材料制备-溶胶凝胶法
溶胶——凝胶法制备

溶胶—凝胶法制备Y3Al5O12:Ce荧光粉一、实验目的1. 了解溶胶—凝胶法制备粉体的基本原理。
2. 掌握Y3Al5O12:Ce荧光粉等发光材料的合成方法。
3. 掌握材料的物相组成、显微结构、发光性能等表征技术。
二、实验原理自1994年日本科学家Shuji Nakamura在GaN基材料上研制出第一只蓝光LED以来, 半导体照明技术逐渐成为业界的研究热点。
因具有省电、体积小、发热量低、寿命长、响应快、抗震耐冲、可回收、无污染、可平面封装、易开发成轻薄短小产品等优点,使白光LED 正成为新一代照明光源的发展方向。
目前,白光LED工艺主要是采用蓝光LED芯片来激发黄色荧光粉YAG:Ce,其产品已获得工业化应用。
现行制备YAG:Ce的主要方法是固相烧结法,但其合成温度高、荧光粉形状不规则、粒径偏大、粉碎导致光损失,严重影响其使用性能。
溶胶—凝胶(Sol—gel)法就是将金属氧化物或氢氧化物的浓溶液变为凝胶,再将凝胶干燥后进行煅烧,然后制得氧化物超微细粉的方法。
这种方法适用于能形成溶胶且溶胶可以转化为凝胶的氧化物系。
溶胶—凝胶法作为当前制备各种功能材料和结构材料的重要方法,其反应物以分子(离子)形式相互溶合,可以直接进行分子量级的化学反应,从而大大降低了材料的合成温度,这就为较低温合成粉体材料提供了可行途径。
三、实验原料、仪器设备1. 实验原料:氧化钇,九水硝酸铝,六水硝酸铈,柠檬酸,硝酸,氨水,去离子水,无水乙醇2. 仪器设备:磁力搅拌器,烧杯,量筒,研钵,药勺,陶瓷坩埚,pH计,电子天平,胶头滴管,毛刷,水浴箱,离心机,真空干燥箱,马弗炉,X-射线衍射仪四、实验步骤1. 称取0.559g氧化钇粉体,倒入100mL烧杯中,再加入适量的硝酸,在磁力加热搅拌器上溶解氧化钇,控制处理温度为50℃,搅拌至获得无色透明的溶液。
2. 将步骤1得到的硝酸钇溶液加热至干燥状态,使多余的硝酸挥发掉。
3. 称量3.145g九水硝酸铝、0.0364g六水硝酸铈、2.819g柠檬酸,将这些试剂倒入步骤1的烧杯中。
材料合成与制备 第1章 溶胶-凝胶法

溶胶凝胶化目前主要分为脱水凝胶化和碱性凝胶化两类。
脱水凝胶化过程中(加入强亲水性物质,例已醇),胶粒脱水,扩 散层中电解质溶解质浓度增加,凝胶化能垒降低。
碱性凝胶化过程中, Mn+ 可通过O2-、OH- 或An-(酸根离子)与配 体 简桥言联之,。体影系响加因入素有OHp-H,值胶、粒温表度面、正A电n-荷的减性少质,、能M(垒H2高O度)n+降的低浓。度等。
(3)溶剂化作用也能稳定溶胶。破坏胶粒之间的有序溶剂层, 使胶粒表层脱除溶剂并相互接触需要一定的溶剂化能量。这种 效应对于亲液溶胶更加明显。
反之,由溶胶制备凝胶的具体方法有以下几种: (1)使水、醇等分散介质挥发或冷却溶胶,使其成为过饱和 液,而形成冻胶。 (2)加入非溶剂,如在果胶水溶液中加入适量酒精后,即形 成凝胶。 (3)将适量的电解质加入胶粒亲水性较强的憎液型溶胶,即 可形成凝胶。 (4)利用化学反应产生不溶物,并控制反应条件可得凝胶。
前驱物溶液(溶 胶)由金属无机 化合物与添加剂 之间的反应形成
密集的粒子
粉末、薄 膜
有机聚合物 型Sol-Gel
过程
前驱物的控制 水解和缩聚
1.由前驱物得到的无机聚合物构 成凝胶网络 2.刚形成的凝胶体 积与前驱物溶液体积完全一样 3. 凝胶形成的参数--胶凝时间随着 过程中其它参数的变化 而变化 4.凝胶透明
3、 20纪80年代以后,广泛应用于功能材料、特种陶瓷材料、晶 体、薄膜材料 、超微粉体、有机-无机杂化材料的制备和应用。从 1981年开始,每二年举办一次溶胶-凝胶科学技术国际会议。溶胶-凝 胶科学已经成为材料科学与工程研究领域的一个重要分支。
三、溶胶-凝胶合成方法的原理
现代溶胶-凝胶技术一般是以金属有机醇盐或无机盐为原料, 溶解于一定的溶剂中形成金属化合物的溶液,然后进行水解、聚合 形成溶胶、凝胶。
溶胶凝胶法的基本原理、发展及应用现状

溶胶凝胶法的基本原理、发展及应用现状一、本文概述溶胶凝胶法(Sol-Gel Method)是一种重要的材料制备技术,广泛应用于陶瓷、玻璃、金属氧化物、复合材料等多个领域。
本文旨在全面阐述溶胶凝胶法的基本原理、发展历程以及应用现状。
我们将深入探讨溶胶凝胶法的基本原理,包括溶胶的形成、凝胶化过程以及材料的微观结构和性能调控。
我们将回顾溶胶凝胶法的发展历程,从早期的探索阶段到如今的成熟应用,分析其技术进步和主要成就。
我们将重点关注溶胶凝胶法的应用现状,涉及领域广泛,如能源、环境、生物医学等,展望其未来的发展趋势和潜在应用。
通过本文的阐述,我们期望为读者提供一个全面、深入的溶胶凝胶法知识体系,为相关领域的研究和应用提供有益的参考。
二、溶胶凝胶法的基本原理溶胶凝胶法(Sol-Gel Method)是一种在湿化学领域广泛应用的材料制备技术,其基本原理涉及胶体化学和物理化学的基本原理。
该方法通过控制溶液中的化学反应,使溶液中的溶质原子或离子在液相中形成稳定的溶胶体系,随后经过凝胶化过程转化为固态凝胶,最后经过热处理等步骤得到所需材料。
在溶胶凝胶法的过程中,溶胶的形成是关键。
溶胶是由固体颗粒(通常为纳米尺度)分散在液体介质中形成的胶体分散体系。
这些固体颗粒可以通过水解和缩聚等化学反应从溶液中的前驱体(如金属盐或金属醇盐)中生成。
水解反应是指前驱体与水反应,生成相应的氢氧化物或氧化物,同时释放出水分子。
缩聚反应则是指这些氢氧化物或氧化物之间进一步发生化学反应,形成网络状的结构,从而使溶液转化为溶胶。
凝胶化过程是溶胶凝胶法的另一个重要阶段。
随着溶胶中固体颗粒的不断生成和长大,颗粒之间的相互作用逐渐增强,形成三维网络结构,使溶胶失去流动性,转变为固态的凝胶。
这一过程中,颗粒之间的相互作用力(如范德华力、氢键等)以及颗粒表面的电荷状态等因素起着重要作用。
通过热处理等步骤,可以去除凝胶中的残余水分和有机溶剂,同时使凝胶中的无机物发生结晶或相变,从而得到所需的材料。
溶胶凝胶法制备drx材料

溶胶凝胶法制备drx材料
溶胶凝胶法是一种常用的材料制备方法,可以用于制备DRX材料。
具体步骤如下:
1. 准备溶胶:将所需的金属离子溶解在适当的溶剂中,形成溶胶。
可以选择不同的溶剂和金属离子组合,以得到所需的DRX材料。
2. 混合凝胶:将溶胶慢慢滴入适当的凝胶剂中,搅拌均匀。
凝胶剂的选择要根据所需的DRX材料来确定,以使得溶胶中的金属离子能够逐渐聚集形成凝胶。
3. 凝胶成型:将混合凝胶倒入模具中,通过调整溶胶和凝胶剂的比例和浓度,可以控制凝胶的形状和大小。
4. 凝胶成熟:将模具中的凝胶置于适当的条件下,例如室温或加热等,让凝胶逐渐成熟。
成熟的凝胶会形成均匀的结构,并且具有所需的DRX材料的化学组成。
5. 凝胶烧结:将成熟的凝胶进行烧结处理,以去除溶剂和凝胶剂,并形成DRX材料的致密结构。
烧结温度和时间要根据所需的DRX 材料来确定。
6. DRX材料制备完成:经过烧结处理后,溶胶凝胶法制备的DRX材料即可得到。
可以通过各种表征方法来验证其化学组成、结构和性能。
需要注意的是,溶胶凝胶法制备DRX材料的具体步骤和参数会根据所选的金属离子和溶剂、凝胶剂的不同而有所差异,需要根据具体情况进行调整和优化。
第二章溶胶凝胶法ppt课件(2024版)

醇-金属醇盐体系的缩聚反应
M(OR)n+xH2OM(OH)x(OR)n-x+xROH -M-OH + HO-M- -M-O-M- + H2O -M-OH + RO-M- -M-O-M- +ROH
S ( O i ) 4 S H ( O i ) 4 H ( O ) 3 S H O iS ( O i ) 3 H
光源
凸透镜
Fe(OH)3胶体
光锥
丁达尔效应示意图
2
2. 溶胶(sol) 具有液体特征的胶体体系,在液体介质中分散了 1~100nm粒子(基本单元)。
溶胶的特点: (1)溶胶不是物质而是一种“状态”
3
(2)溶胶与溶液的相似之处 溶质+溶剂→溶液 分散相+分散介质→溶胶(分散系)
分散相
液体 固体 气体 液体 固体 液体 气体
Si(OCH3)4(液体) > Si(OC2H5)4(液体) > Si(OC3H7)4(液体) > Si(OC4H9)4
② 在制备多组分氧化物溶胶时,不同元素醇盐的 水解活性不同
选择合适的醇盐品种,可使它们的水解速率达到较好 的匹配,从而保证溶胶的均匀性。
39
③ 起始溶液中的醇盐浓度必须保持适当 作为溶剂的醇加入量过多时,将导致醇盐浓度
1 预热到30C 控制在35C-
3 60C之间
B: 6 ml无水乙醇 2 ml乙酸 1.5ml浓盐酸 3 ml蒸馏水
A:23ml无水乙醇 20ml钛酸丁脂
28
淡黄色透 静置5—10min 明冻状溶 红外灯照射1—2h
胶
黄色干凝胶
80C恒温5h 干凝胶粉末
不同温 度焙烧
溶胶凝胶法的原理及基本步骤-解释说明

溶胶凝胶法的原理及基本步骤-概述说明以及解释1.引言1.1 概述概述:溶胶凝胶法是一种常见的材料制备方法,其原理是利用溶胶(一种液体中的悬浮颗粒)和凝胶(一种具有网状结构的固体)相互作用,在适当的条件下形成一种新的物质结构。
这种方法被广泛应用于制备陶瓷材料、纳米材料、薄膜材料等领域。
本篇文章将系统介绍溶胶凝胶法的原理及基本步骤,以及在材料制备中的应用,旨在帮助读者全面了解这一制备方法,并且对未来的研究和应用提供一定的参考。
文章结构部分内容:1.2 文章结构本文主要分为引言、正文和结论三部分。
在引言部分,将对溶胶凝胶法进行概述,并介绍文章的结构和目的。
在正文部分,将详细介绍溶胶凝胶法的原理和基本步骤,以及在材料制备中的应用。
在结论部分,将对文章进行总结,并展望溶胶凝胶法在未来的应用前景,最后进行结束语。
整个文章将全面而系统地介绍溶胶凝胶法的原理及基本步骤,并探讨其在材料领域的应用及未来发展方向。
1.3 目的本文旨在深入探讨溶胶凝胶法在材料制备中的原理及基本步骤,通过对溶胶凝胶法的相关知识进行系统梳理和总结,使读者能够全面了解这一制备方法的工作原理、操作步骤以及在材料制备中的应用。
同时,希望通过本文的介绍,能够为科研工作者和学习者提供一份详尽的参考,促进溶胶凝胶法在材料科学和工程领域的进一步应用和发展。
2.正文2.1 溶胶凝胶法原理溶胶凝胶法是一种常用的化学制备方法,其原理基于溶液中溶质形成溶胶,通过控制条件使其逐渐形成凝胶。
在这一过程中,溶胶的成核和生长是关键步骤。
溶胶的成核是指溶质在溶剂中形成原子团团核,并随后生长成为凝胶。
溶胶凝胶法的原理可以通过几种途径来解释,包括凝胶化理论、溶胶分散理论和溶胶-凝胶相变动力学理论。
首先,根据凝胶化理论,溶胶凝胶法是通过使溶质构成三维网状结构来形成凝胶。
在溶胶形成初期,溶质在溶剂中分散,然后逐渐形成原子团团核。
这些团核互相连接形成网状结构,最终形成凝胶。
根据溶胶分散理论,溶胶凝胶法原理是利用溶剂对溶质的分散作用。
溶胶凝胶法

溶胶-凝胶法溶胶-凝胶法(Sol-Gel法,简称S-G法)就是以无机物或金属醇盐作前驱体,在液相将这些原料均匀混合,并进行水解、缩合化学反应,在溶液中形成稳定的透明溶胶体系,溶胶经陈化,胶粒间缓慢聚合,形成三维空间网络结构的凝胶,凝胶网络间充满了失去流动性的溶剂,形成凝胶。
凝胶经过干燥、烧结固化制备出分子乃至纳米亚结构的材料。
溶胶-凝胶法由于其前驱物及其反映条件的不同可以分为以下几种制备方法。
l、金属醇盐水解法该方法的基本过程是将醇盐溶于有机溶剂,然后在搅拌的同时缓慢加入蒸馏水的醇溶液,控制一定的pH值,经反应一定时间即可得到溶胶。
溶胶的化学均匀程度一方面受到前驱液中各醇盐混合水平的影响,这与醇盐之间的化学反应情况密切相关;另一方面,每种醇盐对水的活性也有很大的差异。
当金属醇盐之间不发生反应时,各种金属醇盐对水的活性起决定作用,反应活性的不同导致溶胶不均匀。
添加有机络合剂是克服这些问题切实可行的办法,常用的络合剂有羧酸或β-二酮等添加剂。
2、强制水解法该方法的基本过程是将将所要制备的金属氯化物加到氯化氢的水溶液中,将其加热到沸腾反应一段时间即得到对应的溶胶。
这种方法在制备氧化物在氧化物阳极材料的制备中也得到了较为广泛的应用。
3.金属醇盐氨解法4、原位聚合法及聚合螫合法这种方法的作用机理是有机单体聚合形成不断生长的刚性有机聚合网络,包围稳定的金属螫合物,从而减弱各种不同离子的差异性,减少各金属在高温分解中的偏析溶胶-凝胶法就是将含高化学活性组分的化合物经过溶液、溶胶、凝胶而固化,再经热处理而成的氧化物或其它化合物固体的方法。
⑴Sol-Gel法的基本原理及特点S01-Gel法的基本反应步骤如下:1)溶剂化:金属阳离子M z+吸引水分子形成溶剂单元M(H2O)nx+,为保持其配位数,具有强烈释放H+的趋势。
M(H2O)nx+→M(H2O)n-1(OH)(x-1)+H+2)水解反应:非电离式分子前驱物,如金属醇盐M(OR)n与水反应。
溶胶-凝胶法制备复合氧化物正极材料及其性能分析

溶胶-凝胶法制备复合氧化物正极材料及其性能分析溶胶-凝胶法(Sol-Gel method)是一种常用于制备薄膜、粉体以及复杂结构材料的化学合成方法。
它的优点在于可以制备出高纯度的材料,并且制备过程简单、操作灵活。
在正极材料的制备中,溶胶-凝胶法也被广泛应用。
本文将介绍溶胶-凝胶法制备复合氧化物正极材料的过程,并对其性能进行分析。
一、溶胶-凝胶法制备复合氧化物正极材料的过程溶胶-凝胶法制备复合氧化物正极材料包括溶胶制备、凝胶形成和煅烧三个主要步骤。
1. 溶胶制备溶胶是由溶剂中分散的纳米颗粒或单分散分子组成的胶体,制备溶胶的关键是选择适当的溶剂和溶质。
通常,选择金属盐溶液作为溶质,通过加入络合剂、酸碱调节剂或表面活性剂等来稳定溶胶。
2. 凝胶形成凝胶是指溶胶中分散物质逐渐聚集、连续相互作用而形成的一种凝固状态。
凝胶形成的过程包括双水解反应、凝胶交联和凝胶成核等。
双水解反应是指溶胶溶液中的金属盐与水发生反应生成金属氢氧化物凝胶的过程。
这个过程是一个自发的、放热的反应,可以通过控制反应时间和温度来调节凝胶体系的物理化学性质。
凝胶交联是指凝胶形成后,通过加入交联剂或通过调节温度、pH值等条件来使凝胶体系更加稳定。
交联剂可以使凝胶体系具有较高的稳定性和强度,从而提高材料的性能。
凝胶成核是凝胶形成过程中的关键步骤,它决定了凝胶体系中的孔隙结构和分散相的形态。
成核的方式主要有两种:均匀成核和不均匀成核。
均匀成核是指凝胶体系中的成核物质分布均匀,可以形成均匀分散的纳米颗粒。
不均匀成核则是指凝胶体系中的成核物质不均匀存在,形成不均一的凝胶体系。
3. 煅烧煅烧是将凝胶体系转化为氧化物材料的过程。
在煅烧过程中,凝胶体系会发生结构重排和结晶等变化,形成稳定的氧化物相。
煅烧过程的条件(温度、时间等)会对材料的物理化学性质产生重要影响。
二、复合氧化物正极材料的性能分析溶胶-凝胶法制备的复合氧化物正极材料具有以下性能特点:1. 分散性好溶胶-凝胶法制备的复合氧化物正极材料具有良好的分散性,可以制备出均匀分散的纳米颗粒。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
粉末的TEM图 (a) 研细前的SGS 粉 (b) 研细后的SGS 粉 (c)研细后的SG粉
材料合成与 制备
低温固相合成
Contents
6.1
6.2
低温固相合成发展 低温固相合成反应原理 低温固相化学合成反应工艺 低温固相合成应用实例
6.3
6.4
目前,环境污染、能源过度消耗队地球及人类带来的 危害已经越来越大。人们在发展经济的同时也在积极面对 怎样克服对环境的污染,保护我们的生态平衡。近十几年 来,由于传统的化学反应里在溶液或气相中进行,其反应 需要能耗高,时间长,污染环境严重以及工艺复杂,因此 越来越多的人将目光投向曾经被人类很早就利用过的固相
优点:膜层与基体的适当结合可获得基体材料原来没有的电学、光学、
化学和力学等方面的特殊性能
涂 层 的
溶 胶 薄凝 膜胶 的法 微上 观 照 片
PZT
比较项
物质源
激活方式 制备温度
PVD
生成膜物质的蒸汽
消耗蒸发热、电离等 250~2000℃(蒸发源) 25~适合温度(基片)
CVD
含有膜元素的化合物蒸汽、 反应气体 提供激活能、高温、化学 自由能 150~2000℃(基片)
研究表明 TEOS
水解度 R≤2 ,水解反应则产生了部 分水解的带有 -OH 的硅烷,从而消 耗掉大部分水,缩聚反应较早发生, 形成 TEOS 的二聚体,硅酸浓度减 少,凝胶时间延长
4. 溶胶-凝胶工艺参数
催化剂的影响
反应速率
pH值对TEOS水解、缩聚反应速率的影响
4. 溶胶-凝胶工艺参数
反应el)
不同溶胶-凝胶过程中凝胶的形成
2.溶胶-凝胶合成生产设备
2 2 1 3 4 5 1 3 4
5
6
7
电力搅拌溶胶-凝胶合成反应示意图 1.回流装置 2. 电力式脉动器 3.温度计 4.容器 5. 水热装置
磁力搅拌溶胶-凝胶合成反应示意图 1.容器 2. 密封盖板 3.反应溶液 4.转动磁子 5. 磁力搅拌器加热板 6. 温度调节器 7. 转速调节器
溶胶 凝胶 无固定形状 固定形状 固相粒子自由运动 固相粒子按一定网架结构固定不能自由移动
* 特殊的网架结构赋予凝胶很高的比表面积 *
溶胶-凝胶法的基本概念
溶胶-凝胶法:就是用含高化学活性组分的化合物作前驱 体,在液相下将这些原料均匀混合,并进行水解、缩合化 学反应,在溶液中形成稳定的透明溶胶体系,溶胶经陈化 胶粒间缓慢聚合,形成三维空间网络结构的凝胶,凝胶网 络间充满了失去流动性的溶剂,形成凝胶。凝胶经过干燥、 烧结固化制备出分子乃至纳米亚结构的材料。
前驱体选择
易水解、技术成熟、可通过调节pH值控制反应进程
金属醇盐
价格昂贵、金属原子半径大的醇盐反应活性极大、 在空气中易水解、不易大规模生产、 受OR烷基的体积和配位影响
价格低廉、易产业化
金属无机盐
受金属离子大小、电位性及配位数等多种因素影响
4. 溶胶-凝胶工艺参数
水解度的影响
物质量比
水解度 R≥2 , TEOS 水解反应 使大部分的-OR基团脱离,产 生-OH基团,形成了部分水解 的带有-OH的硅烷,在这些部 分水解的硅烷之间容易反应 形成二聚体,这些二聚体不 再进行水解,而是发生交联 反应形成三维网络结构,从 而缩短了凝胶化时间.
初始原料 混合 搅拌 前驱体溶胶
浓缩
粘性溶胶 纺丝
陶瓷纤维
热处理
干燥
凝胶纤维
溶胶-凝胶制备的Al2O3-YAG纤维
4.复合材料
复合材料
不 复同 合组 材分 料之 间 的
组 纳成 米和 复结 合构 材不 料同 的
组 的 纳 成 米组和 复分结 合所构 材制均 料备不 的 同
组凝 成胶 的与 复其 合中 材沉 料积 相
1975年Yoldas 和 Yamane得到整块陶瓷 和透明氧化铝膜
块体材料
薄膜及 涂层材料 溶胶凝胶
多孔材料
粉体材料
纤维材料
复合材料
1.块体材料
溶胶-凝胶合成法制备的块体材料是指具有三维结构,且每一维尺度 均大于1mm的各种形状且无裂纹的产物。
根据所需获得材料的性能需求,将前驱体进行水解、溶胶、凝胶、老
同时此法易在制备过程中控制粉末颗粒度。
溶 胶 凝 胶 制 备 陶 瓷 粉 体
具有制备工艺简单、无需昂贵的设备 大大增加多元组分体系化学均匀性 反应过程易控制,可以调控凝胶的微观结构 材料可掺杂范围宽,化学计量准,易于改性 产物纯度高等
钛酸四丁脂体系纳米TiO2粉末
6.薄膜及涂层材料
工艺流程:将溶液或溶胶通过浸渍法或旋转涂膜法在基板上形成液膜,
溶胶-凝胶合成法
Sol-gel method
目
录
基本概念 溶胶-凝胶法发展历程 溶胶-凝胶合成方法的适用范围 溶胶-凝胶工艺过程 溶胶-凝胶合成方法应用举例
溶胶-凝胶法的基本概念
溶胶(Sol)是具有液体特征的胶体体系,分散的粒子是 固体或者大分子,分散的粒子大小在1~100nm之间。 凝胶(Gel)是具有固体特征的胶体体系,被分散的物质 形成连续的网状骨架,骨架空隙中充有液体或气体,凝 胶中分散相的含量很低,一般在1%~3%之间。
溶胶凝胶法制备的氧化锆涂层
溶胶-凝胶法应用(2)—Al2O3耐热涂层
氧化锆涂层和基体的微观照片(a)镁合金基板;(b)氢氟酸处理的基板; (c)涂有氧化锆的涂层 (低倍数);(d) 氧化锆的涂层(高倍数)
应用实例(3):溶胶凝胶-自蔓延制备生物玻璃粉体
溶胶 -凝胶自蔓延合成技术兼具溶胶 -凝胶技术和自蔓延高温合成技术的优点,它是指 有机盐凝胶或有机盐 (燃料 )与金属硝酸盐在加热过程中发生氧化还原反应,燃烧产生 大量的气体,可自我维持并合成所需燃烧物的材料的合成工艺。 本实例是采用溶胶-凝胶自蔓延方法制备一种生物玻璃超细陶瓷粉体。通常用于制备生 物玻璃陶瓷材料粉末的方法是高温熔化 (HTM) 法。这种方法制备周期短,过程简单, 是一种传统的玻璃制备方法。
水 聚合
前驱体
溶胶
凝胶
气凝胶
气凝胶形成示意图
溶胶-凝胶法应用(1)—气凝胶
水解
H5C2O OC2H5 Si OC2H5 + 4H2O HO OH Si OH OH + 4C2H5OH
OC2H5
缩聚
OH HO Si OH OH + HO OH Si OH OH HO OH Si OH O OH Si OH OH + H2O
经凝胶化后通过热处理可转变成无定形态(或多晶态)膜或涂层
成膜机理:采用适当方法使经过处理的陶瓷基底和溶胶相接触,在基底
毛细孔产生的附加压力下,溶胶倾向于进入基底孔隙,当其中介质水 被吸入孔道内同时胶体粒子的流动受阻在表面截留,增浓,缩合,聚 结而成为一层凝胶膜。对浸渍法来说,凝胶膜的厚度与浸渍时间的平 方根成正比,膜的沉积速度随溶胶浓度增加而增加,随基底孔径增加 而减小
溶胶-凝胶
+
模板工艺
多孔材料
胶质晶态模板
结构性多孔复制品
3.纤维材料
前驱体经反应形成类线性无机聚合物或络合物,当粘度达 10~100Pa· s时,
通过挑丝或漏丝法可制成凝胶纤维,热处理后可转变成相应玻璃或陶瓷纤维 克服了传统直接熔融纺丝法因特种陶瓷难熔融而无法制成纤的困难,工艺 可以在低温下进行,纤维陶瓷均匀性好、纯度高
化和干燥,最终通过热处理工艺获得材料 。 该方法制备块体材料具有纯度高、材料成分易控制、成分多元化、均
匀性好、材料形状多样化、且可在较低的温度下进性合成并致密化等优点 。
可以用于制备各种光学透镜、功能陶瓷块、梯度折射率玻璃等 。
成本较高,生产周期长,故不适宜材料大规模的生产 。
2.多孔材料
多孔材料是由形成材料本身基本构架的连续固相和形成孔隙的流体所组成。 将金属醇盐溶解于低级醇中,水解得到 相应金属氧化物溶胶;调节 pH 值,纳米 尺度的金属氧化物微粒发生聚集,形成 无定形网络结构的凝胶。将凝胶老化、 干燥并作热处理,有机物分解后,得到 多孔金属氧化物材料(一般为陶瓷)
气凝胶块体
气凝胶隔热
凝胶
前驱体
前驱体溶胶是由 金属无机化合物 与添加剂之间的 反应形成的密集 粒子
应用
胶体型
1.密集的粒子形成凝胶网络 •凝胶中固相含量较高 •凝胶透明,强度较弱
粉末 薄膜
无机 聚合物型
前驱体水解和聚合
1.由前驱体得到的无机聚合物构 成的凝胶网络 •刚形成的凝胶体积与前驱体溶液 体积完全一样 •证明凝胶形成的参数-凝胶时间 随着过程中的其它参数变化而变 化 1.凝胶透明 1.由氢键连接的络合物构成凝胶 网络 •凝胶在湿气中可能会溶解 •凝胶透明
溶胶-凝胶法应用(1)—气凝胶
气凝胶是由胶体粒子或高聚物分子相互聚结构成的纳米多孔网络固态非晶材料, 其多孔率可达到80~99.8%,比表面积可高达到800~1000m2/g以上。气凝胶具有 很低的密度,美国Larry Hrubesh领导的研究者曾经制备了密度仅为 0.003g/cm3 的气凝胶,其密度仅为空气的三倍,被称为 “固体烟”。
之干 间凝 的胶 复与 合金 材属 料相
有 复机 合- 材无 料机 杂 化
解决了材料的制备时在退火处理过 程中,有机材料易分解的问题
5.粉体材料
采用溶胶-凝胶合成法,将所需成分的前驱物配制成混合溶液,经凝胶化、 热处理后,一般都能获得性能指标较好的粉末。
凝胶中含有大量液相或气孔,在热处理过程中不易使粉末颗粒产生严重团聚
脱水
HO
OH Si OH OH HO
OH Si O + H2O SiO2 + 2H2O
工艺流程
溶胶-凝胶法应用(1)—气凝胶