蛋白质表达在动物细胞中的应用利用哺乳动物细胞表达重组蛋白质的优势

合集下载

cho细胞重组蛋白原理

cho细胞重组蛋白原理

cho细胞重组蛋白原理
CHO细胞重组蛋白的原理涉及到CHO细胞的特性以及重组蛋白的生产过程。

首先,CHO细胞是一种哺乳动物细胞,常用于生物制药中。

它具有许多优点,如对重组蛋白的翻译后修饰能力强、生长快速等。

重组蛋白的原理是利用这些CHO细胞来表达外源基因,从而生产所需的蛋白质。

具体来说,CHO细胞重组蛋白的原理包括以下几个步骤:
1. 基因克隆,首先需要将所需的外源基因(编码目标蛋白的基因)克隆到适当的表达载体中,通常是质粒。

这个质粒中还包含一些调控元件,如启动子、终止子和增强子,以确保基因在CHO细胞中得到高效表达。

2. 细胞转染,将经过构建的表达载体导入CHO细胞中。

这可以通过化学方法、电穿孔法或者病毒载体等方式实现。

3. 选择和培养,转染后的CHO细胞需要进行筛选,以确保只有含有外源基因的细胞得以生长和繁殖。

通常会加入抗生素或者其他筛选标记物来实现这一步骤。

筛选后的细胞需要进行培养,以扩大
细胞数量。

4. 蛋白表达和纯化,经过培养的CHO细胞会表达外源基因编码的蛋白质。

这些蛋白质可以分泌到培养液中或者留存在细胞内。

随后,需要对培养液或者细胞进行相应的分离和纯化步骤,以获取纯
净的重组蛋白。

总的来说,CHO细胞重组蛋白的原理是利用CHO细胞表达外源
基因,并通过细胞培养和蛋白纯化等步骤最终获取纯净的重组蛋白。

这一技术在生物制药领域得到广泛应用,为生产重组蛋白药物提供
了重要的手段。

重组蛋白药物的研究进展

重组蛋白药物的研究进展
重组水蛭hirudin哺乳动物细胞表达产品比重增加目前天然白介素拮抗剂起中和作用的单抗如中和肿瘤坏死因子的英夫利昔单抗a蛋白水解酶抑制剂等这些蛋白经翻译后的修饰如糖基化对其活性影响很大采用原核表达系统往往不能满足蛋白表达的需要而采用哺乳动物细胞表达既能保证重组蛋白质二硫键的正确配对和蛋白质折叠又能保证蛋白质的糖基化即用哺乳动物细胞表达的重组蛋白与天然蛋白在结构和功能上都高度一致
[ 5]
齐鲁药事 Qi lu P har maceu tical Af f ai rs 2008 V ol 27 , No 10 转变 , 比如 , N eupog en 向 N eulasta 转变 ; P EG - Intro n A 正 在迅速取代 I ntr on A , 而 P egasys [ 6] 很快地遏 制了 P EG - In tro n A 的发展势头。这提示我 们 , 尽管在市场相对成熟及 饱 和的情况下 , # 重 磅炸 弹∃ 的 突变 体仍 然有 很大 的 机会。 当 然 , 这种机会源于我们对发 病机理、 蛋 白质化 学和生 理功 能 的透彻理解 , 也必须有很好的技术平台对改变后的蛋白进 行 系统、 准确的功能和安全评价。 另一方面 , 加强与国外中小企业的合作。国外大型制 药 巨头都有自己 的产 品研 发体 系 , 与中 国企 业 合作 的机 会 不 大。因此 , 那些北美、 欧洲 的中小 企业高 技术 研发企 业就 有 了与中国医药企业合作的契机 , 因为这些企业的资金同样 有 限 , 他们的钱一般都集中用于研发 , 也希望找到合 作伙伴 , 此 时中国企业也在寻找有核心技术的产品 , 这种优势互补的 合 作能够达成一种双赢的目的。
( Roche 公 司的 Pegasys) 和 PEG 化 的 G % CSF ( Am 融 合蛋白 ( A lbuferon) 已 完成 &期临 床试 的&

重组蛋白的表达系统(详细版)

重组蛋白的表达系统(详细版)

终止子:转录终止子按照是否依赖和不依赖ρ因子的作用分为两类,这两类终止子均在终止点前含有一段7-20bp的回文序列。终止子可以保护mRNA在核外不被降解,显著延长mRNA的寿命,由此提高重组蛋白的表达量。但是对于T7系统来说,由于T7 RNA聚合酶效率极高,宿主中随时都有充足的mRNA以供翻译,因此大部分在T7系统中表达的重组蛋白并不在意质粒上是否有终止子,只有一些自身带有翻译起始信号的外源基因需要终止子。启动子受细胞类型的限制,在不同的细胞系中有很大不同,因此需根据宿主细胞(尤其是真核宿主)的类型选择不同的启动子以便于目的基因的高效表达。
表4:常用原核表达载体质粒
1.3 优化表达条件
重组蛋白的表达流程很少有一次成形的,为了提高蛋白表达量、改善蛋白质量,表达条件和白不表达时:
2
如果重组蛋白不表达(包含体和可溶蛋白都没有),首先检查cDNA和质粒是否正确,蛋白对宿主菌是否有很大毒性,然后尝试更换菌株、质粒载体和融合标签。原核蛋白在大肠杆菌中不能表达的情况很少见,通常是真核蛋白不能表达。不能表达的重组蛋白,即使在更换了宿主、载体后可以表达,表达量也不会很高,如果需要大规模生产,最好尝试酵母和昆虫细胞表达系统。
融合标签:融合标签是与目的蛋白共表达的一段多肽,方便重组蛋白的纯化、固定和检测,表3给出了常用的重组标签。如果不需要对重组蛋白进行纯化,尽量不要引入融合标签,以免影响蛋白性质;如果重组蛋白本身能够结合某种亲和柱,如某些金属结合蛋白可以结合Ni-NTA,某些糖结合蛋白能够特异识别糖类,也不必引入标签。融合标签的引入能够大大简化重组蛋白的纯化流程,并提高蛋白溶解度。商业化表达质粒,如pET、pGEX等提供了各种纯化标签和融合蛋白供选,应根据蛋白具体情况进行选择。His-tag是最常用的纯化标签,它具有很多优点:标签较短(10-20个氨基酸残基),不带电(pH8.0),免疫原性差,通常不影响重组蛋白的结构和功能,Ni2+亲和力高,能够通过一步纯化达到60%-90%的纯度。如果蛋白质溶解度不高,导致折叠困难、表达量低,可以选择较大的融合标签(GST、MBP、Trx等)帮助重组蛋白表达和折叠,提高重组蛋白溶解度,从而提高表达量。较大的融合标签有时也会导致翻译困难甚至提前中止,纯化后发现大部分都是标签蛋白也是常见现象。翻译的提前中止会大大影响重组蛋白产率和后续纯化,所以在短标签能够达到目的的时候,尽量不要选择大的融合标签。标签位置的选择也很重要:N端标签(短的或长的)自身带有启动子和适应宿主偏好的密码子,可以帮助目的蛋白表达,提高表达量,但是提前中止翻译的蛋白片段也会被一并纯化出来,降低重组蛋白纯度,对蛋白酶敏感的、自身容易降解的以及一级序列中有集中的疏水残基区的蛋白尤其要避免使用N端标签;C端标签则可以保证只有完整蛋白得到纯化。另外,如果蛋白的近N端或近C端有重要功能区,如酶活中心、配体结合位点、二硫键、多聚体稳定界面、相互作用界面等,则要避免纯化标签位于该末端,以免影响重组蛋白的结构和功能。如果融合标签对蛋白性质有较大影响,但又是纯化所必须的,就可以考虑在纯化过程中去除标签。主要有三种方法:化学裂解,如溴化氰(CNBr)、羟胺(NH2OH)等,能够简单有效地去除标签,但反应条件苛刻(羟胺需要在pH9.0下反应),特异性较差,而且会引入不必要的修饰,除包含体蛋白的处理外已经很少使用了;酶解,如PPase等,其底物一般是一段比较长的肽链,特异性强,是目前比较常用的方法,缺点是酶切反应需要较长的时间,也增加了蛋白纯化的步骤,使纯化变得繁琐;IMPACT质粒,该质粒在纯化标签和目的蛋白之间插入了一个蛋白质内含子(intein),intein具有可诱导的自切割活性,使用IMPACT质粒表达的重组蛋白,只需要改变缓冲液的pH和温度,即可切掉融合标签。

cho细胞表达系统及筛选原理

cho细胞表达系统及筛选原理

cho细胞表达系统及筛选原理Cho细胞表达系统及筛选原理一、引言Cho细胞表达系统是一种常用的哺乳动物细胞表达系统,被广泛应用于重组蛋白的生产。

本文将介绍Cho细胞表达系统的原理以及其在蛋白质筛选中的应用。

二、Cho细胞表达系统的原理Cho细胞是一种中国仓鼠卵巢细胞系,具有较高的生长速度和蛋白质表达能力。

Cho细胞表达系统主要包括以下几个关键步骤。

1. 转染将目标基因导入Cho细胞中,通常使用质粒转染法或病毒载体转染法。

质粒转染法通过将目标基因插入质粒DNA中,然后利用转染试剂将质粒DNA导入细胞内。

病毒载体转染法则通过构建携带目标基因的病毒载体,将其感染到Cho细胞中。

2. 选择性筛选为了确保只有转染成功的细胞能够表达目标蛋白,通常在培养基中添加适当的选择性抗生素,如G418或葡萄糖酸钾。

只有转染成功的细胞才能抵抗抗生素的作用,存活下来。

3. 扩增和表达经过筛选的细胞将被扩增培养,以获得足够数量的细胞进行大规模蛋白质表达。

通常选择合适的培养基和培养条件,以提高细胞的生长速度和蛋白质表达水平。

4. 蛋白质纯化经过表达的目标蛋白质需要进行纯化,以去除其他杂质。

常用的纯化方法包括亲和层析、离子交换层析、凝胶过滤层析等。

通过这些方法,可以获得高纯度的目标蛋白质。

三、Cho细胞表达系统在蛋白质筛选中的应用Cho细胞表达系统在蛋白质筛选中具有以下优势。

1. 高表达水平Cho细胞具有较高的蛋白质表达能力,能够快速产生大量目标蛋白。

这对于需要大量蛋白质的研究和工业应用非常有利。

2. 真核细胞表达与原核细胞表达系统相比,Cho细胞表达系统能够实现真核细胞蛋白质表达。

这使得Cho细胞表达系统适用于需要进行正确的蛋白质翻译修饰、蛋白质折叠和组装的蛋白质研究。

3. 可选择性筛选通过添加适当的选择性抗生素,可以筛选出成功表达目标蛋白的细胞。

这样可以确保筛选后的细胞具有较高的表达水平和纯度。

4. 灵活性Cho细胞表达系统可以应用于多种类型的蛋白质,包括单链抗体、重组蛋白、酶等。

哺乳动物细胞表达系统表达策略

哺乳动物细胞表达系统表达策略

一、概述在生物医学研究领域,哺乳动物细胞表达系统被广泛应用于蛋白质表达、疫苗研发、疾病治疗等多个方面。

然而,由于哺乳动物细胞表达系统的复杂性和不稳定性,研究人员不断探索新的表达策略,以获得更高效、更稳定的表达效果。

本文将就哺乳动物细胞表达系统的表达策略进行探讨,介绍目前常用的表达策略,并分析其优缺点。

二、哺乳动物细胞表达系统常用的表达策略1. 质粒转染法质粒转染法是最常见的哺乳动物细胞表达策略之一。

该方法通过将感兴趣的基因克隆入表达载体,然后转染至哺乳动物细胞中,利用哺乳动物细胞的表达机器来合成蛋白质。

质粒转染法操作简便,成本较低,适用于初步筛选基因表达情况。

2. 病毒载体介导的表达病毒载体介导的表达策略利用改良过的病毒载体携带外源基因,并将其导入哺乳动物细胞,以实现高效表达。

这种表达方式具有高效率和稳定性,适用于大规模基因表达和蛋白质生产。

3. 融合蛋白表达融合蛋白表达是一种常用的策略,通过将目标蛋白与融合标签结合,提高其稳定性和溶解性,使其更容易在哺乳动物细胞中表达和纯化。

4. 基因组集成技术基因组集成技术是近年来出现的一种新策略,通过将外源基因整合到哺乳动物细胞基因组中,实现长期高效的表达。

这种策略可以提高蛋白质表达的稳定性和可控性,适用于需要长期大量表达的研究领域。

5.化学修饰策略化学修饰策略是指通过对基因序列进行合成优化、蛋白质工程、修饰剂添加等手段,改善蛋白质表达效率和稳定性。

这种策略在提高蛋白质溶解性、减少蛋白结构的折叠和聚集等方面具有一定优势。

三、各种表达策略的优缺点分析1. 质粒转染法优缺点优点:操作简便、成本低、适用于常规表达实验缺点:表达水平和稳定性有限,不适用于大规模蛋白质表达和纯化2. 病毒载体介导的表达优缺点优点:高效率、稳定性好、适用于大规模蛋白质生产缺点:病毒安全性、成本较高、用于基础研究时操作复杂3. 融合蛋白表达优缺点优点:提高蛋白质稳定性和溶解性、易于纯化缺点:可能影响蛋白质的生物活性和功能4. 基因组集成技术优缺点优点:长期高效表达、提高表达稳定性和可控性缺点:操作复杂、潜在的遗传毒性5.化学修饰策略优缺点优点:改善蛋白质表达效率和稳定性缺点:操作繁琐、可能影响蛋白质的天然构象和活性四、结论与展望当前,哺乳动物细胞表达系统的表达策略多种多样,各自具有一定的优缺点。

研究高效蛋白质表达的技术和方法

研究高效蛋白质表达的技术和方法

研究高效蛋白质表达的技术和方法蛋白质是生物体内功能最为重要的分子之一,控制着细胞的生理过程。

研究蛋白质表达的技术和方法,对于深入了解蛋白质功能以及相关疾病治疗具有重要意义。

本文将介绍几种高效蛋白质表达的常用技术和方法。

一、刺激蛋白质表达的条件在进行蛋白质表达之前,首先需要确定适当的表达条件。

刺激蛋白质表达最常用的方法之一是通过诱导表达来增加蛋白质的合成量。

常用的诱导剂包括 IPTG、甘油和丙酮酸等。

此外,还可以根据表达蛋白的特性来选择合适的表达宿主和培养条件。

二、重组蛋白质表达系统重组蛋白质表达系统是一种常见的高效表达蛋白质的方法。

目前广泛应用的系统包括大肠杆菌表达系统、昆虫细胞表达系统和哺乳动物细胞表达系统。

1. 大肠杆菌表达系统大肠杆菌表达系统是最常用的蛋白质表达系统之一。

其优点在于操作简便、蛋白质产量高、成本低等。

大肠杆菌表达系统可以利用原核细胞内丰富的蛋白质合成机器进行表达,常见的载体系统包括pET、pGEX等。

2. 昆虫细胞表达系统昆虫细胞表达系统利用昆虫细胞进行外源蛋白质的表达。

此系统适合表达复杂、大型蛋白质,且具有较高的蛋白质折叠和翻译后修饰能力。

常用的昆虫细胞包括sf9和S2等。

3. 哺乳动物细胞表达系统哺乳动物细胞表达系统是表达重组蛋白质的黄金标准。

相比于其他表达系统,哺乳动物细胞能够正确地翻译和修饰蛋白质。

常见的哺乳动物细胞包括CHO、HEK293等。

三、蛋白质表达的改进方法除了选择适当的表达系统外,还可以通过一些改进方法来提高蛋白质表达的效率和产量。

1. 信号肽优化信号肽是控制蛋白质合成和定位的重要序列。

通过对信号肽序列的优化,可以提高目标蛋白质的合成量和稳定性。

2. 确定适当的宿主菌株不同的大肠杆菌宿主菌株对蛋白质表达效果有差异。

在进行蛋白质表达之前,选择合适的宿主菌株能够提高表达效率。

3. 调节表达体系中其他环境因素除了上述方法外,还可以通过调节表达体系中其他环境因素,如温度、基因拷贝数、培养基组成等来提高蛋白质表达效率和产量。

哺乳动物细胞表达系统

哺乳动物细胞表达系统按照宿主细胞的类型,可将基因表达系统大致分为原核、酵母、植物、昆虫和哺乳动物细胞表达系统。

与其它系统相比,哺乳动物细胞表达系统的优势在于能够指导蛋白质的正确折叠,提供复杂的N型糖基化和准确的O型糖基化等多种翻译后加工功能,因而表达产物在分子结构、理化特性和生物学功能方面最接近于天然的高等生物蛋白质分子。

从最开始以裸露DNA直接转染哺乳动物细胞至今的30余年间,哺乳动物细胞表达系统不仅已成为多种基因工程药物的生产平台,在新基因的发现、蛋白质的结构和功能研究中亦起了极为重要的作用。

本文主要从表达系统及其两个组成部分——表达载体和宿主细胞等方面,简要介绍哺乳动物细胞表达系统和相关的研究进展。

研究现状①部分蛋白在哺乳动物细胞中的表达已从实验室研究迈向生产或中试生产阶段。

②已有许多重要的蛋白及糖蛋白利用哺乳动物细胞系统表达和大量制备、生产。

如人组织型血纤蛋白酶原激活因子、凝血因子Ⅷ、干扰素、乙肝表面抗原、红血球生成激素、人生长激素、人抗凝血素Ⅲ,集落刺激因子等。

有些产品已投入临床应用或试用。

③虽然经过多年努力,哺乳动物细胞表达系统的表达水平有大幅度增高,但从整个水平上看仍偏低,一般处在杂交瘤细胞单克隆抗体蛋白产率的下限,即1-30μg/l08细胞/24小时。

有人认为其限速步骤可嚣是在工程细胞中(对于重组蛋白来讲,常是异源的),重组蛋白的分泌效率较低。

1 表达载体1.1 表达栽体的类型哺乳动物细胞表达外源重组蛋白可利用质粒转染和病毒载体的感染。

利用质粒转染获得稳定的转染细胞需几周甚至几个月时间,而利用病毒表达系统则可快速感染细胞,在几天内使外源基因整合到病毒载体中,尤其适用于从大量表达产物中检测出目的蛋白。

根据进入宿主细胞的方式,可将表达载体分为病毒载体与质粒载体。

病毒载体是以病毒颗粒的方式,通过病毒包膜蛋白与宿主细胞膜的相互作用使外源基因进入到细胞内。

常用的病毒载体有腺病毒、腺相关病毒、逆转录病毒、semliki森林病毒(sFv)载体等。

重组蛋白质的表达与纯化技术

重组蛋白质的表达与纯化技术蛋白质是生命体活动的重要组成部分,对于生命体的生长、繁殖和免疫功能起着至关重要的作用。

而重组蛋白质则是利用基因工程技术,将人工合成的外源基因导入到特定的宿主细胞中,通过细胞表达和纯化技术得到的转录翻译产物。

这种技术不仅可以生产天然蛋白质,还可以生产人工合成的新型蛋白质,对于疾病的治疗和新药的研发有着重要的意义。

一、蛋白质表达技术蛋白质表达是获得大量重组蛋白质的重要方法。

选择适当的宿主细胞和表达载体是获得高水平表达的关键。

常用的宿主细胞包括大肠杆菌、酵母菌、昆虫细胞、哺乳动物细胞等。

1.大肠杆菌表达系统大肠杆菌表达系统具有生长快、表达量高等优点,广泛应用于重组蛋白质的表达和纯化。

其表达载体主要有pET和pBAD两种,pET系统一般用于产生可以形成包涵体的重组蛋白,pBAD系统用于在分泌表达中产生滞留蛋白。

2.昆虫细胞表达系统昆虫细胞表达系统包括SF9、Sf21、HighFive等细胞系,常用的表达载体为pIB/V5-His、pFastBac等。

昆虫细胞表达系统通常用于表达大分子蛋白质,如糖蛋白、膜蛋白等。

3.哺乳动物细胞表达系统哺乳动物细胞表达系统是目前表达规模最大、表达产物最接近人体蛋白质的一种表达系统。

其表达载体主要有pCDNA3.1、pCI 等,常用于表达与人体有关的蛋白质,如抗体、生长因子等。

二、蛋白质纯化技术蛋白纯化是重组蛋白质生产的重要环节,其目的是得到高质量的、纯度较高的蛋白质样品。

常见的纯化方法包括亲和层析法、离子交换层析法、凝胶过滤层析法、逆流式层析法等。

1.亲和层析法亲和层析法是指因与载体中固定的亲和剂相互结合而纯化目标蛋白质的一种方法。

亲和剂通常是与目标蛋白质有特异性结合作用的化合物,如亲和标签、酶底物、抗体等。

常见的亲和层析方法有亲和柱层析、亲和膜层析等。

2.离子交换层析法离子交换层析法是根据蛋白质带有正或负电荷的差异性进行分离的一种方法。

离子交换层析的柱填充物常为离子交换树脂,其一般分为阴离子交换树脂和阳离子交换树脂两种。

利用原核和真核系统在重组蛋白质表达中的比较

利用原核和真核系统在重组蛋白质表达中的比较当今生物科学领域中,蛋白质表达技术的发展一直备受关注。

利用原核和真核系统来重组蛋白质,是常见的两种方法。

这两种系统在蛋白质表达中有着各自的优势和适用范围。

一、原核系统的蛋白质表达原核系统主要指大肠杆菌(Escherichia coli,简称E.coli)等细菌,并且是最常用的蛋白质表达系统之一。

原核细胞具有复制速度快、易于培养、表达量高等特点,使其成为研究人员的首选。

在原核系统中,通常使用表达载体质粒将目标基因插入到细菌细胞中,并利用细菌自身的转录、翻译系统来实现蛋白质的合成。

在表达载体上,一般包含启动子、转录终止子、选择性标记等功能元件,以控制目标基因的表达和纯化。

原核系统的蛋白质表达具有高效、简便、经济等优势。

然而,由于原核细胞的风险素材含量高,存在内源性的蛋白质翻译后修饰机制有限等局限,某些复杂蛋白质的表达可能会受到限制。

二、真核系统的蛋白质表达真核系统主要指哺乳动物细胞(如CHO细胞)、昆虫细胞(如Sf9细胞)等,相对于原核系统,真核系统具有更接近生物体内蛋白质表达的环境,更能实现复杂蛋白质的表达。

在真核系统中,常用的蛋白质表达包括稳定转染和瞬时转染两种方式。

稳定转染是将目标基因整合到宿主细胞的基因组中,从而实现长期稳定的表达。

而瞬时转染则是将目标基因引入宿主细胞的质粒中,通过短时间高表达来获得大量蛋白质。

真核系统的蛋白质表达能够实现更多的翻译后修饰,如糖基化、磷酸化、乙酰化等。

这些修饰对于某些蛋白质功能的发挥至关重要。

此外,真核细胞中包含更多复杂的蛋白翻译机制和分子伴侣蛋白,有利于蛋白正确折叠和纯化。

然而,真核系统的蛋白质表达过程更为复杂,所需时间和成本也相对较高。

此外,真核细胞具有更严格的质控机制和蛋白降解系统,蛋白质的表达稳定性较差。

三、原核与真核系统的比较原核和真核系统的选择应根据具体的研究目的和需求。

如果目标是表达小分子量、水溶性和结构简单的蛋白质,原核系统是较好的选择。

哺乳动物细胞表达系统

dhfr还可作为共扩增基因使外源基因的表达产物增加。当 培养基中逐渐增加氨甲蝶呤(MTX)的浓度时,随着细胞对 MTX抗性的增加。dhfr基因与外源基因均明显扩增。
据文献报道,在不断提高的选择压力下,dhfr及侧翼序列 能扩增至上千个拷贝,大大增加目的基因的表达水平。
真核表达载体-启动子
外源基因在哺乳动物细胞中的表达与多种因素有关,主要 是启动子和增强子的强弱以及它们之间的搭配。
常用的高等哺乳动物受体细胞
迄今为止,用于医疗用品(药物、抗体、诊断试剂)大规 模生产的高等哺乳动物受体细胞主要还是中国仓鼠卵巢细 胞(CHO),其优势有如下几个方面: 遗传背景清楚,生理代谢稳定 与人的亲缘关系接近,外源蛋白修饰准确 基因转移和载体表达系统完善 耐受剪切力,便于大规模培养 被美国FDA确认为安全的基因工程受体细胞
Pei等用该细胞株表达分泌型的基质金属蛋白酶MMPI3,发现 高表达的阳性细胞克隆可占转染细胞的5%~l0%,其中一个 克隆的表达量可占细胞上清总蛋白的l5%~20%,在细胞单层 贴壁培养情况下表达量达10 mg/L。
对细胞株选择性地进行遗传改造
BHK/vl6细胞株是稳定表达单纯疱疹病毒(HSV)VP16蛋白 的BHK细胞,由于VP16的转录激活作用,载体中的HSV 早期启动子在该工程细胞中有很高的活性。
Clontech公司开发的Tet-off系统中的启动子则由CMV启动 子的核心序列和7个Tet阻遏蛋白结合位点组成。
这些启动子在诱导前后活性可相差4个数量级。
真核表达载体-启动子
在哺乳动物细胞中已发现存在大量在低氧环境中可诱导转录 的基因,如编码红细胞生成素(EPO)、转铁蛋白、血红素加 氧酶-1等的基因,它们都有一个共同的顺式作用元件 (CGTG ),有利于在5’或3’侧翼区的低氧诱导作用因子1(HIF-1)和低氧反应增强子(HRE)结合,激活靶基因的转录, 在低氧浓度下可使重组蛋白大量表达。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

蛋白质表达在动物细胞中的应用利用哺乳动物细胞表达重组蛋白质的优势蛋白质是生命机体中最重要的组成部分之一,在生物学、医学和工业领域都具有广泛的应用。

蛋白质表达则是将基因信息转化为蛋白质的过程,这一过程对于基础研究和工业化生产都具有重要作用。

在动物细胞中,蛋白质表达利用哺乳动物细胞表达重组蛋白质具有一系列优势。

一、哺乳动物细胞表达的优势
哺乳动物细胞是表达重组蛋白质的理想载体,其优势主要有以下几点:
1.真核生物中的哺乳动物细胞能够在所有重组蛋白质修饰过程中提供最高水平的质量。

由于哺乳动物细胞在体内合成蛋白质时,可以发生多种复杂的修饰过程,例如酰化、糖基化和磷酸化等。

这些修饰可以提高蛋白质的稳定性、可溶性和生物活性,使重组蛋白质更加适合用于医学和工业方面。

相比之下,原核生物(如大肠杆菌)表达的蛋白质缺乏这些修饰过程,因此其生物活性和稳定性较低。

此外,哺乳动物细胞中的重组蛋白质也很少产生抗原性,因此更适合用于医学应用。

2.哺乳动物细胞中的蛋白质折叠和修饰过程更加类似于人类和其他哺乳动物中蛋白质合成的过程。

由于哺乳动物细胞与人类和其他哺乳动物有很大相似性,因此表达
的重组蛋白质更符合人类进化历史和生物学功能。

这也意味着可以更
好地预测重组蛋白质在生理环境下的稳定性和效力,缩短临床试验的
时间和成本。

3.哺乳动物细胞表达的重组蛋白质能够以天然状态的形式分泌到培
养基中。

重组蛋白质如果能够以天然状态的形式分泌到培养基中,可以节省
纯化步骤和工艺流程,降低生产成本,提高重组蛋白质的产量和纯度。

而哺乳动物细胞中的重组蛋白质通常能够实现这一点。

此外,哺乳动
物细胞的培养和维护工艺已经比较成熟,使用更加方便。

二、哺乳动物细胞表达重组蛋白质的方法
哺乳动物细胞表达重组蛋白质的方法有多种,主要有以下几种:
1.哺乳动物细胞内表达
哺乳动物细胞内表达是将重组质粒导入哺乳动物细胞内部,利用细
胞自身的基因转录、转译和修饰等机制,表达出重组蛋白质。

这种方
法的优点是可以增加重组蛋白质的产量和纯度,缩短生产周期。

缺点
是需要找到合适的质粒载体和哺乳动物细胞,同时重组蛋白质的折叠、修饰等过程也可能影响其稳定性和生物活性。

2.哺乳动物细胞外表达
哺乳动物细胞外表达是将重组质粒导入哺乳动物细胞的胞外空间,
利用细胞自身的分泌机制将重组蛋白质分泌到培养基中。

这种方法的
优点是可以减少细胞内的代谢负荷,提高重组蛋白质的产量和纯度,
同时简化重组蛋白质的纯化过程。

缺点是重组蛋白质的纯度可能不如
内表达的方式高,同时表达过程中可能会出现蛋白质酶降解等问题。

3.转基因哺乳动物表达
转基因哺乳动物表达是将重组蛋白质的基因导入哺乳动物的基因组中,使得哺乳动物自身也能够表达重组蛋白质。

这种方法的优点是可
以避免由于质粒失去等原因导致的蛋白质表达变差的问题。

缺点是技
术复杂,涉及到基因修饰的伦理和法律等问题。

三、哺乳动物细胞表达重组蛋白质的应用
哺乳动物细胞表达重组蛋白质已经在医学、工业等众多领域得到应用,主要包括以下方面:
1.药物制造
哺乳动物细胞表达重组蛋白质已经广泛应用于制造生物制剂和基因
治疗药物。

例如人源性血红蛋白(rhHB)和人源性白蛋白(rHSA)是
哺乳动物细胞表达的常见目标蛋白,它们分别用于治疗贫血和脱水症。

2.重组疫苗
哺乳动物细胞表达重组蛋白质在制造新型疫苗中也有广泛应用。


如人乳头瘤病毒(HPV)疫苗和肝炎疫苗等都是采用哺乳动物细胞表
达技术来生产的。

3.生物制品生产
哺乳动物细胞表达重组蛋白质还用于生物制品产业的生产中。

例如利用哺乳动物细胞表达的重组胰岛素可以用于治疗糖尿病,利用哺乳动物细胞表达的重组凝血因子可以用于治疗血液疾病等。

总之,哺乳动物细胞表达重组蛋白质在医药和工业领域中具有广泛的应用前景。

未来随着生物技术的不断发展和优化,哺乳动物细胞表达重组蛋白质的生产效率和工艺流程将得到进一步提高,这将有助于该技术更加广泛地应用于生产和实验室研究中。

相关文档
最新文档