第4章管式反应器分析

合集下载

化学制药工艺与反应器第4章 化学制药反应器51P

化学制药工艺与反应器第4章 化学制药反应器51P
第四章 化学制药反应器
反应过程及反应器在生产中重要性
制药工业的生产过程由一系列化学反应与物理处理过程有 机地组合而成的。 以氯霉素工艺为例 化学反应过程是生产过程的中心,反应器是关键设备。
第一节 反应器基础
一、化学反应器的分类 1.按物料的聚集状态分
均相: 气相、液相 非均相:g-l相、 g-s相、l-l相、l-s相、 g-l-s相
(3)连续式操作 连续加入反应物料和取出产物的生产过程。属定态
过程,反应器内参数不随时间而改变,适于大规模生 产。
二、反应器计算的内容和基本方程式 (一)反应器计算的基本内容 1.选择合适的反应器型式 2.确定最佳操作条件 3.计算完成生产任务所需的反应器体积
(二)反应器计算的基本方程
反应器计算可以采用经验法和数学模型法。
釜式反应器的结构, 主要由壳体、搅拌 装置、轴封和换热 装置四大筒体、底、盖(或称封头)、 手孔或人孔、视镜及各种工艺接管口等。
2.搅拌器
作用:使物料混和均匀,强化传热和传质。
种类:桨式、推进式、涡轮式、框式、锚式、 螺带式等
选择依据:主要根据物料性质、搅拌目的及 各种搅拌器的性能特征来进行。
CA CA,O
time
CA, out
0
tout/2
tout
t
➢ 优点: 操作灵活,适用于小批量、多品种、反应 时间较长的产品生产
➢ 缺点:
➢装料、卸料等辅助操作时间长, 定
产品质量不稳
➢ 应用:用于液—液相、气—液相等系统,如染料、 医药、农药等小批量多品种的行业。
一、已知条件
1.每天处理物料总体积VD(或反应物料每小时体积流 量V0)
➢ 一般情况下,反应器计算可以不考虑此 项。

化工原理第四章传热过程超详细讲解

化工原理第四章传热过程超详细讲解

例4-12 在其他条件(K,Cp,M1,M2)不变时, 并→逆,求T2, t1。 解:利用并流求得有关常数: Φ=KAΔtm=-M1Cp1ΔT’=M2Cp2Δt’
设热阻集中在保温层:则
则一米管年损失的热量:
W=J/s
年损失的价值:
一米管道耗保温材料体积:V= ∴年折旧费用:
总费用: 求导,求极值:
28.356
复杂系数一元三次方程,用试差法求解:
设D=0.4 时,左=62.8≈右=63 ∴δ=D-0.1/2=(0.4-0.1)/2=0.15 m
作业:P142 (4、5)
∴ A (t1 t 2) At
R=δ/λ—热阻
2 多层平面壁,如耐火砖——绝热砖——建筑砖组成三层复合 壁,对各层分别应用单层导热公式有:
一层:
(1)
二层:
(2)
三层:
(3)
∵平面壁:A1=A2=A3=A ∵稳定传热Φ1=Φ2=Φ3=Φ则有:
t1-t4=Δt=
…(4)
…(5)
讨论:(1) ①+②得:
(4)潜热 Q潜 mH m nH n
(J/mol*K)
式中:ΔHm和ΔHn分别为质量和摩尔相变潜热 (单位分别为: J/kg;J/mol)
§2 传导传热(热传导,导热) 一、定义:传导传热——发生在固体、静止或滞流流体中,因分
子的振动或自由电子的运动而传递热量的方式。
二、导热方程—付立叶定律:
故将对流传热扩展为:对流给热——流体与壁面 之间的传热。由于壁面附近的流体为滞流,因此:对 流给热包括湍流主体的对流传热和壁附近滞流层的热 传导,为描述此复杂的给热过程的速率,特提出对流 给热机理(模型),其要点为:
a.湍流主体以对流方式传热,温度一致, 即忽略湍流主体的热阻。

化学反应工程1_7章部分答案

化学反应工程1_7章部分答案

第一章绪论习题1.1 解题思路:(1)可直接由式(1.7)求得其反应的选择性(2)设进入反应器的原料量为100 ,并利用进入原料气比例,求出反应器的进料组成(甲醇、空气、水),如下表:组分摩尔分率摩尔数根据式(1.3)和式(1.5)可得反应器出口甲醇、甲醛和二氧化碳的摩尔数、和。

并根据反应的化学计量式求出水、氧及氮的摩尔数,即可计算出反应器出口气体的组成。

习题答案:(1) 反应选择性(2) 反应器出口气体组成:第二章反应动力学基础习题2.1 解题思路:利用反应时间与组分的浓度变化数据,先作出的关系曲线,用镜面法求得反应时间下的切线,即为水解速率,切线的斜率α。

再由求得水解速率。

习题答案:水解速率习题2.3 解题思路利用式(2.10)及式(2.27)可求得问题的解。

注意题中所给比表面的单位应换算成。

利用下列各式即可求得反应速率常数值。

习题答案:(1)反应体积为基准(2)反应相界面积为基准(3)分压表示物系组成(4)摩尔浓度表示物系组成习题2.9 解题思路:是个平行反应,反应物A的消耗速率为两反应速率之和,即利用式(2.6)积分就可求出反应时间。

习题答案:反应时间习题2.11 解题思路:(1)恒容过程,将反应式简化为:用下式描述其反应速率方程:设为理想气体,首先求出反应物A的初始浓度,然后再计算反应物A的消耗速率亚硝酸乙酯的分解速率即是反应物A的消耗速率,利用化学计量式即可求得乙醇的生成速率。

(2)恒压过程,由于反应前后摩尔数有变化,是个变容过程,由式(2.49)可求得总摩尔数的变化。

这里反应物是纯A,故有:由式(2.52)可求得反应物A的瞬时浓度,进一步可求得反应物的消耗速率由化学计量关系求出乙醇的生成速率。

习题答案:(1)亚硝酸乙酯的分解速率乙醇的生成速率(2)乙醇的生成速率第三章釜式反应器习题3.1 解题思路:(1)首先要确定1级反应的速率方程式,然后利用式(3.8)即可求得反应时间。

(2)理解间歇反应器的反应时间取决于反应状态,即反应物初始浓度、反应温度和转化率,与反应器的体积大小无关习题答案:(1)反应时间t=169.6min.(2)因间歇反应器的反应时间与反应器的体积无关,故反应时间仍为169.6min.习题3.5 解题思路:(1)因为B过量,与速率常数k 合并成,故速率式变为对于恒容过程,反应物A和产物C的速率式可用式(2.6)的形式表示。

第四章题解

第四章题解

4-1 在定态操作反应器的进口物料中脉冲注入示踪物料。

出口处示踪物浓度随时间变化的情况如下。

假设在该过程中物料的密度不发生变化,试求物料的平均停留时间与])(2)(4[3109753864210c c c c c c c c c c tdt c i +++++++++∆=⎰∞]0)5.20.1025.1(2)0.10.55.125.6(40[32++++++++==100min)/1(100)()(0tii c dtc t c t E ==⎰∞})(])()()()([2])()()()([4)({31010997755338866442211_t E t t E t t E t t E t t E t t E t t E t t E t t E t t E t tt +++++++++∆=]0)03.08.05.0(2)14.05.075.013.0(40[32+++++++++=min 187.6=⎰∞=-=-=02222971.8187.625.47)(t dt t E t tσmin 24-2 无量纲方差表达式的推导 (1)推导无量纲方差222/ttσσθ=;(2)推导CSTR 的22tt=σ。

1. τθt=2. ττtet E -=1)(证明:222)(i i i ittt t E t -∆=∑∞σ⎰∞--=221tdt e t t ττ22)()()()(ττθθττθ--=⎰∞-d t E()]1)1([022--=⎰∞θθθτd E22θστ= 222/τσσθt=∴ 220222)(1)(--∞-=-=⎰⎰t dt e tt dt t E t ttττσ222ττ-=2τ=22τσ=t4-3 设()θF 及()θE 分别为闭式流动反应器的停留时间分布函数及停留时间分布密度函数,θ为对此停留时间。

(1)若该反应器为平推流反应器,试求①F(1); ②E(1);③F(0.8);④E(0.8);⑤F(1.2) (2)若该反应器为全混流反应器,试求①F(1); ②E(1);③F(0.8);④E(0.8);⑤F(1.2) (3)若该反应器为非理想流动反应器,试求 ①F(∞); ②F(0);③E(∞);④E(0);⑤⎰∞0)(θθd E ;⑥⎰∞)(θθθd E解1平推流模型0)(=θF )(t t 〈 0)(=θE )(t t ≠1)(=θF )(t t≥ ∞=)(θE )(t t =)()(τθtF F =⎪⎩⎪⎨⎧===2.1,18.0,01,1θθθ⎩⎨⎧=====8.0,01,1)()(θθτθt E E2 全混流θθ-=e E )( , θθ--=e F 1)(==)()(τθt f F ⎪⎭⎪⎬⎫=-=-=----699.01551.01632.012.18.01e e e ⎪⎩⎪⎨⎧===2.18.01θθθ ==)()(τθtE E ⎪⎭⎪⎬⎫==--449.0368.08.01e e ⎩⎨⎧==8.01θθ3非理想流动模型a 多釜串联θθθN N N e N N E ---=1)!1()(, 0)(C C F N =θ()()1]!11)(!21)(!111[1)(12=-++++-=∞--N N N N N N e F θθθθ()()0]!11)(!21)(!111[1)0(12=-++++-=--N N N N N N eF θθθθ()()()0!11=-=∞--θθN N Ne N N E()()1,00!1001≠=-=-N e N N E N N()()1!1!1)(01010=-=-=⎰⎰⎰∞--∞--∞θθθθθθθθd e N N d e N N d E N N NN N N ()1!1)(0=-=⎰⎰∞-∞θθθθθθd e N N d E N N N4-4 C(t)t/min4-18图用阶跃法测定某一闭式流动反应器的停留时间分布,得到离开反应器的示踪剂浓度与时间的关系,如图4-18所示。

反应工程总结

反应工程总结

第一章 绪论 1、化学反应工程是化学工程学科的一个分支,通常简称为反应工程。

其内容可概括为两个方面,即反应动力学和反应器设计与分析。

2、传递现象包括动量、热量和质量传递,再加上化学反应,这就是通常所说的三传一反。

3、反应组分的反应量与其化学计量系数之比的值为定值,ξ叫做反应进度且恒为正值。

、本书规定反应物的化学计量系数一律取负值,而反应产物则取正值。

8、工业反应器有三种操作方式: ① 间歇操作;② 连续操作;③ 半间歇(或半连续)操作 9、反应器设计的基本内容一般包括:1)选择合适的反应型式 ;2)确定最佳操作条件 ;3)根据操作负荷和规定的转化程度,确定反应器的体积和尺寸 。

10.反应器按结构原理的特点可分的类型: 管式,釜式 ,塔式,固定床,流化床,移动床,滴流床反应器。

第二章 3、温度对反应速率的影响 如果反应速率方程可以表示为:r=f1 (T)f2(c ),f1(T)是温度的影响。

当温度一定时,其值一定。

通常用阿累尼乌斯方程(Arrhenius ‘ law )表示反应速度常数与温度的关系, 即, 为指前因子,其因次与k 相同;E 为反应的活化能;R 为气体常数。

两边取对数,则有 : lnk=lnA0-E/RT ,lnk 对 1/T 作图,可得-直线,直线的斜率=-E/RT 。

注意:不是在所有的温度范围内上面均为直线关系,不能外推。

其原因包括:(1)速率方程不合适; (2)反应过程中反应机理发生变化;(3)传质的影响;(4)指前因子A0与温度有关。

速率极大点处有: 对应于极大点的温度叫做最佳温度Top 。

速率为零点处有: rA=0 6、多相催化与吸附 1)、催化剂的用途:①加快反应速度②定向作用(提高选择性)-化学吸附作用结果 2)、催化剂的组成:主催化剂-金属或金属氧化物,用于提供反应所需的活性中心。

助催化剂-提高活性,选择性和稳定性。

助催化剂可以是 ①结构性的;② 调变性的。

载体-用于 ① 增大接触表面积;②改善物理性能。

化工基础第四章 单元反应

化工基础第四章 单元反应

4.1.2单元反应的分类
4.1.2.1按参加反应物质的相态分类 4.1.2.2按反应器型式分类 4.1.2.3按操作方式分类 4.1.2.4按传热方式分类 4.1.2.5按热效应分类 4.1.2.6按热力学特征 4.1.2.7按时间特征 4.1.2.8按反应过程的化学特性分类
4.1.2.1按参加反应物质的相态分类
第4章 单元反应
4.1概述
4.1.1单元反应及其在化工生产中的作用 4.1.2单元反应的分类 4.1.3单元反应的表征 4.1.4反应类型的比较 4.1.5单元反应对反应器的要求 4.1.6化学反应器的分类
4.1.1单元反应及其在化工生产中的作用
单元反应是指具有化学变化特点的基本加工过程, 比如氧化、还原、硝化、磺化等反应过程。化工过 程是由一系列单元反应和一系列单元操作构成。反 应过程是化工生产中创造新物质的过程,因此是化 工生产过程的中心环节。前述的各单元操作主要是 发生物理变化,是为化学反应过程提供条件的。
④液─固相反应过程
液─固相反应过程是指参加反应的物质存在液相和固相的非均相反应过 程。这类反应包括两种情况:一种情况是反应物分别处于液相和固相 的非催化反应,如:纯碱苛化制烧碱,反应物为固相的氢氧化钙和液 相的碳酸钠溶液;另一种情况是反应物都处于液相,催化剂处于固相 的催化反应,如乙醇脱氢制乙醛,反应物乙醇处液相,锌、钴等催化 剂处于固相。这类反应多数是用槽式反应器,也有用塔式反应器、回 转筒式反应器的。 其特征和气─固相反应很相似,液─固相非催化反应通常在固相表面进 行,液相反应物要先扩散到固相表面;液─固相催化反应通常在固相催 化剂表面进行,液相反应物要先扩散到催化剂表面。液相反应物的扩 散速度要比气相反应物慢,为增大相间抵触,加快扩散速度,常在反 应釜中设搅拌装置。

《化工反应技术与设备》课程教学大纲(本科)

《化工反应技术与设备》课程教学大纲(本科)

《化工反应技术与设备》课程教学大纲英文名称:Chemical Reaction Technology and Equipment课程类型:专业技能课课程要求:必修学时/学分:40/2. 5适用专业:应用化工技术一、课程性质与任务化工反应技术与设备是石油化工生产技术专业、应用化工技术专业学生的一门专业基础课,共计40学时。

本课程要求学生学习和掌握各种反应器特点、均相反应器的设计计算、流体非理想流动状况及多相催化反应器的特点。

本课程在教学内容方面着重基本知识、基本理论和设计计算的讲解;在培养实践能力方面着重培养学生对各种反应过程的分析能力和设计能力,使学生掌握化工工业典型的反应设备的基本计算方法,并了解反应器的开发、放大方法,能够正确选用搅拌器的型式。

二、课程与其他课程的联系先修课程:高等数学,化工原理,物理化学等。

本课程与《化工原理》课程密切相关,《化工原理》系统地介绍单元过程,《化工反应技术与设备》则重点介绍化工生产过程中反应器的类型及选用、搅拌器的类型及选用、反应过程中的换热设备、反应器的工艺设计计算等。

本课程与《物理化学》也有密切联系,《物理化学》中的化学反应动力学部分一般地、系统地介绍反应动力学原理,本课程则深入地、具体地介绍反应器设计时所需的动力学基础知识。

本课程要求学生具有较扎实的数学基础。

该课程为学生后续所学专业课打下良好的理论基础,最终培养学生应用基础理论知识和所学的专业知识,进行反应器的设计及设备的选型,并能分析和解决化工生产中的有关问题, 以适应科研、设计和生产实践等方面的需要。

三、课程教学目标1.学习化工反应技术与设备的基础知识和基本理论知识,掌握常用反应器的结构、特点等基本知识,具有分析、选用和设计均相反应器的能力;2.掌握反应器的类型、搅拌器的类型及作用、反应过程中换热设备的类型,并能正确选用设备型式;3.学习固体催化剂、固定床及流化床反应器的基本理论知识,掌握内外扩散对多相催化反应过程的影响,能够分析气固相催化反应过程;4.培养学生树立正确的设计思想,了解影响反应速率的因素,掌握均相反应器的特点及计算方法;5.培养学生的工程实践能力,使学生掌握停留时间分布的实验测定方法,学会分析实际反应器中流体流动偏离非理想流动的原因,提高反应器的流动状态;6 .了解化工反应技术与设备的前沿和新发展动向。

反应工程 2012-2013 第 4 章 管式反应器 PFR

反应工程 2012-2013 第 4 章 管式反应器 PFR
Chemical Reaction Engineering
42/20
4.3 管式与釜式反应器反应体积的比较
Chemical Reaction Engineering
42/21
4.4 循环反应器
对于单程转化率不高的情况,为提高原料的利用率,将 反应器出口物料中的产品分离后再循环进入反应器入口, 与新鲜原料一起进行反应。
Qr 设循环物料与新鲜原料量之比为循环比: Q0
故,反应器的物料处理量为:
Q0 Qr (1 )Q0
在混合点M处对A做物料衡算:
Q0cA0 Q0cA0 (1 X Af ) (1 )Q0cA0 (1 X A0 )
化简后得: X A0
X Af 4.23 1
0
' X Af
X Am
X Af
XA
此时,可以: 釜式与管式的串联
42/19
Chemical Reaction Engineering
4.3 管式与釜式反应器反应体积的比较
在A点保持较高速率进行,先用CSTR进行反 应到XAm,然后送入PFR中到XAf,则VR最小。 对多个反应,二者的比较主要是看在相同的最终转 化率下,哪一个目的产物最终收率大。 So~XA关系见图3-10(a)。 ①反应物CA低,获得高的选择性,选釜式反应器。 ②反应物CA高,则管式反应器优于釜式反应器。
二者的差别: CSTR PFR 返混 返混
最大(∞) 无(0)
都属于理想化流动模型,是返混程度的两个极端。
Chemical Reaction Engineering
42/6
4.2 等温管式反应器的设计
Fi 0
单一反应 进入量 = 排出量 + 反应量 + 累积量
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

FA0 Q0 c A0
X Af
Q0 c A0
dX A R A ( X A ) dVr
9
等温管式反应器的设计
Fi 0
Q0 c A0 dX A R A ( X A ) dVr
Fi
Vr Q0 c A0

X Af
0
dX A [R A ( X A )]
Vr
Q0C A0 X Af A(X Af )
空时与平均停留时间不等 当 0 时, t

当 0 时, t

18
4.2.2 复合反应
当反应器中有多个反应同时进行时,需分别对各个关键组 分作物料衡算,最后获得设计方程组。
dF i i dV R,
i 1,2,, K
M j 1
rA k1 (CACB CRCS K ) (k1, xA )
dxA C A0 1.9814hr 0 rA VR Q0 4.155*1.9814 8.23m3
x Af
计算结果表明, 若不考虑辅助时间, 两类反应器需要的 反应器体积是相同的。
14
例题 4.2
C4H8 → C4H6 + H2
A A0 A
Vr c A0 Qo
t间歇 c A0

X Af
0
dX A [R A ( X A )]
(活塞流反应器)

X Af
0
dX A [R A ( X A )]
(间歇反应器)
c A0
X Af A ( X A )
连续式反应器
11
注意:① 二者形式同,但一个是t,一个是τ(与所选择
4. C、T沿管长连续变化。
CAout 管长 Z/2 CA CA0 0 Z/2 Z 时间 图 3.4-1 平推流反应器图示 Z
CAout
6
反应器特性分析
BSTR
投料 一次加料(起始) 返混 全无返混
PFR
连续加料(入口) 全无返混
CSTR
连续加料(入口) 返混极大
7
4.2 等温管式反应器设计
1.活塞流反应器的设计方程 根据平推流反应器的特点,可取反应器中一微元段作 物料衡算,然后沿管长对整个反应器积分,就可得到活塞 流反应器的设计基础式。
(A) (B) (C)
已知: rA=kpA kmol/(m3· h)
yA0=10%
P=105pa
973K时,k=1.079×10-4kmol/(h· Pa)
求:
Xf= 35%,空时为多少?
15
解:
pA=cA RT
δA=1
16
17
如按恒容过程计算
1 t kRT
xA
dx A 1.87s 1 xA 0
无返混
应该注意的是:理想流动模型是两种极端情况,活塞流的返混为"零" ,而全混流的返混"最大",实际反应器中的流动状况介于两者之间。
5
三、活塞流反应器的特征
假设:反应物料以稳定流量流入反应器,平行向前移动。
0 Z/2 Z
1. 轴向无返混。 2. 物系质点的相同。
CA CA0
3. 同一截面C、T相同。
Q0C A0 dX A A(X A ) A dZ dX A u0 C A0 A(X A ) dZ 对于恒容过程 CA=CAO(1-XA)则 dC A u0 A(X A ) dZ
间歇釜式反应器 随位置变化
dC A A (X A ) dt
Hale Waihona Puke 随时间变化13•例4.1 利用例3.1数据, 改用活塞流反应器,求反应体积? 解: 由于反应是液相反应, 可认为是等容过程
的进样模式有关); ② 管式反应器恒容时,τ=t;否则,τ≠t。 ③ 对于气相变容过程,用含膨胀因子的式子表示各 个浓度即可。 等容与变容条件下气相一级反应速率方程
rA kcA0 (1 X A )
kcA0 (1 X A ) rA 1 y Ao A X A
12
• 对于式(4-4),设反应器的截面积为A,则有 dVr=AdZ,那么
8
等温管式反应器的设计
单一反应
Fi 0
进入量 = 排出量 + 反应量 + 累积量
Fi
Fi (dFi Fi ) (R i )dVr 0
dVr
dFi Ri dVr
FA FA0 (1 X A )
dFA RA dVr
dz
Fi dFi
FA0
dX A R A ( X A ) dVr
最简单的流动模型是理想流动模型,包括:活塞流和全
混流模型。
4
二、 理想流动模型
1.活塞流模型PFR ① 径向流速分布均匀; ② 径向混合均匀(C,T); ③ 无返混/轴向混合/逆向混合 径向
活塞流
流动 方向
返混:在流体流动方向上停留时间 不同的流体粒子之间的混合称为返 混,也称为逆向混合。 2.全混流模型(上一章详细描述过) 混合(径向+轴向)达到最大,C、T均一
第四章 管式反应器
§4.1 活塞流假设
§4.2 等温管式反应器设计
§4.3 管式反应器与釜式反
应器体积的比较
§4.4 循环反应器
§4.5 变温反应器
1
§
引言
• 管式反应器PFR :一种呈管状、长径比很大的反 应器。这种反应器可以很长,如丙烯二聚的反应
器管长以公里计。
• 反应器的结构可以是单管,也可以是多管并联; • 可以是空管,如管式裂解炉,也可以是在管内填 充颗粒状催化剂的填充管,以进行多相催化反应, 如列管式固定床反应器。
• 物料的流动可近似地视为平推流
2
§4.1 活塞流假设
流体流动是非常复杂的物理现象,影响到系统的反应速率 和转化程度。 一、 流动状况对反应过程的影响 1. 流动情况影响 (a)(b) 内部各部分流体的 停留时间不同,反应速率和
最终转化率也不一样。
图 4.1 径向流分布
3
2. 混合情况的影响 完全混合时,C、T在反应器内均一;否则,各处T,C 不一样。这两种混合情况对反应过程产生不同的影响,反应 的结果也不一样。
dz
Fi dFi
dVr
Vr c A0 Qo
t间歇 c A0

X Af
0
dX A [R A ( X A )]

X Af
0
dX A [R A ( X A )]
10
X Af
注意:二者尽管形式上相同,但一个是反应时间t, 一个空时τ(与所选择的进口状态有关)。主要看RA 与XA的函数关系是否一样。间歇釜式反应器总是恒 容的。如果管式反应器也在恒容下进行,则有τ=t; 否则,τ≠t。 恒容时 C C (1 X )
相关文档
最新文档