高考数学导数题型归纳文科
高考:导数题型归类,分类解题方法举例,如极值点偏移、隐零点运用

高考:导数题型归类,分类解题方法举例,如极值点偏移、隐零点运用高考压轴题:导数题型及解题方法一、切线问题题型1:求曲线y=f(x)在x=x处的切线方程。
方法:f'(x)为在x=x处的切线的斜率。
题型2:过点(a,b)的直线与曲线y=f(x)的相切问题。
方法:设曲线y=f(x)的切点(x,f(x)),由(x-a)f'(x)=f(x)-b求出x,进而解决相关问题。
注意:曲线在某点处的切线若有则只有一条,曲线过某点的切线往往不止一条。
例题:已知函数f(x)=x-3x。
1)求曲线y=f(x)在点x=2处的切线方程;(答案:9x-y-16=0)2)若过点A(1,m)(m≠-2)可作曲线y=f(x)的三条切线,求实数m的取值范围。
提示:设曲线y=f(x)上的切点(x,f(x)),建立x,f(x)的等式关系。
将问题转化为关于x,m的方程有三个不同实数根问题。
答案:m的范围是(-3,-2))练1:已知曲线y=x-3x。
1)求过点(1,-3)与曲线y=x-3x相切的直线方程。
(答案:3x+y=0或15x-4y-27=0)2)证明:过点(-2,5)与曲线y=x-3x相切的直线有三条。
题型3:求两个曲线y=f(x)、y=g(x)的公切线。
方法:设曲线y=f(x)、y=g(x)的切点分别为(x1,f(x1))、(x2,g(x2)),建立x1,x2的等式关系,(x2-x1)f'(x1)=g(x2)-f(x1),(x2-x1)f'(x2)=g(x2)-f(x1);求出x1,x2,进而求出切线方程。
解决问题的方法是设切点,用导数求斜率,建立等式关系。
例题:求曲线y=x与曲线y=2elnx的公切线方程。
(答案:2ex-y-e=0)练1:求曲线y=x与曲线y=-(x-1)的公切线方程。
(答案:2x-y-1=0或y=0)2.设函数f(x)=p(x-2)-2lnx,g(x)=x,直线l与函数f(x),g(x)的图象都相切,且与函数f(x)的图象相切于(1,0),求实数p的值。
导数文科大题含详细答案

导数文科大题1.知函数, .(1)求函数的单调区间;(2)若关于的方程有实数根,数的取值围. 答案解析2.已知 , (1)若 ,求函数在点处的切线方程; (2)若函数在上是增函数,数a 的取值围; (3)令 , 是自然对数的底数);求当实数a等于多少时,可以使函数取得最小值为3.解:(1)时,,′(x),′(1)=3,,数在点处的切线方程为,(2)函数在上是增函数,′(x),在上恒成立,即,在上恒成立,令,当且仅当时,取等号,,的取值围为(3),′(x),①当时,在上单调递减,,计算得出(舍去); ②当且时,即,在上单调递减,在上单调递增,,计算得出,满足条件; ③当,且时,即,在上单调递减,,计算得出(舍去);综上,存在实数,使得当时,有最小值3.解析(1)根据导数的几何意义即可求出切线方程.(2)函数在上是增函数,得到f′(x),在上恒成立,分离参数,根据基本不等式求出答案,(3),求出函数的导数,讨论,,的情况,从而得出答案3.已知函数 ,(1)分别求函数与在区间上的极值;(2)求证:对任意 ,解:(1),令,计算得出:,,计算得出:或,故在和上单调递减,在上递增,在上有极小值,无极大值;,,则,故在上递增,在上递减,在上有极大值,,无极小值;(2)由(1)知,当时,,,故;当时,,令,则,故在上递增,在上递减,,;综上,对任意,解析(1)求导,利用导数与函数的单调性与极值关系,即可求得与单调区间与极值;4.已知函数,其中,为自然数的底数.(1)当时,讨论函数的单调性;(2)当时,求证:对任意的,.解:(1)当时,,则,,故则在R上单调递减.(2)当时,,要证明对任意的,.则只需要证明对任意的,.设,看作以a为变量的一次函数,要使,则,即,恒成立,①恒成立,对于②,令,则,设时,,即.,,在上,,单调递增,在上,,单调递减,则当时,函数取得最大值,故④式成立,综上对任意的,.解析:(1)求函数的导数,利用函数单调性和导数之间的关系进行讨论即可.(2)对任意的,转化为证明对任意的,,即可,构造函数,求函数的导数,利用导数进行研究即可.5.已知函数(1)当时,求函数在处的切线方程;(2)求在区间上的最小值.解:(1)设切线的斜率为k.因为,所以,所以,所以所求的切线方程为,即(2)根据题意得, 令,可得①若,则,当时,,则在上单调递增.所以②若,则, 当时,,则在上单调递减. 所以③若,则,所以,随x的变化情况如下表:所以的单调递减区间为,单调递增区间为所以在上的最小值为综上所述:当时,;当时,;当时,解析(1)设切线的斜率为k.利用导数求出斜率,切点坐标,然后求出切线方程.(2)通过,可得.通过①,②,③,判断函数的单调性求出函数的最值.6.已知函数。
文科导数复习与题型归纳

导数复习知识点一、 导数的概念 导数xy x f x ∆∆=→∆00lim )('。
二、 导数的几何意义函数y=f(x)在点0x 处的导数,就是曲线y=(x)在点),(00y x P 处的切线的斜率.由此,可以利用导数求曲线的切线方程.具体求法分两步:(1)求出函数y=f(x)在点0x 处的导数,即曲线y=f(x)在点),(00y x P 处的切线的斜率;(2)在已知切点坐标和切线斜率的条件下,求得切线方程为三、 常见函数的导数及运算法则(1) 八个基本求导公式)('C = ; )('n x = ;(n∈Q) )(sin 'x = , )(cos 'x = )('x e = , )('x a = )(ln 'x = , )(log 'x a = (2) 导数的四则运算)('±v u = ])(['x Cf = )('uv = ,)('vu = )0(≠v (3) 复合函数的导数设)(x u θ=在点x 处可导,)(u f y =在点)(x u θ=处可导,则复合函数)]([x f θ在点x 处可导, 且)(x f '= ,即x u x u y y '⋅'='四、 导数的应用(要求:明白解题步骤)1.函数的单调性(1) 设函数y=f(x)在某个区间内可导,若)(/x f >0,则f(x)为增函数;若)(/x f <0,则f(x)为减函数。
(2) 求可导函数单调区间的一般步骤和方法。
①分析 )(x f y =的定义域; ②求导数 )(x f y '='③解不等式0)(>'x f ,解集在定义域内的部分为 区间解不等式0)(<'x f ,解集在定义域内的部分为 区间 例如:求函数xx y 1+=的减区间 2.可导函数的极值(采用表格或画函数图象)(1) 极值的概念设函数f(x)在点x 0附近有定义,且若对x 0附近所有的点都有f(x)<f(x 0)(或f(x)>f(x 0)),则称f(x 0)为函数的一个极大(小)值,称x 0为极大(小)值点。
高二文科数学导数知识点及基本题型

高二文科数学导数一、知识点梳理(1)平均变化率对于一般的函数()y f x =,在自变量x 从1x 变化到2x 的过程中,若设12x x x -=∆, )()(12x f x f f -=∆ 则函数的平均变化率为(2)导数的概念一般的,定义在区间(a ,b )上的函数)(x f ,)(b a x o ,∈,当x ∆无限趋近于0时,xx f x x f x y o o ∆-∆+=∆∆)()(无限趋近于一个固定的常数A ,则称)(x f 在o x x =处可导,并称A 为)(x f 在o x x =处的导数,记作)('o x f 或ox x x f =|)(' (3)导数的几何意义函数y =f (x )在x =x 0处的导数等于在该点00(,())x f x 处的切线的 。
(4)基本初等函数的导数公式表及求导法则(默写)(5)函数单调性与导数:在某个区间(,)a b 内,如果'()0f x >,那么函数()y f x =在这个区间内 ;如果'()0f x <,那么函数()y f x =在这个区间内 .说明:(1)特别的,如果'()0f x =,那么函数()y f x =在这个区间内是常函数.(6)求解函数()y f x =单调区间的步骤:(7)求可导函数f (x )的极值的步骤: (1)确定函数的定义区间,求导数f ′(x 求方程f ′(x )=0的根用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格.检查f ′(x )在方程根左右的值的符号,如果左正右负,那么f (x )在这个根处取得极大值;如果左负右正,那么f (x )在这个根处取得极小值;如果左右不改变符号,那么f (x )在这个根处无极值(8)函数的最值与导数:一般地,在闭区间[]b a ,上函数()y f x =的图像是一条连续不断的曲线,那么函数()y f x =在[]b a ,上必有 .二、典型例题1、曲线y =x x -2在点(1,-1)处的切线方程为 ( ) A .y =x -2 B .y =-3x +2 C .y =2x -3D .y =-2x +12、函数x x y ln =在区间 ( )(A) )1,0(e 上单调递减 (B) ),1(+∞e 上单调递减(C) ),0(+∞上单调递减 (D) ),0(+∞上单调递增3、若函数()()2f x x x c =-在2x =处有极大值,则常数c 的值为_________;4、函数x ex x f -⋅=)(的一个单调递增区间是 ( ) (A)[]0,1- (B) []8,2 (C) []2,1 (D) []2,05、函数x x x f 12)(3-=的极值是6、已知函数y =f (x )的导函数y =f ′(x )的图象如下,则( )A .函数f (x )有1个极大值点,1个极小值点B .函数f (x )有2个极大值点,2个极小值点C .函数f (x )有3个极大值点,1个极小值点D .函数f (x )有1个极大值点,3个极小值点7、已知)0()(23≠++=a cx bx ax x f 在1±=x 时取得极值,且1)1(-=f .Ⅰ、试求常数a 、b 、c 的值;Ⅱ、试判断1±=x 是函数的极小值点还是极大值点,并说明理由.三、练习1、(基础题)设y =8x 2-ln x ,则此函数在区间(0,14)和(12,1)内分别( )A .单调递增,单调递减B .单调递增,单调递增C .单调递减,单调递增D .单调递减,单调递减2、(基础题)函数y =x 2(x -3)的减区间是3、(基础题)函数b ax x x f +-=3)(3)0(>a 的极大值为6,极小值为2,(Ⅰ)求实数b a ,的值. (Ⅱ)求)(x f 的单调区间.4、(基础题)已知函数y =f (x )=ln x x. (1)求函数y =f (x )的图象在x =1e处的切线方程; (2)求y =f (x )的最大值;(3)设实数a >0,求函数F (x )=af (x )在[a,2a ]上的最小值(选做)5、(基础题)设f (x )=x 3-22x -2x +5. (1)求f (x )的单调区间;(2)当x ∈[1,2]时,f (x )<m 恒成立,求实数m 的取值范围.6、(提高题,选做)设函数ax x x a x f +-=22ln )(,0>a(Ⅰ)求)(x f 的单调区间;(Ⅱ)求所有实数a ,使2)(1e x f e ≤≤-对],1[e x ∈恒成立.注:e 为自然对数的底数.。
文科导数复习与题型归纳

导数复习知识点一、 导数的概念 导数xy x f x ∆∆=→∆00lim )('; 二、 导数的几何意义函数y=fx 在点0x 处的导数,就是曲线y=x 在点),(00y x P 处的切线的斜率.由此,可以利用导数求曲线的切线方程.具体求法分两步:1求出函数y=fx 在点0x 处的导数,即曲线y=fx 在点),(00y x P 处的切线的斜率; 2在已知切点坐标和切线斜率的条件下,求得切线方程为三、 常见函数的导数及运算法则1 八个基本求导公式)('C = ; )('n x = ;n∈Q )(sin 'x = , )(cos 'x = )('x e = , )('x a = )(ln 'x = , )(log 'x a =2 导数的四则运算)('±v u = ])(['x Cf =)('uv = ,)('v u = )0(≠v 3 复合函数的导数设)(x u θ=在点x处可导,)(u f y =在点)(x u θ=处可导,则复合函数)]([x f θ在点x 处可导, 且)(x f '= ,即x u xu y y '⋅'=' 四、 导数的应用要求:明白解题步骤1. 函数的单调性(1) 设函数y=fx 在某个区间内可导,若)(/x f >0,则fx 为增函数;若)(/x f <0,则fx 为减函数;(2) 求可导函数单调区间的一般步骤和方法;①分析 )(x f y =的定义域; ②求导数 )(x f y '='③解不等式0)(>'x f ,解集在定义域内的部分为 区间解不等式0)(<'x f ,解集在定义域内的部分为 区间 例如:求函数xx y 1+=的减区间 2. 可导函数的极值采用表格或画函数图象(1) 极值的概念设函数fx 在点x 0附近有定义,且若对x 0附近所有的点都有fx <fx 0或fx >fx 0,则称fx 0为函数的一个极大小值,称x 0为极大小值点;(2) 求可导函数fx 极值的步骤① 求导数)(x f ';② 求方程)(x f '=0的 ;③ 检验)(x f '在方程)(x f '=0的根左右的符号,如果在根的左侧附近为正,右侧附近为负先增后减,那么函数y =)(x f 在这个根处取得 ;如果在根的左侧附近为负,右侧为正先减后增,那么函数y =)(x f 在这个根处取得 .3. 函数的最大值与最小值⑴ 设y =)(x f 是定义在区间a ,b 上的函数,y =)(x f 在a ,b 内有导数,则函数y =)(x f 在a ,b 上 必 有最大值与最小值;但在开区间内 未必 有最大值与最小值.2 求最值可分两步进行:① 求y =)(x f 在a ,b 内的 值;② 将y =)(x f 的各 值与)(a f 、)(b f 比较,其中最大的一个为最大值,最小的一个为最小值.3 若函数y =)(x f 在a ,b 上单调递增,则)(a f 为函数的 ,)(b f 为函数的 ;若函数y =)(x f 在a ,b 上单调递减,则)(a f 为函数的 ,)(b f 为函数的 .4.求过函数上一点的切线的斜率或方程例题1:分析函数x x y 33-=单调性,极值,最值,图象例题2:函数ax x y 33-=在)1,(--∞上为增函数,在)1,1(-上为减函数,求实数a 例题3:求证方程1lg =⋅x x 在区间)3,2(内有且仅有一个实根.分析解本题要用的知识点一.求值1. ()f x '是31()213f x x x =++的导函数,则(1)f '-的值是.2.)(x f =ax 3+3x 2+2 ,4)1(=-'f ,则a=3.已知函数fx 的导函数为)(x f ',且满足fx=3x 2+2x )2('f ,则)5('f = .4.设fx 、g x 分别是定义在R 上的奇函数和偶函数,当x <0时,fx g ′x +f ′x g x >0且g -3=0,则不等式fx g x <0的解集是__________.5.2008海南、宁夏文设()ln f x x x =,若0'()2f x =,则0x =A. 2eB. eC.ln 22 D. ln 2 二.切线11 曲线31y x x =++在点(1,3)处的切线方程是 ;2已知函数x x x f 3)(3-=,过点)6,2(-P 作曲线)(x f y =的切线的方程 .变式.1曲线y =x 3-3x +1在点1,-1处的切线方程为 2已知3:()2C f x x x =-+,则经过(1,2)P 的曲线C 的切线方程为 3曲线fx=x 3-3x,过点A0,16作曲线f x 的切线,则曲线的切线方程为 ; 2 .1曲线3)(x x f =在点A 处的切线的斜率为3,则该曲线在A 点处的切线方程为 ; 2 过曲线x x x f -=4)(上点P 处的切线平行于直线03=-y x ,则点P 的坐标为 3 若直线y x =是曲线323y x x ax =-+的切线,则a = ;3.垂直于直线2x-6y+1=0,且与曲线5323-+=x x y 相切的直线的方程是________.4.已知直线1+=kx y 与曲线b ax x y ++=3切于点1,3,则b 的值为A .3B .-3C .5D .-55.若点P 在曲线23+-=x x y 上移动,经过点P 的切线的倾斜角为α,则α的取值范围为A.⎥⎦⎤⎢⎣⎡2,0π B.⎪⎭⎫⎢⎣⎡⎪⎭⎫⎢⎣⎡πππ,432,0 C.⎥⎦⎤⎢⎣⎡ππ,43 D.⎥⎦⎤ ⎝⎛⎪⎭⎫⎢⎣⎡43,22,0πππ 6.08全国Ⅱ设曲线2ax y =在点1,a 处的切线与直线062=--y x 平行,则=aA .1B .12C .12-D .1- 7.09宁夏曲线21x y xe x =++在点0,1处的切线方程为 ; 809全国卷Ⅱ理曲线21x y x =-在点()1,1处的切线方程为 A. 20x y --= B. 20x y +-= C.450x y +-= D. 450x y --= 9若曲线()2f x ax Inx =+存在垂直于y 轴的切线,则实数a 的取值范围是 . 10.08海南理曲线12e x y =在点2(4e ),处的切线与坐标轴所围三角形的面积为三.单调性1.1设fx=x 22-x,则fx 的单调增区间是A.0,)34B.,34+∞C.-∞,0D.-∞,0∪34,+∞2函数y=x+1x 2-1的单调递增区间为A.-∞,-1B.-1,+∞C. -∞,-1 与-1,+∞D. -∞,-1 ∪-1,+∞3函数13)(23+-=x x x f 是减函数的区间为A .),2(+∞B .)2,(-∞C .)0,(-∞D .0,22.1若函数fx=x 3-ax 2+1在0,2内单调递减,则实数a 的取值范围为2设ax x x f a -=>3)(,0函数在),1[+∞上是单调函数. 则实数a 的取值范围为 ;3函数y =ax 3-x 在-∞,+∞上是减函数,则实数a 的取值范围为 ;3.1若函数fx =ax 3-x 2+x -5在R 上单调递增,则a 的范围是 .2已知函数13)(23+-+=x x ax x f 在R 上是减函数,则a 的取值范围是: .4.若32()(0)f x ax bx cx d a =+++>在R 上是增函数,则A 240b ac ->B 0,0b c >>C 0,0b c =>D 230b ac -<5、函数3y x ax b =++在(1,1)-上为减函数,在(1,)+∞上为增函数,则A 1,1a b ==B 1,a b R =∈C 3,3a b =-=D 3,a b R =-∈四.极值1、函数331x x y -+=的极大值,极小值分别是A. 极小值-1,极大值1B. 极小值-2,极大值3C. 极小值-2,极大值2D. 极小值-1,极大值32.函数93)(23-++=x ax x x f ,已知)(x f 在3-=x 时取得极值,则a =A2 B3 C4 D53.函数fx=x 3-ax 2-bx+a 2,在x=1时有极值10,则a 、b 的值为=3,b=-3,或a=-4,b=11=-4,b=11 =3,b=-3 D.以上都不正确4、已知函数)(x f 的导数为x x x f 44)(3-=',且图象过点0,-5,当函数)(x f 取得极大值-5时,x 的值应为A. –1B. 0C. 1D. ±15.若函数fx=x 3-3bx+3b 在0,1内有极小值,则<b<1 <1 >0 <216.若fx=x 3+3ax 2+3a+2x+1没有极值,则a 的取值范围为 .7. 已知函数y=2x 3+ax 2+36x -24在x=24处有极值,则该函数的一个递增区间是A.2,3B.3, +∞C.2, +∞D. -∞,38.2009辽宁卷文若函数2()1x a f x x +=+在1x =处取极值,则a = 五.最值1.函数5123223+--=x x x y 在0,3上的最大值、最小值分别是A .5,-15B .5,-4C .-4,-15D .5,-162.06浙江文32()32f x x x =-+在区间[]1,1-上的最大值是A-2 B0 C2 D4 3函数y =x 3+x3在0,+∞上的最小值为4.07湖南理函数3()12f x x x =-在区间[33]-,上的最小值是 .507江苏已知函数3()128f x x x =-+在区间[3,3]-上的最大值与最小值分别为,M m ,则M m -=____________变式、函数3()3f x x x a =--在区间[]0,3上的最大值、最小值分别为M,N,则M -N 的值为 ;6.2008安徽文设函数1()21(0),f x x x x=+-< 则()f xA .有最大值B .有最小值C .是增函数D .是减函数 六.综合1.07福建理、文已知对任意实数x ,有()()()()f x f x g x g x -=--=,,且0x >时,()0()0f x g x ''>>,,则0x <时A .()0()0f x g x ''>>,B .()0()0f x g x ''><,C .()0()0f x g x ''<>,D .()0()0f x g x ''<<, 2.对于R 上可导的任意函数()f x ,若满足'(1)()0x f x -≥,则必有A . (0)(2)2(1)f f f +< B. (0)(2)2(1)f f f +≤C. (0)(2)2(1)f f f +≥D. (0)(2)2(1)f f f +>3.2009陕西卷文设曲线1*()n y x n N +=∈在点1,1处的切线与x 轴的交点的横坐标为n x ,则12n x x x ⋅⋅⋅的值为 A 1n B 11n + C 1n n + D 1 图1所示,4 设函数)(x f 在定义域内可导,)(x f y =的图象如右则导函数y =f x 可能为5.浙江卷11设f 'x 是函数fx 的导函数,y =f 'x 的图象如右图所示,则y =fx 的图象最有可能的是A B C D 6.2009湖南卷文若函数()y f x =的导函数...在区间[,]a b 上是增函数,则函数()y f x =在区间[,]a b 上的图象可能是x y y x y xyx O 1 2 O 1 2 O 1 2 1 2 xy O 1 2 a b a b a o x o x y b a o x y o xyb yx y O A x y O B x y O xyO DCA .B .C .D .7、已知函数32()(6)1f x x mx m x =++++既有极大值又存在最小值,则实数m 的取值范围是 ;8、若函数()f x 的定义域为()0,+∞,且/()0,()0f x f x >>,那么函数()y xf x = A 存在极大值B 存在最小值C 是增函数D 是减函数9、当[]0,2x ∈时,函数2()4(1)3f x ax a x =+--在x=2时取得最大值,则a 的取值范围是 ;七.解答题重点题型一:利用导数研究函数的单调性、极值、最值;1.已知函数))1(,1()(,)(23f P x f y c bx ax x x f 上的点过曲线=+++=的切线方程为y=3x+1Ⅰ若函数2)(-=x x f 在处有极值,求)(x f 的表达式;Ⅱ在Ⅰ的条件下,求函数)(x f y =在-3,1上的最大值;Ⅲ若函数)(x f y =在区间-2,1上单调递增,求实数b 的取值范围2:已知三次函数32()f x x ax bx c =+++在1x =和1x =-时取极值,且(2)4f -=-. 1 求函数()y f x =的表达式;2 求函数()y f x =的单调区间和极值;3 若函数()()4(0)g x f x m m m =-+>在区间[3,]m n -上的值域为[4,16]-,试求m 、n 应满足的条件.3.海南文 本小题满分12分设函数2()ln(23)f x x x =++Ⅰ讨论()f x 的单调性;Ⅱ求()f x 在区间3144⎡⎤-⎢⎥⎣⎦,的最大值和最小值. 4、已知32()(0)f x ax bx cx a =++≠在1x =±取得极值,且(1)1f =;1试求常数,,a b c 的值;2试判断1x =±是函数的极大值还是极小值,并说明理由;5.已知函数fx=-x 3+3x 2+ax +b 在x =1,f1处的切线与直线12x -y -1=0平行.1求实数a 的值;2求fx 的单调递减区间;3若fx 在区间-2,2上的最大值为20,求它在该区间上的最小值.题型二:利用导数研究不等式恒成立;1.已知两个函数x x x f 287)(2-=,c x x x x g +-+=4042)(23.Ⅰ,)()(图像关于原点对称图像与x f x F 解不等式3)()(--≥x x f x FⅡ若对任意∈x -3,3,都有≤)(x f )(x g 成立,求实数c 的取值范围;2.已知函数fx=x 3-21x 2+bx+c.1若fx 在-∞,+∞上是增函数,求b 的取值范围;2若fx 在x=1处取得极值,且x∈-1,2时,fx<c 2恒成立,求c 的取值范围.3.天津卷21本小题满分14分已知函数432()2f x x ax x b =+++x R ∈,其中R b a ∈,.Ⅰ当103a =-时,讨论函数()f x 的单调性; Ⅱ若函数()f x 仅在0x =处有极值,求a 的取值范围;Ⅲ若对于任意的[2,2]a ∈-,不等式()1f x ≤在[1,1]-上恒成立,求b 的取值范围. 训练题1.本小题12分设函数d cx bx x a x f +++=43)(23的图象关于原点对称,)(x f 的图象在点(1,)P m 处的切线的斜率为6-,且当2=x 时)(x f 有极值. Ⅰ求a b c d 、、、的值;Ⅱ求()f x 的所有极值.2.设函数()32()f x x bx cx x R =++∈,已知()()()g x f x f x '=-是奇函数;(1) Ⅰ求b 、c 的值;(2) Ⅱ求()g x 的单调区间与极值;3.2005北京理科、文科 已知函数fx =-x 3+3x 2+9x +a .I 求fx 的单调递减区间;II 若fx 在区间-2,2上的最大值为20,求它在该区间上的最小值.4.2006安徽文设函数()32()f x x bx cx x R =++∈,已知()()()g x f x f x '=-是奇函数;Ⅰ求b 、c 的值; Ⅱ求()g x 的单调区间与极值;5.2008全国Ⅱ卷文 设a ∈R ,233)(x ax x f -=. Ⅰ若2=x 是函数)(x f y =的极值点,求a 的值; Ⅱ若函数()()()[02]g x f x f x x '=+∈,,,在0=x 处取得最大值,求a 的取值范围.6. 2008湖北文 已知函数322()1f x x mx m x =+-+m 为常数,且m >0有极大值9. Ⅰ求m 的值; Ⅱ若斜率为-5的直线是曲线()y f x =的切线,求此直线方程. 7 已知函数1)(3--=ax x x f .Ⅰ若)(x f 在实数集R 上单调递增,求a 的范围; Ⅱ是否存在实数a 使)(x f 在)1,1(-上单调递减.若存在求出a 的范围,若不存在说明理由.09福建理科14.若曲线3()ln f x ax x =+存在垂直于y 轴的切线,则实数a 取值范围是_____________.20、本小题满分14分 已知函数321()3f x x ax bx =++,且'(1)0f -= 1 试用含a 的代数式表示b,并求()f x 的单调区间; 2令1a =-,设函数()f x 在1212,()x x x x <处取得极值,记点M 1x ,1()f x ,N 2x ,2()f x ,P ,()m f m , 12x m x <<,请仔细观察曲线()f x 在点P 处的切线与线段MP 的位置变化趋势,并解释以下问题: I 若对任意的m ∈1x , x 2,线段MP 与曲线fx 均有异于M,P 的公共点,试确定t 的最小值,并证明你的结论;II 若存在点Q n ,fn , x ≤n< m ,使得线段PQ 与曲线fx 有异于P 、Q 的公共点,请直接写出m 的取值范围不必给出求解过程 09福建文科15. 若曲线()2f x ax Inx =+存在垂直于y 轴的切线,则实数a 的取值范围是 . 21.本小题满分12分已知函数321(),3f x x ax bx =++且'(1)0f -= I 试用含a 的代数式表示b ; Ⅱ求()f x 的单调区间;Ⅲ令1a =-,设函数()f x 在1212,()x x x x <处取得极值,记点1122(,()),(,())M x f x N x f x ,证明:线段MN 与曲线()f x 存在异于M 、N 的公共点;08福建理科11如果函数y=fx 的图象如右图,那么 导函数y=fx 的图象可能是 19本小题满分12分 已知函数321()23f x x x =+-.Ⅰ设{a n }是正数组成的数列,前n 项和为S n ,其中a 1=3.若点211(,2)n n n a a a ++-n ∈N 在函数y =f ′x 的图象上,求证:点n ,S n 也在y =f ′x 的图象上;Ⅱ求函数fx 在区间a -1,a 内的极值. 文科21本小题满分12分已知函数32()2f x x mx nx =++-的图象过点-1,-6,且函数()()6g x f x x '=+的图象关于y 轴对称.Ⅰ求m 、n 的值及函数y =fx 的单调区间; Ⅱ若a >0,求函数y =fx 在区间a -1,a +1内的极值. 07福建11.已知对任意实数x ,有()()()()f x f x g x g x -=--=,,且0x >时,()0()0f x g x ''>>,,则0x <时 A .()0()0f x g x ''>>, B .()0()0f x g x ''><, C .()0()0f x g x ''<>,D .()0()0f x g x ''<<,22.本小题满分14分 已知函数()e x f x kx x =-∈R ,Ⅰ若e k =,试确定函数()f x 的单调区间;Ⅱ若0k >,且对于任意x ∈R ,()0f x >恒成立,试确定实数k 的取值范围; Ⅲ设函数()()()F x f x f x =+-,求证:12(1)(2)()(e2)()n n F F F n n +*>+∈N .全国一文 20设函数32()2338f x x ax bx c =+++在1x =及2x =时取得极值.Ⅰ求a 、b 的值;Ⅱ若对于任意的[03]x ∈,,都有2()f x c <成立,求c 的取值范围. 陕西文21已知cx bx ax x f ++=23)(在区间0,1上是增函数,在区间),1(),0,(+∞-∞上是减函数,又.23)21(='f Ⅰ求)(x f 的解析式;Ⅱ若在区间],0[m m >0上恒有)(x f ≤x 成立,求m 的取值范围.12.已知函数3211()(1)32f x x b x cx =+-+,① 若()f x 在1,3x x ==处取得极值,试求常数,b c 的值;② 若()f x 在()()12,,,x x -∞+∞上都是单调递增,在()12,x x 上单调递减,且满足211x x ->,求证:22(2)b b c >+14.设0≠t ,点P t ,0是函数c bx x g ax x x f +=+=23)()(与的图象的一个公共点,两函数的图象在点P 处有相同的切线. Ⅰ用t 表示a,b,c ;Ⅱ若函数)()(x g x f y -=在-1,3上单调递减,求t 的取值范围.例1已知曲线x x x y S 432:23++-=及点)0,0(P ,求过点P 的曲线S 的切线方程. 正解:设过点P 的切线与曲线S 切于点),(00y x Q ,则过点P 的曲线S 的切线斜率4220200++-='==x x y k x x ,又00x y k PQ =,00020422x yx x =++-∴;① 点Q 在曲线S 上,.432020300x x x y ++-=∴②,②代入①得002030020432422x x x x x x ++-=++-化简,得0342030=-x x ,00=∴x 或430=x .若00=x ,则4=k ,过点P 的切线方程为x y 4=;若430=x ,则835=k ,过点P 的切线方程为.835x y =∴过点P 的曲线S 的切线方程为x y 4=或.835x y =例2已知函数13)(23+-+=x x ax x f 在R 上是减函数,求a 的取值范围. 错解:,163)(2-+='x ax x f )(x f 在R 上是减函数,0)(<'∴x f 在R 上恒成立,01632<-+∴x ax 对一切R x ∈恒成立,0<∆∴,即01236<+a ,3-<∴a .正解:+='23)(ax x f 16-x ,)(x f 在R 上是减函数,∴)(x f '0≤在R 上恒成立,0≤∆∴且0<a ,即01236≤+a 且0<a ,3-≤∴a .例5函数5)()(,133)('3--=-+=ax x f x g ax x x f ,其中)('x f 是)(x f 的导函数.1对满足-1≤a ≤1的一切a 的值,都有)(x g <0,求实数x 的取值范围;2设a =-2m ,当实数m 在什么范围内变化时,函数y =)(x f 的图象与直线y =3只有一个公共点.解:1由题意()2335g x x ax a =-+-令()()2335x x a x ϕ=-+-,11a -≤≤对11a -≤≤,恒有()0g x <,即()0a ϕ<∴()()1010ϕϕ<⎧⎪⎨-<⎪⎩ 即22320380x x x x ⎧--<⎨+-<⎩解得213x -<<故2,13x ⎛⎫∈- ⎪⎝⎭时,对满足-1≤a ≤1的一切a 的值,都有()0g x <. 2()'2233f x x m =-①当0m =时,()31f x x =-的图象与直线3y =只有一个公共点 ②当0m ≠时,列表:极大极小∴()()2211f x f x m m ==--<-极小又∵()f x 的值域是R ,且在(),m +∞上单调递增∴当x m >时函数()y f x =的图象与直线3y =只有一个公共点. 当x m <时,恒有()()f x f m ≤-由题意得()3f m -<即3221213m m m -=-<解得()()332,00,2m ∈-综上,m 的取值范围是()332,2-.例6、 1是否存在这样的k 值,使函数 在区间1,2上递减,在2,+∞上递增,若存在,求出这样的k 值;2若 恰有三个单调区间,试确定 的取值范围,并求出这三个单调区间;解:1由题意,当时 ,当x∈2,+∞ 时 ,∴由函数的连续性可知 ,即整理得解得或验证:Ⅰ当时,∴若 ,则;若 , 则 , 符合题意;Ⅱ当时,,显然不合题意;于是综上可知,存在使在1,2上递减,在2,+∞上递增;2若 ,则 ,此时只有一个增区间 ,与题设矛盾;若 ,则 ,此时只有一个增区间 ,与题设矛盾;若 ,则并且当时,;当时,∴综合可知,当时,恰有三个单调区间:减区间;增区间点评:对于1,由已知条件得 ,并由此获得k的可能取值,进而再利用已知条件对所得k 值逐一验证,这是开放性问题中寻求待定系数之值的基本策略;例7、已知函数 ,当且仅当时,取得极值,并且极大值比极小值大4.1求常数的值;2求的极值;解:1 ,令得方程∵在处取得极值∴或为上述方程的根,故有∴ ,即①∴又∵仅当时取得极值,∴方程的根只有或 ,∴方程无实根,∴即而当时,恒成立,∴的正负情况只取决于的取值情况当x变化时,与的变化情况如下表:1 1,+∞ +0 —0 +极大值极小值∴在 处取得极大值,在 处取得极小值 ;由题意得整理得②于是将①,②联立,解得2由1知,点评:循着求函数极值的步骤,利用题设条件与 的关系,立足研究 的根的情况,乃是解决此类含参问题的一般方法,这一解法体现了方程思想和分类讨论的数学方法,突出了“导数”与“在处取得极值”的必要关系;1.已知函数2)12()(23+-+=x a ax x f ,若1-=x 是)(x f y =的一个极值点,则a 值为A .2 C. 722.已知函数223)(a bx ax x x f +++=在1=x 处有极值为10,则)2(f = . 3.给出下列三对函数:①1)(,1)(--=-=x x g xx f ②)0()(2>=a ax x f ,ax x g =)( ③x x f )31()(-=,)log()(x x g --=;其中有且只有一对函数“既互为反函数,又同是各自定义域上的递增函数”,则这样的两个函数的导函数分别是)(x f ' ,=')(x g .4.已知函数1)2(33)(23++++=x a ax x x f 有极大值和极小值,求a 的取值范围.5.已知抛物线22+-=x y ,过其上一点P 引抛物线的切线l ,使l 与两坐标轴在第一象限围成的三角形的面积最小,求l 的方程.6.设43241)(y xy x y g -+-=在[]0,1-∈y 上的最大值为)(x f ,R x ∈,1求)(x f 的表达式;2求)(x f 的最大值.设a ∈R ,233)(x ax x f -=.Ⅰ若2=x 是函数)(x f y =的极值点,求a 的值;Ⅱ若函数()()()[02]g x f x f x x '=+∈,,,在0=x 处取得最大值,求a 的取值范围. 解:Ⅰ2()363(2)f x ax x x ax '=-=-.因为2x =是()y f x =的极值点,所以(2)0f '=,即6(22)0a -=,因此1a =. 经验证,当1a =时,2x =是函数()y f x =的极值点. ·········· 4分 Ⅱ由题设,3222()336(3)3(2)g x ax x ax x ax x x x =-+-=+-+. 当()g x 在区间[02],上的最大值为(0)g 时,(0)(2)g g ≥, 即02024a -≥.故得65a ≤. ············ 9分反之,当65a ≤时,对任意[02]x ∈,,23(210)5x x x =+-3(25)(2)5xx x =+-0≤, 而(0)0g =,故()g x 在区间[02],上的最大值为(0)g .综上,a 的取值范围为65⎛⎤-∞ ⎥⎝⎦,. ················· 12分3 已知 是函数的一个极值点,其中Ⅰ求 与 的关系表达式;Ⅱ求 的单调区间;Ⅲ当时,函数的图象上任意一点的切线斜率恒大于3m,求的取值范围;解析:1本小题主要考查了导数的概念和计算,应用导数研究函数单调性的基本方法以及函数与方程的思想,第2小题要根据的符号,分类讨论的单调区间;第3小题是二次三项式在一个区间上恒成立的问题,用区间端点处函数值的符号来表示二次三项式在一个区间上的符号,体现出将一般性问题特殊化的数学思想;解答:Ⅰ ,是函数的一个极值点∴∴;Ⅱ令 ,得与的变化如下表:1—0 + 0 —单调递减极小值单调递增极大值单调递减因此,的单调递减区间是和;的单调递增区间是;Ⅲ由Ⅱ即令 ,且 ,即m的取值范围是 ;4已知函数 ;Ⅰ求的单调区间和值域;Ⅱ设 ,函数 ,若对于任意 ,总存在 ,使得成立,求的取值范围;解析:本题考查导数的综合运用,考查综合运用数学知识解决问题能力,考查思维及推理能力以及运算能力,本题入手点容易,Ⅰ中对分式函数定区间内单调性与值域问题,往往以导数为工具,Ⅱ是三次函数问题,因而导数法也是首选,若成立,则二次函数值域必满足关系,从而达到求解目的;解:Ⅰ由得或 ;∵∴舍去则 , ,变化情况表为:0 1—0 +↘↗因而当时为减函数;当时为增函数;当时,的值域为;Ⅱ因此,当时因此当时为减函数,从而当时有又 ,即当时有任给 , ,存在使得则由1得或 ,由2得又故的取值范围为 ;5 已知 ,函数1当为何值时,取得最小值证明你的结论;2设在上是单调函数,求的取值范围;解析:本题考查导数的概念和计算,应用导数研究函数性质的方法及推理和运算能力,本题Ⅰ常规题型,方法求 ,解的根,列表,确定单调性,并判断极值点,对Ⅱ由Ⅰ在上单调,而 ,因此只要即满足题设条件,从中解出的范围;解答:Ⅰ令则从而,其中当变化时, ,的变化情况如下表+ 0 —0 +↗极大值↘极小值↗∴在处取得极大值,处取得极小值当时 , ,且在为减函数,在为增函数而当时 ,当时∴当时取最小值;Ⅱ当时在上为单调函数的充要条件是,解得综上,在上为单调函数的充要条件为 ,即的取值范围为 ;6.已知 ,函数Ⅰ当时,求使成立的成立的的集合;Ⅱ求函数在区间上的最小值;答案:Ⅰ{0,1,}。
(完整版)高考文科导数考点汇总

高考导数文科考点总结一、考试内容导数的看法,导数的几何意义,几种常有函数的导数;两个函数的和、 差、基本导数公式, 利用导数研究函数的单调性和极值, 函数的最大值和最小值。
导数看法与运算知识清单 1.导数的看法函数 y=f(x), 若是自变量 x 在 x 0处有增量x,那么函数 y 相应地有增量y=f (x 0+ x)-(f x 0 ),yy f ( x 0x) f ( x 0 ) 比值x叫做函数 y=f (x )在 x 0 到 x 0+x之间的平均变化率,即x=x。
y若是当x 0 时,x 有极限,我们就说函数y=f(x) 在点 x 0 处可导,并把这个极限叫做 f ( x )在点 x 0 处的导数,记作x xf ’( x 0 )或 y ’|0 。
ylim f ( x 0x)f ( x 0 )limx即 f ( x 0 ) = x 0 x = x 0。
说明:yy( 1)函数 f ( x )在点 x 0 处可导,是指 x 0 时,x 有极限。
若是x 不存在极限,就说函数在点 x 0 处不可以导,或说无导数。
( 2)x是自变量 x 在 x 0处的改变量,x时,而y是函数值的改变量,可以是零。
由导数的定义可知,求函数y=f (x )在点 x 0 处的导数的步骤(可由学生来归纳):( 1)求函数的增量y=f ( x 0+ x)- f ( x 0 );y f (x 0x) f ( x 0 )( 2)求平均变化率x =x ;limyx 。
( 3)取极限,得导数 0 x 0f ’(x)=2.导数的几何意义函数 y=f ( x )在点 x 0 处的导数的几何意义是曲线 y=f ( x )在点 p (x 0 ,f (x 0 ))处的切线的斜率。
也就是说,曲线y=f ( x )在点 p ( x 0 , f ( x 0 ))处的切线的斜率是 f ’( x 0)。
相应地,切线 方程为 y - y 0 =f/ ( x 0 )( x - x 0 )。
(完整版)高考导数题型归纳,推荐文档

高考压轴题:导数题型及解题方法
(自己总结供参考)
一.切线问题
题型1 求曲线在处的切线方程。
)(x f y =0x x =方法:为在处的切线的斜率。
)(0x f '0x x =题型2 过点的直线与曲线的相切问题。
),(b a )(x f y =方法:设曲线的切点,由求出,进而)(x f y =))(,(00x f x b x f x f a x -='-)()()(0000x 解决相关问题。
注意:曲线在某点处的切线若有则只有一,曲线过某点的切线往往不止一条。
例 已知函数f (x )=x 3﹣3x.
(1)求曲线y=f (x )在点x=2处的切线方程;(答案:)
0169=--y x (2)若过点A 可作曲线的三条切线,求实数的取值范围、
)2)(,1(-≠m m A )(x f y =m (提示:设曲线上的切点();建立的等式关系。
将问题转化为关
)(x f y =)(,00x f x )(,00x f x 于的方程有三个不同实数根问题。
(答案:的范围是)
m x ,0m ()2,3--练习 1. 已知曲线x
x y 33
-=(1)求过点(1,-3)与曲线相切的直线方程。
答案:(或x x y 33-=03=+y x )
027415=--y x (2)证明:过点(-2,5)与曲线相切的直线有三条。
x x y 33
-=2.若直线与曲线相切,求的值. (答案:1)0122=--+e y x e x
ae y -=1a 题型3 求两个曲线、的公切线。
)(x f y =)(x g y =。
专题04 导数解答题2013-2022十年全国高考数学真题分类汇编(文科,全国通用版)(解析版)

当 时, ,当 时, ,
故 在 上为减函数,在 上为增函数,
所以 ,
而 , ,
有两个不同的零点即 的解的个数为2.
当 ,由(1)讨论可得 、 仅有一个零点,
当 时,由(1)讨论可得 、 均无零点,
故若存在直线 与曲线 、 有三个不同的交点,
则 .
设 ,其中 ,故 ,
设 , ,则 ,
故 在 上为增函数,故 即 ,
【题目栏目】导数\导数的综合应用
【题目来源】2021年高考全国甲卷文科·第20题
10.(2021年全国高考乙卷文科·第21题)已知函数 .
(1)讨论 的单调性;
(2)求曲线 过坐标原点的切线与曲线 的公共点的坐标.
【答案】(1)答案见解析;(2) .
解析:(1)由函数的解析式可得: ,
导函数的判别式 ,
即曲线 过坐标原点的切线与曲线 的公共点的坐标为 .
【点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,所以在历届高考中,对导数的应用的考查都非常突出,在高考中的命题方向及命题角度从高考来看,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系.(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数.(3)利用导数求函数的最值(极值),解决生活中的优化问题.(4)考查数形结合思想的应用.
故 为方程 的解,同理 也为方程 的解,
所以 ,而 ,
故 即 .
【题目栏目】导数\导数的综合应用
【题目来源】2022新高考全国I卷·第22题
5.(2021年新高考全国Ⅱ卷·第22题)已知函数 .
(1)讨论 的单调性;
(2)从下面两个条件中选一个,证明: 有一个零点
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考数学导数题型归纳文科Newly compiled on November 23, 20202、不等式恒成立常见处理方法有三种:第一种:分离变量求最值-----用分离变量时要特别注意是否需分类讨论(>0,=0,<0)第二种:变更主元(即关于某字母的一次函数)-----(已知谁的范围就把谁作为主元);(请同学们参看2010省统测2)例1:设函数()y f x =在区间D 上的导数为()f x ',()f x '在区间D 上的导数为()g x ,若在区间D 上,()0g x <恒成立,则称函数()y f x =在区间D 上为“凸函数”,已知实数m 是常数,4323()1262x mx x f x =--(1)若()y f x =在区间[]0,3上为“凸函数”,求m 的取值范围;(2)若对满足2m ≤的任何一个实数m ,函数()f x 在区间(),a b 上都为“凸函数”,求b a -的最大值.例2:设函数),10(3231)(223R b a b x a ax x x f ∈<<+-+-=(Ⅰ)求函数f (x )的单调区间和极值;(Ⅱ)若对任意的],2,1[++∈a a x 不等式()f x a '≤恒成立,求a 的取值范围.(二次函数区间最值的例子)第三种:构造函数求最值题型特征:)()(x g x f >恒成立0)()()(>-=⇔x g x f x h 恒成立;从而转化为第一、二种题型例3;已知函数32()f x x ax =+图象上一点(1,)P b 处的切线斜率为3-, (Ⅰ)求,a b 的值;(Ⅱ)当[1,4]x ∈-时,求()f x 的值域;(Ⅲ)当[1,4]x ∈时,不等式()()f x g x ≤恒成立,求实数t 的取值范围。
二、题型一:已知函数在某个区间上的单调性求参数的范围解法1:转化为0)(0)(''≤≥x f x f 或在给定区间上恒成立, 回归基础题型解法2:利用子区间(即子集思想);首先求出函数的单调增或减区间,然后让所给区间是求的增或减区间的子集;做题时一定要看清楚“在(m,n )上是减函数”与“函数的单调减区间是(a,b )”,要弄清楚两句话的区别:前者是后者的子集 例4:已知R a ∈,函数x a x a x x f )14(21121)(23++++=. (Ⅰ)如果函数)()(x f x g '=是偶函数,求)(x f 的极大值和极小值; (Ⅱ)如果函数)(x f 是),(∞+-∞上的单调函数,求a 的取值范围.例5、已知函数3211()(2)(1)(0).32f x x a x a x a =+-+-≥ (I )求()f x 的单调区间;(II )若()f x 在[0,1]上单调递增,求a 的取值范围。
子集思想三、题型二:根的个数问题题1函数f(x)与g(x)(或与x 轴)的交点======即方程根的个数问题 解题步骤第一步:画出两个图像即“穿线图”(即解导数不等式)和“趋势图”即三次函数的大致趋势“是先增后减再增”还是“先减后增再减”;第二步:由趋势图结合交点个数或根的个数写不等式(组);主要看极大值和极小值与0的关系;第三步:解不等式(组)即可;例6、已知函数232)1(31)(x k x x f +-=,kx x g -=31)(,且)(x f 在区间),2(+∞上为增函数.(1) 求实数k 的取值范围;(2) 若函数)(x f 与)(x g 的图象有三个不同的交点,求实数k 的取值范围. 根的个数知道,部分根可求或已知。
例7、已知函数321()22f x ax x x c =+-+(1)若1x =-是()f x 的极值点且()f x 的图像过原点,求()f x 的极值;(2)若21()2g x bx x d =-+,在(1)的条件下,是否存在实数b ,使得函数()g x 的图像与函数()f x 的图像恒有含1x =-的三个不同交点若存在,求出实数b 的取值范围;否则说明理由。
题2:切线的条数问题====以切点0x 为未知数的方程的根的个数例7、已知函数32()f x ax bx cx =++在点0x 处取得极小值-4,使其导数'()0f x >的x 的取值范围为(1,3),求:(1)()f x 的解析式;(2)若过点(1,)P m -可作曲线()y f x =的三条切线,求实数m 的取值范围.题3:已知()f x 在给定区间上的极值点个数则有导函数=0的根的个数解法:根分布或判别式法 例8、例9、已知函数23213)(x x a x f +=,)0,(≠∈a R a (1)求)(x f 的单调区间;(2)令()g x =14x 4+f (x )(x ∈R )有且仅有3个极值点,求a 的取值范围. 其它例题:1、(最值问题与主元变更法的例子).已知定义在R 上的函数32()2f x ax ax b =-+)(0>a 在区间[]2,1-上的最大值是5,最小值是-11. (Ⅰ)求函数()f x 的解析式;(Ⅱ)若]1,1[-∈t 时,0(≤+'tx x f )恒成立,求实数x 的取值范围. 2、(根分布与线性规划例子)(1)已知函数322()3f x x ax bx c =+++(Ⅰ) 若函数()f x 在1=x 时有极值且在函数图象上的点(0,1)处的切线与直线30x y +=平行, 求)(x f 的解析式;(Ⅱ) 当()f x 在(0,1)x ∈取得极大值且在(1,2)x ∈取得极小值时, 设点(2,1)M b a -+所在平面区域为S, 经过原点的直线L 将S 分为面积比为1:3的两部分,求直线L 的方程.解: (Ⅰ). 由2()22f x x ax b '=++, 函数()f x 在1=x 时有极值 ,∴ 220a b ++= ∵ (0)1f = ∴ 1c =又∵ ()f x 在(0,1)处的切线与直线30x y +=平行, ∴ (0)3f b '==- 故 12a = ∴ 3221()3132f x x x x =+-+ ……………………. 7分 (Ⅱ) 解法一: 由2()22f x x ax b '=++ 及()f x 在(0,1)x ∈取得极大值且在(1,2)x ∈取得极小值,∴ (0)0(1)0(2)0f f f '>⎧⎪'<⎨⎪'>⎩ 即 0220480b a b a b >⎧⎪++<⎨⎪++>⎩令(,)M x y , 则 21x b y a =-⎧⎨=+⎩∴ 12a y b x =-⎧⎨=+⎩ ∴ 20220460x y x y x +>⎧⎪++<⎨⎪++>⎩故点M 所在平面区域S 为如图△ABC, 易得(2,0)A -, (2,1)B --, (2,2)C -, (0,1)D -, 3(0,)2E -, 2ABC S ∆=同时DE 为△ABC 的中位线, 13DEC ABED S S ∆=四边形∴ 所求一条直线L 的方程为: 0x =另一种情况设不垂直于x 轴的直线L 也将S 分为面积比为1:3的两部分, 设直线L 方程为y kx =,它与AC,BC 分别交于F 、G, 则 0k >, 1S =四边形DEGF由 220y kx y x =⎧⎨++=⎩ 得点F 的横坐标为: 221F x k =-+由 460y kx y x =⎧⎨++=⎩ 得点G 的横坐标为: 641G x k =-+∴OGE OFD S S S ∆∆=-四边形DEGF 61311222214121k k =⨯⨯-⨯+⨯=+即 216250k k +-= 解得: 12k =或 58k =- (舍去) 故这时直线方程为: 12y x = 综上,所求直线方程为: 0x =或12y x = .…………….………….12分(Ⅱ) 解法二: 由2()22f x x ax b '=++ 及()f x 在(0,1)x ∈取得极大值且在(1,2)x ∈取得极小值,∴ (0)0(1)0(2)0f f f '>⎧⎪'<⎨⎪'>⎩ 即 0220480b a b a b >⎧⎪++<⎨⎪++>⎩令(,)M x y , 则 21x b y a =-⎧⎨=+⎩∴ 12a y b x =-⎧⎨=+⎩ ∴ 20220460x y x y x +>⎧⎪++<⎨⎪++>⎩故点M 所在平面区域S 为如图△ABC, 易得(2,0)A -, (2,1)B --, (2,2)C -, (0,1)D -, 3(0,)2E -, 2ABC S ∆=同时DE 为△ABC 的中位线, 13DEC ABED S S ∆=四边形 ∴所求一条直线L 的方程为: 0x =另一种情况由于直线BO 方程为: 12y x =, 设直线BO 与AC 交于H , 由 12220y x y x ⎧=⎪⎨⎪++=⎩ 得直线L 与AC 交点为: 1(1,)2H -- ∵ 2ABC S ∆=, 1112222DECS ∆=⨯⨯=, 11222211122H ABO AOHS S S ∆∆∆=-=⨯⨯-⨯⨯=AB ∴ 所求直线方程为: 0x = 或12y x =3、(根的个数问题)已知函数32f(x)ax bx (c 3a 2b)x d (a 0)=++--+>的图象如图所示。
(Ⅰ)求c d 、的值;(Ⅱ)若函数f(x)的图象在点(2,f(2))处的切线方程为3x y 110+-=,求函数f ( x )的解析式;(Ⅲ)若0x 5,=方程f(x)8a =有三个不同的根,求实数a 的取值范围。
解:由题知:2f (x)3ax 2bx+c-3a-2b '=+ (Ⅰ)由图可知 函数f ( x )的图像过点( 0 , 3 ),且()1f '= 0得332c 320d a b a b =⎧⎨++--=⎩⇒⎩⎨⎧==03c d (Ⅱ)依题意 ()2f '= – 3 且f ( 2 ) = 5124323846435a b a b a b a b +--=-⎧⎨+--+=⎩解得a = 1 , b = – 6所以f ( x ) = x 3 – 6x 2 + 9x + 3(Ⅲ)依题意 f ( x ) = ax 3 + bx 2 – ( 3a + 2b )x + 3 ( a >0 )()x f '= 3ax 2 + 2bx – 3a – 2b 由()5f '= 0⇒b = – 9a①若方程f ( x ) = 8a 有三个不同的根,当且仅当 满足f ( 5 )<8a <f ( 1 )② 由① ② 得 – 25a + 3<8a <7a + 3⇒111<a <3所以 当111<a <3时,方程f ( x ) = 8a 有三个不同的根。