现代控制理论第1章改

合集下载

现代控制理论知识点汇总

现代控制理论知识点汇总

现代控制理论知识点汇总Revised at 2 pm on December 25, 2020.第一章 控制系统的状态空间表达式1. 状态空间表达式 n 阶DuCx y Bu Ax x+=+= 1:⨯r u 1:⨯m y n n A ⨯: r n B ⨯: n m C ⨯:r m D ⨯:A 称为系统矩阵,描述系统内部状态之间的联系;B为输入(或控制)矩阵,表示输入对每个状态变量的作用情况;C 输出矩阵,表示输出与每个状态变量间的组成关系,D直接传递矩阵,表示输入对输出的直接传递关系。

2. 状态空间描述的特点①考虑了“输入-状态-输出”这一过程,它揭示了问题的本质,即输入引起了状态的变化,而状态决定了输出。

②状态方程和输出方程都是运动方程。

③状态变量个数等于系统包含的独立贮能元件的个数,n 阶系统有n 个状态变量可以选择。

④状态变量的选择不唯一。

⑤从便于控制系统的构成来说,把状态变量选为可测量或可观察的量更为合适。

⑥建立状态空间描述的步骤:a 选择状态变量;b 列写微分方程并化为状态变量的一阶微分方程组;c 将一阶微分方程组化为向量矩阵形式,即为状态空间描述。

⑦状态空间分析法是时域内的一种矩阵运算方法,特别适合于用计算机计算。

3. 模拟结构图(积分器 加法器 比例器)已知状态空间描述,绘制模拟结构图的步骤:积分器的数目应等于状态变量数,将他们画在适当的位置,每个积分器的输出表示相应的某个状态变量,然后根据状态空间表达式画出相应的加法器和比例器,最后用箭头将这些元件连接起来。

4. 状态空间表达式的建立① 由系统框图建立状态空间表达式:a 将各个环节(放大、积分、惯性等)变成相应的模拟结构图;b 每个积分器的输出选作i x ,输入则为i x;c 由模拟图写出状态方程和输出方程。

② 由系统的机理出发建立状态空间表达式:如电路系统。

通常选电容上的电压和电感上的电流作为状态变量。

利用KVL 和KCL 列微分方程,整理。

现代控制理论第版课后习题答案

现代控制理论第版课后习题答案

现代控制理论第版课后习题答案Prepared on 22 November 2020《现代控制理论参考答案》第一章答案1-1 试求图1-27系统的模拟结构图,并建立其状态空间表达式。

解:系统的模拟结构图如下: 系统的状态方程如下: 令y s =)(θ,则1x y =所以,系统的状态空间表达式及输出方程表达式为1-2有电路如图1-28所示。

以电压)(t u 为输入量,求以电感中的电流和电容上的电压作为状态变量的状态方程,和以电阻2R 上的电压作为输出量的输出方程。

解:由图,令32211,,x u x i x i c ===,输出量22x R y =有电路原理可知:•••+==+=++3213222231111x C x x x x R x L ux x L x R 既得22213322222131111111111x R y x C x C x x L x L R x u L x L x L R x =+-=+-=+--=•••写成矢量矩阵形式为:1-4 两输入1u ,2u ,两输出1y ,2y 的系统,其模拟结构图如图1-30所示,试求其状态空间表达式和传递函数阵。

解:系统的状态空间表达式如下所示: 1-5系统的动态特性由下列微分方程描述列写其相应的状态空间表达式,并画出相应的模拟结构图。

解:令..3.21y x y x y x ===,,,则有相应的模拟结构图如下: 1-6 (2)已知系统传递函数2)3)(2()1(6)(+++=s s s s s W ,试求出系统的约旦标准型的实现,并画出相应的模拟结构图解:ss s s s s s s s W 31233310)3(4)3)(2()1(6)(22++++-++-=+++= 1-7 给定下列状态空间表达式[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡321321321100210311032010x x x y u x x x x x x ‘(1) 画出其模拟结构图 (2) 求系统的传递函数 解:(2)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+-+-=-=31103201)()(s s s A sI s W 1-8 求下列矩阵的特征矢量(3)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=6712203010A 解:A 的特征方程 061166712230123=+++=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+---=-λλλλλλλA I 解之得:3,2,1321-=-=-=λλλ当11-=λ时,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---3121113121116712203010p p p p p p 解得: 113121p p p -== 令111=p 得 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1113121111p p p P(或令111-=p ,得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1113121111p p p P ) 当21-=λ时,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---32221232221226712203010p p p p p p 解得: 1232122221,2p p p p =-= 令212=p 得 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1423222122p p p P(或令112=p ,得⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=21213222122p p p P )当31-=λ时,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---33231333231336712203010p p p p p p 解得: 133313233,3p p p p =-= 令113=p 得 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=3313323133p p p P1-9将下列状态空间表达式化成约旦标准型(并联分解)(2)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡32121321321110021357213311201214x x x y y u x x x x x x解:A 的特征方程 0)3)(1(311212142=--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------=-λλλλλλA I 当31=λ时,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--3121113121113311201214p p p p p p 解之得 113121p p p == 令111=p 得 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1113121111p p p P当32=λ时,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--1113311201214312111312111p p p p p p 解之得 32222212,1p p p p =+= 令112=p 得 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=0013222122p p p P当13=λ时,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--332313332313311201214p p p p p p 解之得3323132,0p p p == 令133=p 得 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1203323133p p p P约旦标准型1-10 已知两系统的传递函数分别为W 1(s)和W 2(s)试求两子系统串联联结和并联连接时,系统的传递函数阵,并讨论所得结果 解:(1)串联联结 (2)并联联结1-11 (第3版教材)已知如图1-22所示的系统,其中子系统1、2的传递函数阵分别为求系统的闭环传递函数解:1-11(第2版教材) 已知如图1-22所示的系统,其中子系统1、2的传递函数阵分别为求系统的闭环传递函数 解:1-12 已知差分方程为试将其用离散状态空间表达式表示,并使驱动函数u 的系数b(即控制列阵)为(1)⎥⎦⎤⎢⎣⎡=11b解法1: 解法2:求T,使得⎥⎦⎤⎢⎣⎡=-111B T 得⎥⎦⎤⎢⎣⎡=-10111T 所以 ⎥⎦⎤⎢⎣⎡-=1011T 所以,状态空间表达式为第二章习题答案2-4 用三种方法计算以下矩阵指数函数At e 。

现代控制理论(刘豹)第一章

现代控制理论(刘豹)第一章
第一章 控制系统的状态空间表达式
状态变量
状态向量
状态空间
状态方程
状态:表征 系统运动的信 息和行为 状态变量: 能完全表示系 统运动状态的 最小个数的一 组变量
由状态变量 构成的向量 x1(t) x2(t) : xn(t)
以各状态变量 x1(t),x2(t),…… xn(t)为坐标轴 组成的几维空 间。
S nY ( s ) + an −1S n −1Y ( s ) + ... + a0Y ( s ) = bm S mu ( s ) + ... + b0Y ( s )
(bm S m + bm −1S m −1 + ... + b0 ) Y ( s ) Z ( s ) G ( s) = Y ( s) / U ( s) = = ⋅ n n −1 ( S + an −1S + ... + a0 ) Z ( s) U ( s)
& x3 x3
x2 x1
机电工程系



习题2 习题
已知离散系统的差分方程为
y (k + 2) + 3 y (k + 1) + 2 y (k ) = 2u (k + 1) + 3u (k )
试求系统的状态空间表达式,并画出其模拟结构图。
解:假设初始条件为零,系统微分方程的 Z 变换为:
z 2Y ( z ) + 3 zY ( z ) + 2Y ( z ) = 2sU ( z ) + 3U ( z )
S n Z ( s ) + an −1S n −1Z ( s ) + ... + a0 Z ( s ) = U ( s ) Y ( s ) = bn −1S

《现代控制理论》第三版_.习题答案

《现代控制理论》第三版_.习题答案

K1
0 0 K1
K p
B 0 0 0 0 0
K1
T
K p
C 1 0 0 0 0 0;
1-3.

1-29
机械系统。M1
M
受外力
2
作用 f1 f2作用,求M1 M 2运动速度输出的
状态空间表达式。
解:微分方程 M1 y1 f1 K1(c1 c2 ) B1( y1 y2 )
M 2 y2 f2 K2c2 B2 y2 K1(c1 c2 ) B1( y1 y2 )
第一章 作业
参考答案
1-1. 求模拟结构图,并建立其状态空间 表达式。 解:状态方程:
x1 x2
x2
Kb J2
x3
x3
1 J1
x5 K p x6 x3 x4
Kp J1
x3
1 J1
x4
1 J1
x5
Kp J1
x6
x4 Kn x3 x5 K1(x6 x3 ) K1x3 K1x6
x 6
设状态变量 x = c1 c2 y1 y2 T
y y1 y2 T ,u f1 f2 T
令 x1 c1, x2 c2, x3 y1, x4 y2
x1 x3 x2 x4
x3
K1 M1
x1
K1 M1
x2
B1 M1
x3
B1 M1
x4
1 M1
f1
x4
K1 M2
x1
K1 K2 M2
第二章 作业
参考答案
2-4. 用三种方法计算eAt (定义法,约 当标准型,拉氏反变换,凯莱哈密顿)
(1)
A
0 4
1 0
直接法(不提倡使用,除非针对一些特

《现代控制理论》第三版_.习题答案

《现代控制理论》第三版_.习题答案
或者
1 0 0 3 1 0 5 2 1 52 7 1 5 2 70 125 3 5 7 5 0 0 1 1 B 2 ; 2 5 5
1 0 a1 0 0 1 0 1 0 0 1 a2 3 7 5
0 B 0 1
C (b0 a0bn ) (bn1 an1bn ) 2 1 0
3 1 a 或者 2 2 1 a1 0 a0
e At I At 1 22 1 33 A t A t 2! 3! t2 t4 t6 t3 t5 1 4 16 64 , 4 16 t 2! 4! 6! 3! 5! 3 5 2 4 6 t t t t t t 4 16 64 , 1 4 16 64 3! 5! 2! 4! 6!
0 0 1 B M 1 0 0 0 0 1 M2
1 0 B 1 M1 B1 M2
1 B1 M1 B1 B2 M2
0
0 0 1 0 C 0 0 0 1
1-5. 根据微分方程, 写状态方程, 画模 拟结构图。
1 a2 a2 2 a1 3 2 a a a 1 2 2 a0
1 a2 a1
1 a2
12 b1 b0
b3 b 2 b1 1 b0
凯莱哈密顿法: 1,2 2 j
0 (t ) 1 1 e1t 1 2(e 2 jt e 2 jt ) (t ) 1 2t 4 2 jt 2 jt e j ( e e ) 2 1

现代控制理论第一章 ppt课件

现代控制理论第一章 ppt课件
作为贝尔实验室工程师, 关于热噪声、反馈系统稳定性、 电报、传真、电视、通信。
1889-1976
1.1 控制理论的发展历程
伯德,Hendrik Wade Bode
美国1905-1982
Bode was an American engineer, researcher, inventor, author and scientist,
of Dutch ancestry.
As a pioneer of modern control theory and electronic
telecommunications he revolutionized both the content and methodology of his chosen fields of research.
1.1 控制理论的发展历程
维纳,Norbert Wienner
1948年,维纳发表《控制论》,宣告了这门新兴学 科的诞生。这是他长期艰苦努力并与生理学家罗森 勃吕特等人多方面合作的伟大科学成果。
1964年1月,他由于“在纯粹数学和应用数学方面并 且勇于深入到工程和生物科学中去的多种令人惊异的 贡献及在这些领域中具有深远意义的开创性工作”荣 获美国总统授予的国家科学勋章。
1.1 控制理论的发展历程
维纳,Norbert Wienner
第一章,牛顿时间和柏格森时间 第二章,群和统计力学 第三章,时间序列、信息与通讯 第四章,反馈与振荡 第五章,计算机与神经系统 第六章,完形与普遍观念 第七章,控制论和精神病理学 第八章,信息、语言和社会 第九章,关于学习和自生殖机 第十章,脑电波与自行组织系统
1.1 控制理论的发展历程
伯德,Hendrik Wade Bode

现代控制理论-第1章

对于一阶标量微分方程:
它的模拟结构图示于下图
再以三阶微分方程为例: 将最高阶导数留在等式左边,上式可改写成 它的模拟结构图示于下图
同样,已知状态空间表达式,也可画出相应的模拟结构图,下图是下列 三阶系统的模拟结构图。
试画出下列二输入二输出的二阶系统的模拟结构图。
1.3 状态变量及状态空间表达式的建立(一)
(63)
故U—X间的传递函数为:
它是一个
的列阵函数。
间的传递函数为:
它是一个标量。
2.多输入一多输出系统 已知系统的状态空间表达式:
(64)
(66) 式中, 为r×1输入列矢量; 为m×1输出列矢量;B为n×r控制矩阵; C为m×n输出矩阵;D为m×r直接传递阵;X,A为同单变量系统。
同前,对式(66)作拉氏变换并认为初始条件为零,得:
(9)
2021/3/11
11
2021/3/11
12
因而多输入一多输出系统状态空间表达式的矢量矩阵形式为: (10)
式中,x和A为同单输入系统,分别为n维状态矢量和n×n系统矩阵;
为r维输入(或控制)矢量;
为m维输出矢量;
为了简便,下面除特别申明,在输出方程中,均不考虑输入矢量的直接 传递,即令D = 0 。注意:矢量是小写字母,矩阵是大写字母。
1.4.2 传递函数中有零点时的实现 此时,系统的微分方程为:
相应地,系统传递函数为:
设待实现的系统传递函数为:
因为
上式可变换为
(26)
令 则 对上式求拉氏反变换,可得:
2021/3/11
31
每个积分器的输出为一个状态变量,可得系统的状态空问表达式: 或表示为: 推广到 阶系统,式(26)的实现可以为:

现代控制理论 第1章 状态空间描述


得动态方程组 1 x2 x k b 1 x 2 y y u y m m m k b 1 x1 x2 u m m m y x 1
问题:到底有 何区别?
13
状态空间表达式为
1 0 x k x 2 m

如果将储能元件的物理变量选为系统的状态变量,则状态变量的个数 等于系统中独立储能元件的个数
5
基本概念

状态方程:系统状态方程描述的结构图如下图所示
假设:causal system ——现在的输出只取决 于现在和过去的输入, 而与将来的输入无关。
输入引起状态的变化是一个动态过程,每个状态变量的一阶导数与所有 状态变量和输入变量的数学表达(常微分方程ODE)称为状态方程,一般形式 为:
1896192019872006状态变量和状态空间表达式状态变量和状态空间表达式化输入化输入输出方程为状态空间表达式输出方程为状态空间表达式系统的线性变换对角线标准型和约当标准型系统的线性变换对角线标准型和约当标准型由状态空间表达式导出传递函数阵由状态空间表达式导出传递函数阵离散时间系统的状态空间表达式离散时间系统的状态空间表达式时变系统的状态空间表达式时变系统的状态空间表达式从系统黑箱的输入输出因果关系中获悉系统特性传递函数描述属系统的外部描述系统的内部描述白箱系统完整地表征了系统的动力学特征状态空间表达式属系统的内部描述状态变量
x1 f1 ( x1 , x2 f 2 ( x1 , xn f n ( x1 , , xn , u1 , , xn , u1 , , xn , u1 , , um , t ) , um , t ) , um , t )
标量形式,繁琐!
6
矢量形式

《现代控制理论》课后习题答案


=
3 2
, c2
=
2s + 5 lim s→−3 s + 1
=
1 2

从输入通道直接到输出通道上的放大系数 d = 1,由此可得:
⎡ x1
⎢ ⎣
x 2
⎤ ⎥ ⎦
=
⎡− 1
⎢ ⎣
0
0⎤ − 3⎥⎦
⎡ ⎢ ⎣
x1 x2
⎤ ⎥ ⎦
+
⎡1⎤ ⎢⎣1⎥⎦u
y
=
⎡ ⎢⎣
3 2
1 2
⎤ ⎥⎦
⎡ ⎢ ⎣
x1 x2
u
d
d
b2
dt
dt
d
b1
m
dt
b0
因此,两个环节调换后的系统状态变量图为
u
d
d
b2
dt
dt
d
b1
dt
b0
m
−∫
−∫
y −∫
a0
a1
a2
进一步简化,可得系统状态变量图为 u
b0
b1
b2
− ∫ x1
− ∫ x2
− ∫ x3 y
a0
a1
a2
3
取 y = x3 , y = x2 , y = x1 ,可以得到两个环节调换后的系统的状态空间模型为
a(s)
1 a(s)
=
s3
+
1 a2s2 +
a1s
+
a0
, b(s)
=
b2 s 2
+ b1s
+ b0

2
由于 s−3 y 相当于对 y 作 3 次积分,故 y = 1 可用如下的状态变量图表示: m a(s)

现代控制理论第版课后习题答案

现代控制理论第版课后习题答案Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GT《现代控制理论参考答案》第一章答案1-1 试求图1-27系统的模拟结构图,并建立其状态空间表达式。

解:系统的模拟结构图如下: 系统的状态方程如下: 令y s =)(θ,则1x y =所以,系统的状态空间表达式及输出方程表达式为1-2有电路如图1-28所示。

以电压)(t u 为输入量,求以电感中的电流和电容上的电压作为状态变量的状态方程,和以电阻2R 上的电压作为输出量的输出方程。

解:由图,令32211,,x u x i x i c ===,输出量22x R y =有电路原理可知:•••+==+=++3213222231111x C x x x x R x L ux x L x R 既得22213322222131111111111x R y x C x C x x L x L R x u L x L x L R x =+-=+-=+--=•••写成矢量矩阵形式为:1-4 两输入1u ,2u ,两输出1y ,2y 的系统,其模拟结构图如图1-30所示,试求其状态空间表达式和传递函数阵。

解:系统的状态空间表达式如下所示: 1-5系统的动态特性由下列微分方程描述列写其相应的状态空间表达式,并画出相应的模拟结构图。

解:令..3.21y x y x y x ===,,,则有相应的模拟结构图如下: 1-6 (2)已知系统传递函数2)3)(2()1(6)(+++=s s s s s W ,试求出系统的约旦标准型的实现,并画出相应的模拟结构图解:ss s s s s s s s W 31233310)3(4)3)(2()1(6)(22++++-++-=+++= 1-7 给定下列状态空间表达式[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡321321321100210311032010x x x y u x x x x x x ‘(1) 画出其模拟结构图 (2) 求系统的传递函数 解:(2)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+-+-=-=31103201)()(s s s A sI s W 1-8 求下列矩阵的特征矢量(3)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=6712203010A 解:A 的特征方程 061166712230123=+++=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+---=-λλλλλλλA I 解之得:3,2,1321-=-=-=λλλ当11-=λ时,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---3121113121116712203010p p p p p p 解得: 113121p p p -== 令111=p 得 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1113121111p p p P(或令111-=p ,得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1113121111p p p P ) 当21-=λ时,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---32221232221226712203010p p p p p p 解得: 1232122221,2p p p p =-= 令212=p 得 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1423222122p p p P(或令112=p ,得⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=21213222122p p p P )当31-=λ时,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---33231333231336712203010p p p p p p 解得: 133313233,3p p p p =-= 令113=p 得 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=3313323133p p p P1-9将下列状态空间表达式化成约旦标准型(并联分解)(2)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡32121321321110021357213311201214x x x y y u x x x x x x解:A 的特征方程 0)3)(1(311212142=--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------=-λλλλλλA I 当31=λ时,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--3121113121113311201214p p p p p p 解之得 113121p p p == 令111=p 得 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1113121111p p p P当32=λ时,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--1113311201214312111312111p p p p p p 解之得 32222212,1p p p p =+= 令112=p 得 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=0013222122p p p P当13=λ时,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--332313332313311201214p p p p p p 解之得3323132,0p p p == 令133=p 得 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1203323133p p p P约旦标准型1-10 已知两系统的传递函数分别为W 1(s)和W 2(s)试求两子系统串联联结和并联连接时,系统的传递函数阵,并讨论所得结果 解:(1)串联联结 (2)并联联结1-11 (第3版教材)已知如图1-22所示的系统,其中子系统1、2的传递函数阵分别为求系统的闭环传递函数解:1-11(第2版教材) 已知如图1-22所示的系统,其中子系统1、2的传递函数阵分别为求系统的闭环传递函数 解:1-12 已知差分方程为试将其用离散状态空间表达式表示,并使驱动函数u 的系数b(即控制列阵)为(1)⎥⎦⎤⎢⎣⎡=11b解法1: 解法2:求T,使得⎥⎦⎤⎢⎣⎡=-111B T 得⎥⎦⎤⎢⎣⎡=-10111T 所以 ⎥⎦⎤⎢⎣⎡-=1011T 所以,状态空间表达式为第二章习题答案2-4 用三种方法计算以下矩阵指数函数At e 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

系统的状态方程和输出方程一起,称为系统状态空间表达式,或称 为系统动态方程,或称系统方程。
设: x1 i(t) x2 uC(t)
C0 1
x
x1
x
2
A
-
R
L 1
-
1 L
0
C
x Ax bu
则可以写成状态空间表达式:
y Cx
1
b
L 0
推广到一般形式:
x Ax Bu y Cx Du
线性化:当 和 较小时 ,有 sin cos1 2 0
化简后,得
(Mm )ymlu
mymlmg
求解得: ymg 1 u
MM
(Mm)g1u
Ml Ml
选择状态变量 x1 y,x2 x1y,x3 ,x4 x3
u为系统输入, y为系统输出
x1 0 1 0 0x1 1
x2 xx43
0 0 0
0 0 0
x1
x
x
2
x
n
u1
u
u
2
u
r
y1
y
y2
y
m
a11 a1n
A
an1 ann nn
c11 c1n
C
cm1 cmnmn
b11 b1r
B
bn1 anr nr
d11 d1r
D
dm1 dmrmr
如果矩阵A, B, C, D中的所有元素都是实常数时,则称这样 的系统为线性定常(LTI,即:Linear Time-Invariant)系统。
duC(t) 1i(t) dt C
该方程描述了电路的状态变量 和输入量之间的关系,称为该 电路的状态方程,这是一个矩 阵微分方程。
uC(t)0 1uiC(t()t)
如果将电容上的电压作为电路的输出量,则 该方程是联系输出量和状态变量关系的方程, 称为该电路的输出方程或观测方程。这是一 个矩阵代数方程。
y 1
0
x1 x2
该系统的状态图如下
例1-2 建立电枢控制直流他励电动机的状态空间表达式
电枢回路的电压方程为
LDddD itRDiDKeuD 系统运动方程式为 KmiDfJDddt
(式中, K e 为电动势常数; K m 为转矩常数; J D 为折合到电动
机轴上的转动惯量; f 为折合到电动机轴上的粘性摩擦系数。)
如果这些元素中有些是时间 t 的函数,则称系统为线性时变 系统。
严格地说,一切物理系统都是非线性的。可以用下面的状态方程 和输出方程表示。如果不显含 t,则称为非线性定常系统。
x f (x,u,t) y g(x,u,t)
x f ( x,u)
y
g(
x,u)
1.1.3 状态变量的选取 (1) 状态变量的选取可以视问题的性质和输入特性而定
6、组合系统的数学描述 7、利用MATLAB进行模型之间的变换
1.1 状态空间表达式
1.1.1 状态、状态变量和状态空间 状态——动态系统的状态是一个可以确定该系统行为的信息集合。 这些信息对于确定系统未来的行为是充分且必要的。
状态变量——确定系统状态的最小一组变量,如果知道这些变量
在任意初始时刻 t 0 的值以及 t ≥ t 0 的系统输入,便能够完整地 确定系统在任意时刻 t 的状态。(状态变量的选择可以不同)
在水平方向,应用牛顿第二定律: Md d2t2 ymddt22(ylsin)u
在垂直于摆杆方向,应用牛顿第二定律:
md2 (ylsin)msgin
dt2
而有:
d(sin)(co)s
dt
d dt22(si)n (sin )2co s
d(co)s(sin)
dt
d d t2 2(co )s(co )s2(sin )
第1章 控制系统数学模型
本课程的任务是系统分析和系统设计。而不论是系统分析还是系统 设计,本课程所研究的内容是基于系统的数学模型来进行的。因此, 本章首先介绍控制系统的数学模型。
本章内容为: 1、状态空间表达式 2、由微分方程求出系统状态空间表达式 3、传递函数矩阵 4、离散系统的数学模型 5、线性变换
mMg 0
(Mm)g Ml
0x2
1 M
u
;
10xx43
0 M1 l
x1
y 1
0
0
0
x
2
x x
3 4
状态图为
1.2 由微分方程求状态空间表达式
一个系统,用线性定常微分方程描述其输入和输出的关系。通过选 择合适的状态变量,就可以得到状态空间表达式。
这里分两种情况: 1、微分方程中不含输入信号导数项,(即1.2.1 中的内容)
i(t ) 和 uC (t ) 可以表征该电路系统的行为,就是该系统的一组状态
变量
1.1.2 状态空间表达式
前面电路的微分方程组可以改写如下,并且写成矩阵形式:
d(ti)Ri(t)uC(t)u(t) dt L L L
ddduC(it(t)t)1R L dt C
0L1uiC(t()t)L10u(t)
状态空间——以所选择的一组状态变量为坐标轴而构成的正交线 性空间,称为状态空间。
例:如下图所示电路, u (t ) 为输入量, uC (t ) 为输出量。
建立方程: Ldd(ti)tR(ti)uC(t)u(t)
i C duC(t) dt
初始条件:
i(t) tt0
i(t0)
uC(t)tt0 uC(t0)
2、微分方程中含有输入信号导数项,(即1.2.2 中的内容)
根据牛顿第二定律
dy d2y FFkyf dtmd2t
即:
mdd2t2yf
dykyF dt
选择状态变量 x1 y x2 yx1
则:
x1 x2
x 2 m ky m fd d y tm 1F m kx 1 m fx 2 m 1F
机械系统的系统方程为
xx120m k 1m fxx12m 10F
(2)状态变量选取的非唯一性
在前面的例子中,如果重新选择状态变量 x1 uC x2 x1uC
则其状态方程为
xx1 2L 01C1R Lxx1 2L1 0C u
输出方程为:
y 1
0
x1 x2
(3)系统状态变量的数目是唯一的
1.1.4 状态空表达式建立的举例
例1-1 建立右图所示机械系统的状态空间表达式(注: 质量块 m 的重量已经和弹簧 k 的初始拉伸相抵消)
可选择电枢电流 i D 和角速度 为状态变量,电动机的电 枢电压 u D 为输入量,角速度 为输出量。
状态空间表达式 状态图如下:
diD
ddt
KRLmDD
dt JD
KLJfD De iDL10DuD
y 0
1iD
例1-3 建立单极倒立摆系统的状态空间表达式。 单级倒立摆系统是许多重要的宇宙空间应用的一个简单模型。
相关文档
最新文档