分成2个子集S1和S2,每个子集中约有n/2个点,然后在每个子集中递归地求其最接近的点对。在这里,一个关键的问题是如何实现分治法中的合并步骤,即由S1和S2的最接近点对,如何求得原集合S中的最接近点对,因为S1和S2的最接近点对未必就是S 的最接近点对。如果组成S的最接近点对的2个点都在S1中或都在S2中,则问题很容易解决。但是,如果这2个点分别在S1和S2中,则对于S1中任一点p,S2中最多只有n/2个点与它构成最接近点对的候选者,仍需做n^2/4次计算和比较才能确定S的最接近点对。因此,依此思路,合并步骤耗时为O(n^2)。整个算法所需计算时间T(n)应满足:T(n)=2T(n/2)+O(n^2)。它的解为T(n)=O(n^2),即与合并步骤的耗时同阶,这不比用穷举的方法好。从解递归方程的套用公式法,我们看到问题出在合并步骤耗时太多。这启发我们把注意力放在合并步骤上。 设S中的n个点为x轴上的n个实数x1,x2,..,xn。最接近点对即为这n个实数中相差最小的2个实数。我们显然可以先将x1,x2,..,xn排好序,然后,用一次线性扫描就可以找出最接近点对。这种方法主要计算时间花在排序上,在排序算法已经证明,时间复杂度为O(nlogn)。然而这种方法无法直接推广到二维的情形。因此,对这种一维的简单情形,我们还是尝试用分治法来求解,并希望能推广到二维的情形。假设我们用x轴上某个点m将S划分为2个子集S1和S2,使得S1={x∈S|x≤m};S2={x∈S|x>m}。这样一来,对于所有p∈S1和q∈S2有p

算法练习题-分章节-带答案

算法练习题-分章节-带答案

算法练习题---算法概述 一、选择题 1、下面关于算法的描述,正确的是() A、一个算法只能有一个输入 B、算法只能用框图来表示 C、一个算法的执行步骤可以是无限的 D、一个完整的算法,不管用什么方法来表示,都至少有一个输出结果 2、一位爱好程序设计的同学,想通过程序设计解决“韩信点兵”的问题,他制定的如下工作过程中,更恰当的是() A、设计算法,编写程序,提出问题,运行程序,得到答案 B、分析问题,编写程序,设计算法,运行程序,得到答案 C、分析问题,设计算法,编写程序,运行程序,得到答案 D、设计算法,提出问题,编写程序,运行程序,得到答案 3、下面说法正确的是() A、算法+数据结构=程序 B、算法就是程序 C、数据结构就是程序 D、算法包括数据结构 4、衡量一个算法好坏的标准是()。 A、运行速度快 B、占用空间少 C、时间复杂度低 D、代码短 5、解决一个问题通常有多种方法。若说一个算法“有效”是指( )。 A、这个算法能在一定的时间和空间资源限制内将问题解决 B、这个算法能在人的反应时间内将问题解决 C、这个算法比其他已知算法都更快地将问题解决 D、A和C 6、算法分析中,记号O表示(),记号Ω表示()。 A.渐进下界 B.渐进上界 C.非紧上界 D.非紧下界 7、以下关于渐进记号的性质是正确的有:() A.f(n)(g(n)),g(n)(h(n))f(n)(h(n)) =Θ=Θ?=Θ B.f(n)O(g(n)),g(n)O(h(n))h(n)O(f(n)) ==?= C. O(f(n))+O(g(n)) = O(min{f(n),g(n)}) D.f(n)O(g(n))g(n)O(f(n)) =?=

算法分析与设计 实验三 最大子段和问题

昆明理工大学信息工程与自动化学院学生实验报告 ( 201 — 201 学年 第 1 学期 ) 课程名称:算法分析与设计 开课实验室: 年 月 日 一、上机目的及内容 1.上机内容 给定有n 个整数(可能有负整数)组成的序列(a 1,a 2,…,a n ),求改序列形如 ∑=j k k a 1 的子段和的 最大值,当所有整数均为负整数时,其最大子段和为0。 2.上机目的 (1)复习数据结构课程的相关知识,实现课程间的平滑过渡; (2)掌握并应用算法的数学分析和后验分析方法; (3)理解这样一个观点:不同的算法能够解决相同的问题,这些算法的解题思路不同,复杂程度不同,解题效率也不同。 二、实验原理及基本技术路线图(方框原理图或程序流程图) (1)分别用穷举法、分治法和动态规划法设计最大子段和问题的算法; (2)对所设计的算法采用大O 符号进行时间复杂性分析; (3)上机实现算法,并用计数法和计时法分别测算算法的运行时间; (4)通过分析对比,得出自己的结论。 穷举法是用一个二维数组将从i 到j 的和都记录下来,再比较各元素的大小,时间复杂性为O (n 2),分治法的设计思想是不断将问题为子问题,然后求解子问题,最后对解进行合并,时间复杂性为O(nlog n ),动态规划法的设计思想是将问题划分为若干个子问题,时间复杂度为O(n)。

分治法流程图:

穷举法流程图: 动态规划法流程图: 三、所用仪器、材料(设备名称、型号、规格等或使用软件) 1台PC 及VISUAL C++6.0软件

四、实验方法、步骤(或:程序代码或操作过程) 程序代码: //穷举法 #include void main() { int i,j,n; int num[100],a[100],max; printf("\t\t\t 最大子段和问题(穷举法)\n\n"); printf("请输入所要求最大字段和整数的个数:\n"); scanf("%d",&n); printf("请分别输入这%d个整数的值:\n",n); for(i=0;i int MaxSum(int a[],int left,int right) { int sum=0; if (left==right) {

算法分析与设计习题集整理

算法分析与设计习题集整理 第一章算法引论 一、填空题: 1、算法运行所需要的计算机资源的量,称为算法复杂性,主要包括时间复杂度和空间复杂度。 2、多项式10()m m A n a n a n a =+++L 的上界为O(n m )。 3、算法的基本特征:输入、输出、确定性、有限性 、可行性 。 4、如何从两个方面评价一个算法的优劣:时间复杂度、空间复杂度。 5、计算下面算法的时间复杂度记为: O(n 3) 。 for(i=1;i<=n;i++) for(j=1;j<=n;j++) {c[i][j]=0; for(k=1;k<=n;k++) c[i][j]= c[i][j]+a[i][k]*b[k][j]; } 6、描述算法常用的方法:自然语言、伪代码、程序设计语言、流程图、盒图、PAD 图。 7、算法设计的基本要求:正确性 和 可读性。 8、计算下面算法的时间复杂度记为: O(n 2) 。 for (i =1;i

分治法实验报告一

宁波工程学院电信学院计算机系 实验报告 课程名称:算法设计与分析实验项目:用分治法算法解 最接近点对问题 指导教师:崔迪 实验位置:软件工程实验室姓名: 班级: 学号: 日期: 2016/10/12 一、实验目的 通过上机实验,要求掌握分治法算法的问题描述、算法设计思想、程序设 计和算法复杂性分析等。 二、实验环境: Eclipse 三、实验内容:用分治法解最接近点对问题 (1)问题描述 给定平面S上n个点,找其中的一对点,使得在n(n-1)/2 个点对中,该 点对的距离最小。 (2)算法设计思想 1. n较小时直接求 (n=2). 2.将S上的n个点分成大致相等的2个子集S1和S2 3.分别求S1和S2中的最接近点对 4.求一点在S1、另一点在S2中的最近点对 5.从上述三对点中找距离最近的一对.

(3)程序设计(程序清单及说明) package closestpair; import java.util.Arrays; import https://www.360docs.net/doc/6913421528.html,parator; import java.util.Random; import java.util.Scanner; //定义坐标点 class Point { double x; double y; public Point(double x, double y) { this.x = x; this.y = y; } } // 根据x坐标排序 class MyComparatorX implements Comparator { @Override public int compare(Point p1, Point p2) { if (p1.x < p2.x) { return -1; } else if (p1.x > p2.x) { return 1; } else { return 0; } } } // 根据Y坐标排序 class MyComparatorY implements Comparator { @Override public int compare(Point p1, Point p2) { if (p1.y < p2.y) { return -1; } else if (p1.y > p2.y) { return 1; } else {

分治算法例题

目录 1031 输油管道问题 (2) 解题思路 (2) 程序代码 (2) 1032 邮局选址 (5) 解题思路 (5) 程序源代码 (5) 1034 集合划分2 (7) 解题思路: (7) 程序源代码: (7) 1033 集合划分 (9) 解题思路 (9) 程序源代码 (9)

1031 输油管道问题 解题思路 本题目可以分为两个步骤: 1、找出主管道的位置; 2、根据主管道的位置,计算各个油井到主管道的长度之和。 根据题意,设主管道贯穿东西,与y 轴平行。而各个子油井则分布在主输油管道的上下两侧。如下图: 由上图,其实只需要确定主管道的y 坐标,而与各个子油井的x 坐标无关!根据猜测,易知:主管道的y 坐标就是所有子油井y 坐标的中位数。(可以用平面几何知识证明,略) 求中位数的方法可以用排序后取a[(left+right)/2],当然更推荐用书上的线性时间选择算法解决。记求得的主管道为m y ,最后要输出的结果只需要计算:1||n i m i y y =-∑,输出即可。 另外要提醒的是本题多Case 。 程序代码 #include #include void swap (int &a ,int &b ) { int tmp = a ; a = b ; b = tmp ; }

//本函数求arr[p:q]的一个划分i,使arr[p:i-1]都小于arr[i],arr[i+1,q]都大于arr[i] int partition(int *arr,int p,int q) { int index = p-1,start = p,base = arr[q]; for(;start

最接近点对问题实验报告

最接近点对问题 一.实验目的: 1.理解算法设计的基本步骤及各步的主要内容、基本要求; 2.加深对分治设计方法基本思想的理解,并利用其解决现实生活中的问题; 3.通过本次实验初步掌握将算法转化为计算机上机程序的方法。 二.实验内容: 1.编写实现算法:给定n对点,在这n对点中找到距离最短的点对。 2.将输出数据存放到另一个文本文件中,包括结果和具体的运行时间。 3.对实验结果进行分析。 三.实验操作: 1.最接近点对查找的思想: 首先,将所有的点对按照x坐标排序,找到x坐标的中位数,将所有的点对分成三部分,横坐标小于x(S1)、等于x(S2)和大于x(S3)的点对,在求取每部分中的最短距离,利用分治法,一步步地分解为子问题,找到最短距离d。由于距离最近的两个点可能在不同的区域中,需要进一步判断。 选择S1中的一个点,由于与它相比较的点的距离不可能超过d,故其配对范围为d*2d的矩形,将这个矩形划分为6份2/d*3/d的小矩形,其对角线的长度为5/6d,小于d,故S1中的任意一个点只需和S2中的6个点比较即可,最终确定最短的距离。 2.取中位数: 为了减少算法的时间开销,需要将所有的点对进行分组,以中位数为基准,考虑到快速排序的不稳定性,本次排序使用了合并排序。 代码实现: template void Merge(Type c[],Type d[],int l,int m,int r){ int i = l,j = m + 1,k = l; while((i<=m)&&(j<=r)){ if(c[i]<=c[j]) d[k++] = c[i++]; else d[k++] = c[j++]; } if(i>m) { for(int q=j; q<=r; q++) d[k++] = c[q]; } else{ for(int q=i; q<=m; q++) d[k++] = c[q]; } } template void MergeSort(Type a[],Type b[],int left,int right){ if(left

最大子段和动态规划法

实验名称: 最大子段和问题 实验目的: 了解最大子段和问题 实验环境: 操作系统:Windows XP Professional SP3 机器配置:Intel Pentium4 CPU 3.0GHz , 512MB 内存 开发工具:eclipse 实验内容: 1. 求数列的最大子段和(要求时间复杂为nlogn) (算法设计与分析 吕国英 清华大学出 版社 135页 4..3.3 二分法变异) (分治法) (也可用动态规划算法 参看递归王晓东计算机算法设计与分析第三版p61页) 算法的设计思想: 在对分治法德算法分析中注意到,若记???? ? ? <=<==∑=j i k k a n j i i b ][max ][,1<=j<=n,则所求的 最大子段和为: ][1max ][1max 1max ][1max j b n j k a j i n j k a n j i j i k j i k <=<== <=<=<=<==????? ?<=<=<=∑ ∑== 分为两种情况: (1)、当b[j-1]>0时,b[j]=b[j-1]+a[j]。 (2)、当b[j-1]<0时,b[j]=a[j]。 由此可得计算b[j]的动态规划递归式为: b[j]=max }{][],[]1[j a j a j b +-,1<=j<=n 由分析可知:次算法一共比较了n 次,故: T(n)=O(n)

据此可以写出如下程序: 实验步骤: 程序代码如下: package s; public class Po{ public static void main(String[] args) { int[] a=new int[10]; int[] b=new int[10]; int[] x=new int[10]; int start=0; int end = 0; System.out.print("数组为:");//随机赋值 for(int i =0;i<10;i++){ a[i]=(int)(Math.random()*100-50); System.out.print(a[i]+" "); } System.out.print("\n"); tem(a,x,b); int max=maxSum(a,b,end); System.out.print("最大子段和为:"); System.out.println(max); System.out.print("结束位置为:"); System.out.println(findend(a,b,end)); int begin=findStart(a,b,start,end); System.out.print("开始位置为:"); System.out.println(begin); systemout(x,start,end,a,b); } public static void tem(int a[],int x[],int b[]) {int n=a.length-1; int sum=0; b[0]=x[0];

算法实验四_空间最近点对算法

一、算法分析 该算法的问题描述为:给定二维平面上的点集,求解距离最近的两个点,并计算出两点间的距离。 解决问题最初的思路为穷举法。对所有两点间的组合计算其距离。然后对其进行比较,找出最小值即可。不过这样做的缺点是时间复杂度和空间复杂度十分庞大,消耗巨量资源。如有n个点的平面上,计算的复杂度能达到n*n。因此设计出一个高效的算法来代替穷举法是有现实意义的。 在思考问题的过程中,可以考虑使用分治法的思想,以x,y中x坐标作为划分区间的标准。将平面点集一分为二。求解其中的最小点对。由此产生的问题为划分点附近两个区间中两点的距离可能小于各自区间中的最小值,产生了纰漏。因此在在分治的过程中,加入分界线附近的点对最小值求解函数。分界线区域内区间的选取标准为d。其中d为左半区间和右半区间的最小值中的较小值。在具体实现中,首先建立一个空数组存放按y坐标排序的点集,判断两个相邻点之间的y坐标差值,若大于d,则两点间距离一定大于d,可以直接跳过,继续判断下一个点对。若小于d,则继续计算两点间的实际距离,若大于d,则跳过,小于d,将最小值更新为该点对距离。 二、算法实现 该算法的具体实现使用了两种求解方法,穷举法和分治法。其中,穷举法用于判断最近点对算法实现结果的正确性。 算法使用的数据结构为数组,其中为了简单起见,将x轴坐标与y轴坐标分别存入两个数组,并新建一个数组record[],记录数组y的元素下标,用于绑定x坐标对应的y坐标。 在设计过程中使用到了比较排序算法,用于对x及y坐标排序,这并不增加其时间复杂度。因此是可行的。 在分治算法中,设置划分区间的下限为3,即当区间内元素个数小于等于3时,不再使用分治。在该设定下分为三种情况,元素数为1时,Min设为无穷。元素数为2时,计算两点间距离并返回。元素数为3时,一共计算三次距离,并取其最小值。

分治法求最大子段和问题

分治法求最大子段和问题 共有四种方法: 算法一; 算法二; 算法三、Divide and Conquer 算法四源代码、On-line Algorithm 算法一源代码: /*Given (possibly negative) integers A1, A2, …, AN, find the maximum value. 找最大子段和*/ #include #include #include intMaxSubsequenceSum(int A[],int N); main() { inti,N,*A,MaxSum,judge; LARGE_INTEGER begin,end,frequency; //代表64位有符号整数,记录程序运行时间QueryPerformanceFrequency(&frequency);//可以获得当前的处理器的频率 printf("输入整数的个数:"); scanf("%d",&N); A=(int *)malloc(N*sizeof(int)); //用数组给数据动态分配空间 printf("自行输入数据请按1,随机产生数据请按2\n"); scanf("%d",&judge); if(judge==1){ //自行输入数据 printf("输入%d个整数:",N); for(i=0;i

最近点对分治法

假设在一片金属上钻n 个大小一样的洞,如果洞太近,金属可能会断。若知道任意两个洞的最小距离,可估计金属断裂的概率。这种最小距离问题实际上也就是距离最近的点对问题。 如果不用分治法,问题非常容易解决。也就是蛮力法。 代码如下: #include #include typedef struct TYPE { double x, y; } Point; float dist(Point a,Point b) { return (float)sqrt((float)(a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y)); } float nearest(Point* points, int n) { float temp,near1=10000; int i,j; if(n==1) { printf("不可能"); return 0; } else{ for(i=0; itemp)?temp:near1; } } return near1; } } int main()

{ int n, i; double d; printf("输入点的个数:"); scanf("%d", &n); Point a[10000]; while (n) { for (i = 0; i < n; i++) scanf("%lf%lf", &(a[i].x), &(a[i].y)); d = nearest(a,n); printf("%.2lf\n", d); scanf("%d", &n); } return 0; } 但是本题是用分治法,我也参考了网上很多资料,他们要求对纵坐标进行排序,可能是为了对求右边的问题的点扫描用for 循环,但我发现那算法就不对,但愿是我的还没有完全明白按纵坐标排序的原因, 我参考的资料: https://www.360docs.net/doc/6913421528.html,/p-198711591.html?qq-pf-to=pcqq.c2c 代码如下: #include #include #include

分治法

分治法 【摘要】:分治法可以通俗的解释为:把一片领土分解,分解为若干块小部分,然后一块块地占领征服,被分解的可以是不同的政治派别或是其他什么,然后让他们彼此异化。本文主要叙述了分治法的设计思想及与之有关的递归思想,了解使用分治法解决问题的过程。 【关键词】:分治法分解算法递归二分搜索 Partition Method (Junna Wei) 【abstract 】: the partition method can explain to popular: decomposition, put a slice of territory is decomposed into several pieces of small, then pieces of land occupation of conquest, the decomposition can be different political factions or something, then let them each other alienation. This paper mainly describes the design idea of the partition method and recursive thinking, related to understand the process of solving the problem using the partition method. 【key words 】: partition method decomposition algorithm recursive Binary search 1.引论

最近点对问题

最近点对问题 I.一维问题: 一、问题描述和分析 最近点对问题的提法是:给定平面上n个点,找其中的一对点,使得在n个点组成的所有点对中,该点对间的距离最小。 严格的讲,最接近点对可能多于1对,为简单起见,只找其中的1对作为问题的解。简单的说,只要将每一点与其它n-1个点的距离算出,找出达到最小距离的2点即可。但这样效率太低,故想到分治法来解决这个问题。也就是说,将所给的平面上n个点的集合S 分成2个子集S1和S2,每个子集中约有n/2个点。然后在每个子集中递归的求其最接近的点对。这里,关键问题是如何实现分治法中的合并步骤,即由S1和S2的最接近点对,如何求得原集合S中的最接近点对。如果组成S的最接近点对的2个点都在S1中或都在S2中,则问题很容易解决,但如果这2个点分别在S1和S2中,问题就不那么简单了。下面的基本算法中,将对其作具体分析。 二、基本算法 假设用x轴上某个点m将S划分为2个集合S1和S2,使得S1={x∈S|x<=m};S2={x ∈S|x>m}。因此,对于所有p∈S1和q∈S2有p

算法(复习题)1

平均情况:设待查找的元素在数组中的概率为P,不在数组中的概率为1-P,若出现在数组中每个位置的概率是均等的为p/n T(n)=P1D1+P2D2+...+PiDi+(1-P)Dn+1 =p/2+n(1-p/2) 1.叙述分治算法和动态规划算法的基本思想,并比较两种算法的异同。答:分治法将待求解的问题划分成K个较小规模的子问题,对这K个子问题分别求解,再将子问题的解合并为一个更大规模的问题的解,自底向上逐步求出原问题的解. 动态规划将待求解的问题分解成若干的子问题,自底向上地通过求解子问题的解得到原问题的解。动态规划将每个子问题只求解一次并将其解保存在一个表格中,当需要再次求解此子问题时,只是简单的通过查表过的该子问题的解,避免了大量的重复计算. 异同:分治法求解的问题分解后的子问题都是独立的,而使用动态规划求解的问题分解后得到的子问题往往不是相互独立的。 分治法是自顶向下用递归的方法解决问题,而动态规划则是自底向上非递归解决问题。 1.简述分治算法求解过程的三个阶段。 答:(1)划分:既然是分治,当然需要把规模为n的原问题划分为k个规模较小的子问题,并尽量使这k个子问题的规模大致相同。 (2)求解子问题:各子问题的解法与原问题的解法通常是相同的,可以用递归的方法求解各个子问题,有时递归处理也可以用循环来实现。 (3)合并:把各个子问题的解合并起来,合并的代价因情况不同有很大差异,分治算法的有效性很大程度上依赖于合并的实现。 2.叙述分治法的基本思想,并分析分治法与减治法二者的区别。 答:分治法将待求解的问题划分成K个较小规模的子问题,对这K个子问题分别求解,再将子问题的解合并为一个更大规模的问题的解,自底向上逐步求出原问题的解. 区别:分治法是把一个大问题划分成若干个子问题,分别求解各个子问题,然后把子问题的解进行合并并得到原问题的解。减治法同样是把一个大问题划分成若干个子问题,但是这些子问题不需要分别求解,只需求解其中的一个子问题,因而也无需对子问题的解进行合并。 3.设计分治算法求一个数组中最大元素的位置,建立该算法时间复杂性的 递推式并给出其复杂性的大O表示。 答:设数组a1,a2...an int maxpos(a[],i,j); {if(i==j) return i; mid=(i+j)/2; lmaxpos=maxpos(a,i,mid); rmaxpos=maxpos(a,mid+1,j); if(a[lmaxpos]>=a[rmoxpos]) return lmaxpos; else return rmaxpos;} T(1)=O(n) n=1; T(n)=2T(n/2)+O(1) n>1;

-实验1分治法

一、实验目的 1.理解分治法的方法; 2. 掌握使用分治法解决一般问题的步骤; 3. 掌握分治算法求解数组的最大值和最小值的方法。 二、实验原理 在一个给定数组中查找最大值和最小值是一类常见的问题,也是解决其他一些算法的基础。 假设给定数组为a,数组中含有n个元素,一般的算法是在数组中进行直接 循环的次数在算法第2行给出,为(n-2)+1=n-1次,因此,算法元素比较总次数为2(n-1)次。 现在采用分治的思想,假设数组的长度为2的整数幂,将数组分割成两半,分别为a[0…(n/2)-1]和a[n/2…n-1],在每一半中分别查找最大值和最小值,并返回这两个最小值中的最小值以及两个最大值中的最大值。 假设给定数组为a,数组的下标上界和下界分别为low和high,则其算法伪 接比较数组的两个元素,选出最大值和最小值,此为函数的递归终止条件;代码第7行和第8行是两个递归调用,分别在数组的下标范围[low,mid]和 [mid+1,high]查找最小值和最大值,第9行比较两个最大值取其中较大者,第10行比较两个最小值取较大者。

代码的第2、9和10行涉及到元素的比较,第7、8行由于递归也产生元素比较,因此令算法总的元素比较次数为C(n),则有 ???>+==2 2)2/(221)(n n C n n C 若若 对递推式进行求解 2 2/3 2 2)2/( 2)2(2 2 2...22)2/(2 ... 2 48)8/(824)2)8/(2(4 2 4)4/(42)2)4/(2(22)2/(2)(1 1122111-=-+=+=+++++==+++=+++=++=++=+=∑-=-----n n C n C n C n C n C n C n C n C k k j j k k k k k 得到minmax 算法的元素比较总次数为3n/2-2,优于直接比较的性能。 三、实验内容及要求 1. 编写程序使用分治算法MINMAX 求解数组的最小值和最大值,并用实际数组对算法进行测试。 2. 要求算法中元素比较的次数为3n/2-2,在程序中元素比较的地方进行记录,并在程序末尾输出数组最大值和最小值以及元素比较次数。 四、实验步骤 1. 定义结构体类型或类,用以在函数的返回值同时返回数组的最大值和最小值。

用分治法求解棋盘覆盖问题

棋盘覆盖问题 问题描述: 在一个2k ×2k (k ≥0)个方格组成的棋盘中,恰有一个方格与其他方格不同,称该方格为特殊方格。显然,特殊方格在棋盘中出现的位置有4k 中情形,因而有4k 中不同的棋盘,图(a )所示是k=2时16种棋盘中的一个。棋盘覆盖问题要求用图(b )所示的4中不同形状的L 型骨牌覆盖给定棋盘上除特殊方格以外的所有方格,且热河亮哥L 型骨牌不得重复覆盖。 问题分析: K>0时,可将2k ×2k 的棋盘划分为4个2k-1×2k-1的子棋盘。这样划分后,由于原棋盘只有一个特殊方格,所以,这4个子棋盘中只有1个子棋盘中有特殊方格,其余3个子棋盘中没有特殊方格。为了将这3个没有特殊方格的子棋盘转化成为特殊棋盘,以便采用递归方法求解,可以用一个L 型骨牌覆盖这3个较小的棋盘的会合处,从而将原问题转化为4个较小规模的棋盘覆盖问题。递归地使用这种划分策略,直至将棋盘分割为1×1的子棋盘。 问题求解: 下面介绍棋盘覆盖问题中数据结构的设计。 (1) 棋盘:可以用一个二维数组board[size][size]表示一个棋盘,其中size=2k 。为了 在递归处理的过程中使用同一个棋盘,将数组board 设为全局变量。 (2) 子棋盘:整个棋盘用二维数组board[size][size]表示,其中的子棋盘由棋盘左上 角的下标tr 、tc 和棋盘大小s 表示。 (3) 特殊方格:用board[dr][dc]表示特殊方格,dr 和dc 是该特殊方格在二维数组 board 中的下标。 (4) L 型骨牌:一个2k ×2k 的棋盘中有一个特殊方格,所以,用到L 型骨牌的个数 为(4k -1)/3,将所有L 型骨牌从1开始连续编号,用一个全局变量tile 表示。 图(b ) 图 (a )

算法分析考试题

1. )(n T 给定数组a[0:n-1],试设计一个算法,在最坏情况下用n+[logn]-2次比较找出 a[0:n-1] 中的元素的最大值和次大值. (算法分析与设计习题 2.16 ) (分治法) a 、 算法思想 用分治法求最大值和次大值首先将问题划分,即将划分成长度相等的两个序列,递归求出左边的最大值次大值,再求出右边的的最大值次大值,比较左右两边,最后得出问题的解。 b 、复杂度分析: 把问题划分为左右两种的情况,需要分别递归求解,时间复杂度可如下计算: 有递推公式为: T(n)=1 n=1 T(n)= 2T(n/2)+1 n>1 所以,分治算法的时间复杂度是n+[logn]-2,当n 为奇数时,logn 取上线,当n 为偶数时,logn 取下线。//不知道为什么会-2! C 、代码实现: #include int a[100]; void maxcmax(int i,int j,int &max,int &cmax) { int lmax,lcmax,rmax,rcmax; int mid; if (i==j) { max=a[i]; cmax=a[i]; } else if (i==j-1) if (a[i]rmax)

if(lcmax>rmax) { max=lmax; cmax=lcmax; } else { max=lmax; cmax=rmax; } else if(rcmax>lmax) { if(rmax==rcmax) { max=rmax; cmax=lmax; } else { max=rmax; cmax=rcmax; } } else { max=rmax; cmax=lmax; } } } int main() { int n; int max,cmax; printf("输入数组长度"); scanf("%d",&n); printf("输入数组:\n"); for(int i=0;i

大学算法分析与设计复习总结

大学算法分析与设计复习总结 第1章绪论 考点: 1、算法的5个重要特性。(P3) 答:输入、输出、有穷性、确定性、可行性 2、描述算法的四种方法分别是什么,有什么优缺点。(P4) 答: 1.自然语言优点:容易理解;缺点:容易出现二义性,并且算法都很冗长。 2.流程图优点:直观易懂;缺点:严密性不如程序语言,灵活性不如自然语言。 3.程序设计语言优点:用程序语言描述的算法能由计算机直接执行;缺点:抽象性差,是算法设计者拘泥于描述算法的具体细节,忽略了“好”算法和正确逻辑的重要性,此外,还要求算法设计者掌握程序设计语言及其编程技巧。 4.伪代码优点:表达能力强,抽象性强,容易理解 3、了解非递归算法的时间复杂性分析。(P13) 要点:对非递归算法时间复杂性的分析,关键是建立一个代表算法运行时间的求和表达式,然后用渐进符号表示这个求和表达式。 非递归算法分析的一般步骤是: (1)决定用哪个(或哪些)参数作为算法问题规模的度量。 (2)找出算法的基本语句。 (3)检查基本语句的执行次数是否只依赖问题规模。 (4)建立基本语句执行次数的求和表达式。 (5)用渐进符号表示这个求和表达式。

[例1.4]:求数组最小值算法 int ArrayMin(int a[ ], int n) { min=a[0]; for (i=1; i

通用分支递归式: 使用扩展递归技术求解下列递推关系式(1) (2)

算法分析习题参考答案第五章 (1)

1.最大子段和问题:给定整数序列 n a a a ,,,21 ,求该序列形如∑=j i k k a 的子段和 的最大值: ? ?????∑=≤≤≤j i k k n j i a 1max ,0max 1) 已知一个简单算法如下: int Maxsum(int n,int a,int& besti,int& bestj){ int sum = 0; for (int i=1;i<=n;i++){ int suma = 0; for (int j=i;j<=n;j++){ suma + = a[j]; if (suma > sum){ sum = suma; besti = i; bestj = j; } } } return sum; }试分析该算法的时间复杂性。 2) 试用分治算法解最大子段和问题,并分析算法的时间复杂性。 3) 试说明最大子段和问题具有最优子结构性质,并设计一个动态规划算法解最大子段和问题。分析算法的时间复杂度。 (提示:令1()max ,1,2,,j k i j n k i b j a j n ≤≤≤===∑) 解:1)分析按照第一章,列出步数统计表,计算可得)(2n O 2)分治算法:将所给的序列a[1:n]分为两段a [1:n/2]、a[n/2+1:n],分别求出这两段的最大子段和,则a[1:n]的最大子段和有三种可能: ①a[1:n]的最大子段和与a[1:n/2]的最大子段和相同; ②a[1:n]的最大子段和与a[n/2+1:n]的最大子段和相同; ③a[1:n]的最大子段和为两部分的字段和组成,即 j n j i l n i j a a a a a +++++=+?? ????=??????∑ 122;

相关文档
最新文档