【2020最新】人教版最新高考数学二轮复习:三角函数专题Word版

合集下载

2020届高考数学(理)二轮复习专题强化训练:(十六)解三角形理+Word版含答案

2020届高考数学(理)二轮复习专题强化训练:(十六)解三角形理+Word版含答案

专题强化训练(十六) 解三角形1.[2019·天津卷]在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知b +c =2a,3c sin B =4a sin C .(1)求cos B 的值;(2)求sin ⎝⎛⎭⎪⎫2B +π6的值. 解:(1)在△ABC 中,由正弦定理bsin B =csin C ,得b sin C =c sin B ,又由3c sin B =4a sin C ,得3b sin C =4a sin C ,即3b =4a .又因为b +c =2a ,得到b =43a ,c =23a .由余弦定理可得cos B =a 2+c 2-b 22ac =a 2+49a 2-169a 22·a ·23a =-14. (2)由(1)可得sin B =1-cos 2B =154, 从而sin2B =2sin B cos B =-158, cos2B =cos 2B -sin 2B =-78, 故sin ⎝⎛⎭⎪⎫2B +π6=sin2B cos π6+cos2B sin π6=-158×32-78×12=-35+716. 2.[2019·石家庄一模]已知△ABC 的面积为33,且内角A ,B ,C 依次成等差数列.(1)若sin C =3sin A ,求边AC 的长;(2)设D 为AC 边的中点,求线段BD 长的最小值.解:(1)∵△ABC 三个内角A 、B 、C 依次成等差数列,∴B =60°.设A 、B 、C 所对的边分别为a 、b 、c ,由△ABC 的面积S =33=12ac sin B 可得ac =12. ∵sin C =3sin A ,由正弦定理知c =3a ,∴a =2,c =6.在△ABC 中,由余弦定理可得b 2=a 2+c 2-2ac cos B =28,∴b =27,即AC 的长为27.(2)∵BD 是AC 边上的中线,∴BD →=12(BC →+BA →), ∴BD →2=14(BC →2+BA →2+2BC →·BA →)=14(a 2+c 2+2ac cos B )=14(a 2+c 2+ac )≥14(2ac +ac )=9,当且仅当a =c 时取“=”,∴|BD →|≥3,即BD 长的最小值为3.3.[2019·合肥质检二]在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,sin 2A +sin 2B +sin A sin B =2c sinC ,△ABC 的面积S =abc .(1)求角C ;(2)求△ABC 周长的取值范围.解:(1)由S =abc =12ab sin C 可得2c =sin C , ∴sin 2A +sin 2B +sin A sin B =sin 2C ,由正弦定理得a 2+b 2+ab =c 2,由余弦定理得cos C =-12,∴C =2π3. (2)由(1)知2c =sin C ,同理可知2a =sin A ,2b =sin B .△ABC 的周长为 a +b +c =12(sin A +sin B +sin C )=12[sin A +sin ⎝ ⎛⎭⎪⎫π3-A ]+34 =12⎝ ⎛⎭⎪⎫sin A +32cos A -12sin A +34=12⎝ ⎛⎭⎪⎫12sin A +32cos A +34=12sin ⎝⎛⎭⎪⎫A +π3+34. ∵A ∈⎝ ⎛⎭⎪⎫0,π3,∴A +π3∈⎝ ⎛⎭⎪⎫π3,2π3, ∴sin ⎝ ⎛⎭⎪⎫A +π3∈⎝ ⎛⎦⎥⎤32,1, ∴△ABC 周长的取值范围为⎝ ⎛⎦⎥⎤32,2+34.4.[2019·武汉4月调研]在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若cos A =104,B =2A ,b =15. (1)求a ;(2)已知M 在边BC 上,且CM MB =12,求△CMA 的面积. 解:(1)由0<A <π,cos A =104,知sin A =64, ∴sin B =sin2A =2sin A cos A =2×64×104=154, 由正弦定理a sin A =b sin B =csin C 可知, a =b sin A sin B= 6. (2)cos B =cos2A =2cos 2A -1=2×⎝ ⎛⎭⎪⎫1042-1=14, sin C =sin(A +B )=sin A cos B +cos A sin B =64×14+104×154=368, △ABC 的面积S △ABC =12ab ·sin C =12×6×15×368=9158, 又CM MB =12,∴S △CMA =13S △ABC =13×9158=3158. 5.[2019·济南模拟]△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知2b sin C =a cos C +c cos A ,B =2π3,c = 3. (1)求角C ; (2)若点E 满足AE →=2EC →,求BE 的长.解:(1)解法一:由题设及正弦定理得2sin B sin C =sin A cos C +sin C cos A ,又sin A cos C +sin C cos A =sin(A +C )=sin(π-B )=sin B ,所以2sin B sin C =sin B .由于sin B =32≠0,所以sin C =12. 又0<C <π3,所以C =π6. 解法二:由题设及余弦定理可得2b sin C =a ×a 2+b 2-c 22ab +c ×b 2+c 2-a 22bc, 化简得2b sin C =b .因为b >0,所以sin C =12. 又0<C <π3,所以C =π6. 解法三:由2b sin C =a cos C +c cos A ,结合b =a cos C +c cos A ,可得2b sin C =b .因为b >0,所以sin C =12. 又0<C <π3,所以C =π6. (2)解法一:由正弦定理易知b sin B =csin C =23,解得b =3. 又AE →=2EC →,所以AE =23AC =23b ,即AE =2. 在△ABC 中,因为∠ABC =23π,C =π6, 所以A =π6, 所以在△ABE 中,A =π6,AB =3,AE =2, 由余弦定理得BE =AB 2+AE 2-2AB ·AE cos π6= 3+4-2×3×2×32=1, 所以BE =1.解法二:在△ABC 中,因为∠ABC =23π,C =π6,所以A =π6,a =c = 3. 由余弦定理得b =(3)2+(3)2-2×3×3×co s 23π=3. 因为AE →=2EC →,所以EC =13AC =1. 在△BCE 中,C =π6,BC =3,CE =1,由余弦定理得BE =BC 2+EC 2-2BC ·EC cos π6=3+1-2×3×1×32=1, 所以BE =1. 解法三:在△ABC 中,因为∠ABC =23π,C =π6, 所以A =π6,a =c = 3. 因为AE →=2EC →,所以BE →=13BA →+23BC →. 则|BE →|2=19(BA →+2BC →)2=19(|BA →|2+4BA →·BC →+4|BC →|2)=19(3-4×3×3×12+4×3)=1,所以BE =1.6.[2019·太原一模]如图,已知△ABC 的内角A ,B ,C 的对边分别是a ,b ,c ,且a sin A +(c -a )sin C =b sin B ,点D 是AC 的中点,DE ⊥AC ,交AB 于点E ,且BC =2,DE =62.(1)求B ;(2)求△ABC 的面积.解:(1)∵a sin A +(c -a )sin C =b sin B ,∴由a sin A =b sin B =c sin C 得a 2+c 2-ac =b 2, 由余弦定理得cos B =a 2+c 2-b 22ac =12, ∵0°<B <180°,∴B =60°.(2)如图,连接CE ,∵D 是AC 的中点,DE ⊥AC ,∴AE =CE ,∴CE =AE =DEsin A =62sin A . 在△BCE 中,由正弦定理得CEsin B=BC sin ∠BEC =BC sin2A , ∴62sin A sin60°=22sin A cos A ,∴cos A =22, ∵0°<A <180°,∴A =45°,∴∠ACB =75°,∴∠BCE =∠ACB -∠ACE =30°,∠BEC =90°,∴CE =AE =3,AB =AE +BE =3+1,∴S △ABC =12AB ·CE =3+32. 7.[2019·长沙一模]已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .且a sin(A +B )=c sin B +C2.(1)求A ;(2)若△ABC 的面积为3,周长为8,求a .解:(1)由题设得a sin C =c cos A 2, 由正弦定理得sin A sin C =sin C cos A 2,∵sin C ≠0, 所以sin A =cos A 2, 所以2sin A 2cos A 2=cos A 2,又cos A 2≠0, 所以sin A 2=12, 故A =60°.(2)由题设得12bc sin A =3,从而bc =4. 由余弦定理a 2=b 2+c 2-2bc cos A ,得a 2=(b +c )2-12.又a +b +c =8,所以a 2=(8-a )2-12,解得a =134. 8.[2019·福州质检]△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若角A ,B ,C 成等差数列,且b =32.(1)求△ABC 的外接圆直径;(2)求a +c 的取值范围.解:(1)因为角A ,B ,C 成等差数列,所以2B =A +C ,又因为A +B +C =π,所以B =π3. 根据正弦定理得,△ABC 的外接圆直径2R =b sin B =32sin π3=1. (2)解法一:由B =π3,知A +C =2π3, 可得0<A <2π3. 由(1)知△ABC 的外接圆直径为1,根据正弦定理得, a sin A =b sin B =c sin C =1, 所以a +c =sin A +sin C=sin A +sin ⎝⎛⎭⎪⎫2π3-A =3⎝ ⎛⎭⎪⎫32sin A +12cos A =3sin ⎝⎛⎭⎪⎫A +π6. 因为0<A <2π3,所以π6<A +π6<5π6. 所以12<sin ⎝⎛⎭⎪⎫A +π6≤1, 从而32<3sin ⎝⎛⎭⎪⎫A +π6≤3, 所以a +c 的取值范围是⎝ ⎛⎦⎥⎤32,3. 解法二:由(1)知,B =π3, b 2=a 2+c 2-2ac cos B=(a +c )2-3ac≥(a +c )2-3⎝⎛⎭⎪⎫a +c 22=14(a +c )2(当且仅当a =c 时,取等号), 因为b =32,所以(a +c )2≤3,即0<a +c ≤3, 又三角形两边之和大于第三边, 所以32<a +c ≤3, 所以a +c 的取值范围是⎝⎛⎦⎥⎤32,3.。

人教A版2020届高考数学二轮复习解答题题型归纳:三角函数 解三角形(中档)

人教A版2020届高考数学二轮复习解答题题型归纳:三角函数 解三角形(中档)

解答题题型归纳解三角形1.在△ABC 中,|AB →|=2,|AC →|=3,AB →·AC →<0,且△ABC 的面积为32,则∠BAC = .2.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,sin 2A +sin 2B +sin 2C =23sin A sin B sin C ,且a =2,则△ABC 的外接圆半径R = .3.在平面四边形ABCD 中,∠ADC=90°,∠A=45°,AB=2,BD=5. (1)求cos ∠ADB ; (2)若DC=2√2,求BC .3.解:(1)∵∠ADC=90°,∠A=45°,AB=2,BD=5. ∴由正弦定理得:ABsin∠ADB =BDsin∠A ,即2sin∠ADB =5sin45°, ∴sin ∠ADB=2sin45°5=√25, ∵AB <BD ,∴∠ADB <∠A , ∴cos ∠ADB=√1−(√25)2=√235. (2)∵∠ADC=90°,∴cos ∠BDC=sin ∠ADB=√25, ∵DC=2√2,∴BC=√BD 2+DC 2−2×BD ×DC ×cos∠BDC=√25+8−2×5×2√2×√25=5.4.设△ABC 的内角A ,B ,C 所对边的长分别是a ,b ,c ,且b =3,c =1,A =2B . (1)求a 的值; (2)求sin ⎝ ⎛⎭⎪⎫A +π4的值.4.解 (1)因为A =2B ,所以sin A =sin 2B =2sin B cos B . 由正、余弦定理得a =2b ·a 2+c 2-b 22ac . 因为b =3,c =1,所以a 2=12,a =2 3.(2)由余弦定理得cos A =b 2+c 2-a 22bc =9+1-126=-13.由于0<A <π,所以sin A =1-cos 2A =1-19=223.5.在△ABC中,A=3π4,AB=6,AC=32,点D在BC边上,AD=BD,求AD的长.5.解设△ABC的内角A,B,C所对边的长分别是a,b,c,由余弦定理,得6.在△ABC中,已知AB=2,AC=3,A=60°.(1)求BC的长;(2)求sin 2C的值.7.在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,且cos A a +cos B b =sin Cc . (1)证明:sin A sin B =sin C ; (2)若b 2+c 2-a 2=65bc ,求tanB.则a =k sin A ,b =k sin B ,c =k sin C .sin A sin B =sin A cos B +cos A sin B =sin(A +B ).在△ABC 中,由A +B +C =π,有sin(A +B )=sin(π-C )=sin C .所以sin A sin B =sin C .8.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知b +c =2a cos B. (1)证明:A =2B ;(2)若△ABC的面积S=a24,求角A的大小.8. (1)证明由正弦定理得sin B+sin C=2sin A cos B,故2sin A cos B=sin B+sin(A+B)=sin B+sin A cos B+cos A sin B,于是sin B=sin(A-B).又A,B∈(0,π),故0<A-B<π,所以B=π-(A-B)或B=A-B,因此A=π(舍去)或A=2B,所以A=2B.9.△ABC的内角A,B,C的对边分别为a,b,c,已知2cos C(a cos B+b cos A)=c.(1)求C;(2)若c=7,△ABC的面积为332,求△ABC的周长.9.解(1)由已知及正弦定理得,2cos C(sin A cos B+sin B cos A)=sin C,10.设△ABC的内角A,B,C的对边分别为a,b,c,a=b tan A,且B为钝角.(1)证明:B-A=π2;(2)求sin A+sin C的取值范围.11.△ABC中,D是BC上的点,AD平分∠BAC,△ABD面积是△ADC面积的2倍.(1)求sin∠B sin∠C;(2)若AD=1,DC=22,求BD和AC的长.因为S△ABD=2S△ADC,∠BAD=∠CAD,所以AB=2AC.理知AB2=AD2+BD2-2AD·BD cos∠ADB,AC2=AD2+DC2-2AD·DC cos∠ADC.故AB2+2AC2=3AD2+BD2+2DC2=6,由(1)知AB=2AC,所以AC=1.12.在△ABC中,内角A,B,C所对的边分别是a,b,c,已知A=π4,b2-a2=12c2.(1)求tan C的值;(2)若△ABC的面积为3,求b的值.sin2C.b,13.△ABC的内角A,B,C所对的边分别为a,b,c.向量m=(a,3b)与n=(cos A,sin B)平行.(1)求A;(2)若a=7,b=2,求△ABC的面积.得7=4+c2-2c,即c2-2c-3=0,因为c>0,所以c=3,14.在△ABC中,内角A,B,C的对边分别为a,b,c,且a>c.已知B A→·B C→=2,cos B=13,b=3.求:(1)a 和c 的值; (2)cos(B -C )的值.由余弦定理,得a 2+c 2=b 2+2ac cos B .又b =3,所以a 2+c 2=9+2×2=13. 解⎩⎨⎧ac =6,a 2+c 2=13,得a =2,c =3或a =3,c =2.因a >c ,所以a =3,c =2.因a =b >c ,所以C 为锐角,15.如图,在△ABC 中,∠B =π3,AB =8,点D 在BC 边上,且CD =2,cos ∠ADC=17.(1)求sin ∠BAD ; (2)求BD ,AC 的长.所以AC =7.16.已知向量a =(2sin x ,3cos x ),b =(-sin x ,2sin x ),函数f (x )=a·b . (1)求f (x )的单调递增区间;(2)在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边且f (c )=1,c =1,ab =23,a >b ,求a ,b 的值.17.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且b cos C =3a cos B -c cos B.(1)求cos B 的值;(2)若BA→·BC →=2,且b =22,求a 和c 的值. 17.解 (1)由正弦定理得a =2R sin A ,b =2R sin B ,c =2R sin C ,则2R sin B cos C =6R sin A cos B -2R sin C cos B ,故sin B cos C =3sin A cos B -sin C cos B ,可得sin B cos C +sin C cos B =3sin A cos B ,即sin(B +C )=3sin A cos B ,(2)由BA→·BC →=2,可得ac cos B =2,18.如图,角A 为钝角,且sin A =35,点P ,Q 分别是角A 的两边上不同于点A 的动点.(1)若AP=5,PQ=35,求AQ的长;(2)设∠APQ=α,∠AQP=β,且cos α=1213,求sin(2α+β)的值.在△AQP中,由余弦定理得PQ2=AP2+AQ2-2AP·AQ cos A,∴AQ2+8AQ-20=0,解得AQ=2或-10(舍去),∴AQ=2.∴sin(2α+β)=sin[α+(α+β)]=19.在ABC△中,角A,B,C的对边分别是a,b,c,()()()sin sin sin sinb c B C a A C-+=-.(1)求B 的值;(2)若3b =,求a c +的最大值.【解析】(1)在ABC △中,由正弦定理得,()()()b c b c a a c -+=-,即222b a c ac =+-,(2)由(1)知()22293a c ac a c ac =+-=+-,解得6a c +≤,当且仅3a c ==时,取等号.所以a c +的最大值为6.20.在锐角ABC △中,a ,b ,c 为内角A ,B ,C 的对边,且满足()2cos cos 0c a B b A --=.(1)求角B 的大小;(2)已知2c =,边AC 边上的高BD =ABC △的面积S 的值. 【解析】(1)∵()2cos cos 0c a B b A --=,由正弦定理得()2sin sin cos sin cos 0C A B B A --=,∴()2sin sin cos sin cos C A B B A -=,()2sin cos sin 0C B A B -+=,由余弦定理得:22222cos 42b a c ac B a a =+-=+-,又∵ABC △是锐角三角形,∴222a c b <+,∴3a =,。

高考数学大二轮复习 微专题(三) 三角函数问题的解题技巧——“变角”“变式”

高考数学大二轮复习   微专题(三) 三角函数问题的解题技巧——“变角”“变式”
而 ∈
π
,
π
2
因此 sin
,所以
π
+4
所以 2sin
12
1
于是 t +t2
2
∈ -
π
+4
=
π
θ+4

π
+
4
3π 5π
,
4 4
2 2
,
2 2
,
,
,
∈(-1,1),即 t∈(-1,1).
1
(t+1)2-1∈(-1,1).
2
故 sin θ+cos θ+sin θcos θ 的取值范围是(-1,1).
考查角度
角度一 变角

12
[例 1—1](2021·山东淄博月考)已知 θ∈(0,π),cos 6 - =-13,则 tan +
π
=
6
.
5
答案
12
解析 由于
又因为 cos
π
θ∈(0,π),所以-6

-
6
<
12
π
=- ,所以
13
2
因此 sin

-
6
=
所以 tan

-
6
5
=-12,
4
4
立联系.
,sin 2α,cos 2α等式子也都可以相互转化建
[例2-4](2021·山东潍坊月考)已知θ是钝角,则sin θ+cos θ+sin θcos θ的取值
范围是
.
答案 (-1,1)
2 -1
θ= ,于是
2

高考数学大二轮复习专题一平面向量、三角函数与解三角形第一讲平面向量课件理

高考数学大二轮复习专题一平面向量、三角函数与解三角形第一讲平面向量课件理

-b)⊥b,则 a 与 b 的夹角为( )
π
π
A.6
B.3
C.23π
D.56π
解析:由(a-b)⊥b,可得(a-b)·b=0,∴a·b=b2.
∵|a|=2|b|,∴cos〈a,b〉=|aa|··|bb|=2bb22=12.
∵0≤〈a,b〉≤π,∴a 与 b 的夹角为π3.故选 B. 答案:B
4.(2019·恩施州模拟)已知向量 a=(1, 3),b=-12, 23,则
3.(2019·河北衡水中学模拟)已知 O 是平面上一定点,A,B,
C
是平面上不共线的三点,动点
P


→ OP

O→B+O→C 2

λ
→ AB →


AC →
,λ∈[0,+∞),则点 P 的轨迹经过△
|AB|cos B |AC|cos C
ABC 的( )
A.外心
B.内心
C.重心
D.垂心
解析:设
答案:A
4.(2018·高考全国卷Ⅲ)已知向量 a=(1,2),b=(2,-2),c= (1,λ).若 c∥(2a+b),则 λ=________.
解析:2a+b=(4,2),因为 c∥(2a+b),所以 4λ=2,得 λ=12. 答案:12
[类题通法] 1.应用平面向量基本定理表示向量的实质是利用 平行四边形法则或三角形法则进行向量的加、减或数乘运 算.一般将向量归结到相关的三角形中,利用三角形法则列出 三个向量之间的关系. 2.用平面向量基本定理解决问题的一般思路:先选择一组基 底,并运用该组基底将条件和结论表示成向量的形式,再通过 向量的运算来解决.注意同一个向量在不同基底下的分解是不 同的,但在每组基底下的分解都是唯一的.

2020高考数学二轮复习第2部分专题一三角函数与解三角形必考点文1

2020高考数学二轮复习第2部分专题一三角函数与解三角形必考点文1

(6)若求出2x -的范围,再求函数的最值,同样得分.1.已知函数f(x)=4cos ωx·sin(ω>0)的最小正周期为π.(1)求ω的值;(2)讨论f(x)在区间上的单调性.解:(1)f(x)=4cos ωxsin ⎝ ⎛⎭⎪⎫ωx+π4=2sin ωxcos ωx+2cos2ωx=(sin 2ωx+cos 2ωx)+ 2=2sin +.因为f(x)的最小正周期为π,且ω>0,所以=π,故ω=1.(2)由(1)知,f(x)=2sin +.若0≤x≤,则≤2x+≤.当≤2x+≤,即0≤x≤时,f(x)单调递增;当≤2x+≤,即≤x≤时,f(x)单调递减.综上可知,f(x)在上单调递增,在上单调递减.类型二 学会审题[例2] 已知函数f(x)=sin(ωx+φ)的图象关于直线x =对称,且图象上相邻两个最高点的距离为π.(1)求ω和φ的值;(2)若f =,求cos 的值.审题路线图(1)条件:f x 图象上相邻两个最高点距离为π(2)条件:f ⎝ ⎛⎭⎪⎫α2=343.已知在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,向量m =(2b,1),n =(2a -c ,cos C),且m∥n.(1)若b2=ac ,试判断△ABC 的形状;(2)求y =1-的值域.解:(1)由已知,m∥n,则2bcos C =2a -c ,由正弦定理,得2sin Bcos C =2sin(B +C)-sin C ,即2sin Bcos C =2sin Bcos C +2cos Bsin C -sin C , 在△ABC 中,sin C≠0,因而2cos B =1,则B =.又b2=ac ,b2=a2+c2-2accos B ,因而ac =a2+c2-2accos ,即(a -c)2=0,所以a =c ,△ABC 为等边三角形.(2)y =1-2cos 2A 1+tan A=1-2cos2A -sin2A1+sin A cos A=1-2cos A(cos A -sin A)=sin 2A -cos 2A=sin ,由已知条件B =知A∈.所以,2A -∈.因而所求函数的值域为(-1,].4.已知函数f(x)=2sinsin ,x∈R.(1)求函数f(x)的最小正周期;(2)在△ABC 中,若A =,c =2,且锐角C 满足f =,求△ABC 的面积S.解:(1)由题意得,。

2020届高考三角函数及解三角形汇编专题数学(理)Word版含解析

2020届高考三角函数及解三角形汇编专题数学(理)Word版含解析

专题06 三角函数及解三角形1.【2019年高考全国Ⅰ卷理数】函数f (x )=在[,]-ππ的图像大致为 A .B .C .D .2.【2019年高考全国Ⅰ卷理数】关于函数()sin |||sin |f x x x =+有下述四个结论:①f (x )是偶函数②f (x )在区间(2π,π)单调递增③f (x )在[,]-ππ有4个零点 ④f (x )的最大值为2其中所有正确结论的编号是 A .①②④ B .②④ C .①④D .①③3.【2019年高考全国Ⅱ卷理数】下列函数中,以2π为周期且在区间(4π,2π)单调递增的是A .f (x )=|cos2x |B .f (x )=|sin2x |C .f (x )=cos|x |D .f (x )=sin|x |4.【2019年高考全国Ⅱ卷理数】已知α∈(0,2π),2sin2α=cos2α+1,则sin α=A .15B5C3D55.【2019年高考全国Ⅲ卷理数】设函数()f x =sin (5x ωπ+)(ω>0),已知()f x 在[]0,2π有且仅有5个零点,下述四个结论:①()f x 在(0,2π)有且仅有3个极大值点 ②()f x 在(0,2π)有且仅有2个极小值点2sin cos ++x xx x③()f x 在(0,10π)单调递增 ④ω的取值范围是[1229510,)其中所有正确结论的编号是 A .①④ B .②③ C .①②③D .①③④6.【2019年高考天津卷理数】已知函数()sin()(0,0,||)f x A x A ωϕωϕ=+>><π是奇函数,将()y f x =的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象对应的函数为()g x .若()g x 的最小正周期为2π,且4g π⎛⎫= ⎪⎝⎭38f π⎛⎫= ⎪⎝⎭A .2- B. CD .27.【2019年高考北京卷理数】函数f (x )=sin 22x 的最小正周期是__________.8.【2019年高考全国Ⅱ卷理数】ABC △的内角,,A B C 的对边分别为,,a b c .若π6,2,3b ac B ===,则ABC △的面积为_________.9.【2019年高考江苏卷】已知tan 2π3tan 4αα=-⎛⎫+ ⎪⎝⎭,则πsin 24α⎛⎫+ ⎪⎝⎭的值是 ▲ . 10.【2019年高考浙江卷】在ABC △中,90ABC ∠=︒,4AB =,3BC =,点D 在线段AC 上,若45BDC ∠=︒,则BD =___________,cos ABD ∠=___________.11.【2019年高考全国Ⅰ卷理数】ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,设22(sin sin )sin sin sin B C A B C -=-.(1)求A ;(22b c +=,求sin C .12.【2019年高考全国Ⅲ卷理数】△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sinsin 2A Ca b A +=. (1)求B ;(2)若△ABC 为锐角三角形,且c =1,求△ABC 面积的取值范围.13.【2019年高考北京卷理数】在△ABC 中,a =3,b −c =2,cos B =12-. (1)求b ,c 的值; (2)求sin (B –C )的值.14.【2019年高考天津卷理数】在ABC △中,内角,,A B C 所对的边分别为,,a b c .已知2b c a +=,3sin 4sin c B a C =.(1)求cos B 的值; (2)求sin 26B π⎛⎫+ ⎪⎝⎭的值.15.【2019年高考江苏卷】在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .(1)若a =3c ,b ,cos B =23,求c 的值; (2)若sin cos 2A B a b =,求sin()2B π+的值.16.【2019年高考江苏卷】如图,一个湖的边界是圆心为O 的圆,湖的一侧有一条直线型公路l ,湖上有桥AB (AB 是圆O 的直径).规划在公路l 上选两个点P 、Q ,并修建两段直线型道路PB 、QA .规划要求:线段PB 、QA 上的所有点到点O 的距离均不小于圆....O 的半径.已知点A 、B 到直线l 的距离分别为AC 和BD (C 、D 为垂足),测得AB =10,AC =6,BD =12(单位:百米).(1)若道路PB 与桥AB 垂直,求道路PB 的长;(2)在规划要求下,P 和Q 中能否有一个点选在D 处?并说明理由;(3)在规划要求下,若道路PB 和QA 的长度均为d (单位:百米).求当d 最小时,P 、Q 两点间的距离.17.【2019年高考浙江卷】设函数()sin ,f x x x =∈R .(1)已知[0,2),θ∈π函数()f x θ+是偶函数,求θ的值; (2)求函数22[()][()]124y f x f x ππ=+++的值域.18.【重庆西南大学附属中学校2019届高三第十次月考数学试题】已知角α的顶点在坐标原点,始边与x 轴正半轴重合,终边经过点(1)P ,则cos2=αA .3B .13C .13-D .3-19.【四川省宜宾市2019届高三第三次诊断性考试数学试题】已知4cos 5=-α,()π,0∈-α,则πtan 4⎛⎫-= ⎪⎝⎭αA .17 B .7 C .17-D .7-20.【广东省韶关市2019届高考模拟测试(4月)数学文试题】已知函数π()sin()6f x x =+ω(0)>ω的相邻对称轴之间的距离为π2,将函数图象向左平移π6个单位得到函数()g x 的图象,则()g x = A .πsin()3x +B .πsin(2)3x +C .cos2xD .πcos(2)3x +21.【河南省郑州市2019届高三第三次质量检测数学试题】已知函数()()sin f x A x =+ωϕ,π0,0,2A >><ωϕ的部分图象如图所示,则使()()0f a x f a x +--=成立的a 的最小正值为A .π12 B .π6 C .π4D .π322.【山东省实验中学等四校2019届高三联合考试数学试题】在ABC △中,a ,b ,c 分别为角A ,B ,C 的对边,若ABC △的面积为S ,且()22a b c =+-,则πsin 4C ⎛⎫+= ⎪⎝⎭A .1B .2C D 23.【山东省烟台市2019届高三3月诊断性测试(一模)数学试题】在ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,若1a =cos )cos 0A C C b A ++=,则角A =A .2π3 B .π3 C .π6D .5π624.【广东省韶关市2019届高考模拟测试(4月)数学试题】在ABC △中,a 、b 、c 分别是内角A 、B 、C cos sin (cos cos )A A a C c A =+.(1)求角A 的大小;(2)若a =ABC △的面积为4,求ABC △的周长.25.【北京市昌平区2019届高三5月综合练习(二模)数学试题】已知函数1(=cos cos )+2f x x x x -). (1)求π()3f 的值;(2)当π[0,]2x ∈时,不等式()2c f x c <<+恒成立,求实数c 的取值范围.专题06 三角函数及解三角形详细解析1.【2019年高考全国Ⅰ卷理数】函数f (x )=在[,]-ππ的图像大致为 A . B .C .D .【答案】D 【解析】由22sin()()sin ()()cos()()cos x x x xf x f x x x x x -+----===--+-+,得()f x 是奇函数,其图象关于原点对称,排除A .又22π1π42π2()1,π2π()2f ++==>2π(π)01πf =>-+,排除B ,C ,故选D . 【名师点睛】本题考查函数的性质与图象,渗透了逻辑推理、直观想象和数学运算素养,采取性质法或赋值法,利用数形结合思想解题.解答本题时,先判断函数的奇偶性,得()f x 是奇函数,排除A ,再注意到选项的区别,利用特殊值得正确答案.2.【2019年高考全国Ⅰ卷理数】关于函数()sin |||sin |f x x x =+有下述四个结论:①f (x )是偶函数②f (x )在区间(2π,π)单调递增③f (x )在[,]-ππ有4个零点 ④f (x )的最大值为2其中所有正确结论的编号是 A .①②④ B .②④ C .①④D .①③【答案】C【解析】()()()()sin sin sin sin ,f x x x x x f x f x -=-+-=+=∴Q 为偶函数,故①正确.当ππ2x <<时,()2sin f x x =,它在区间,2π⎛⎫π ⎪⎝⎭单调递减,故②错误.2sin cos ++x xx x当0πx ≤≤时,()2sin f x x =,它有两个零点:0,π;当π0x -≤<时,()()sin sin f x x x =--2sin x =-,它有一个零点:π-,故()f x 在[],-ππ有3个零点:0-π,,π,故③错误.当[]()2,2x k k k *∈ππ+π∈N时,()2sin f x x =;当[]()2,22x k k k *∈π+ππ+π∈N时,()sin sin 0f x x x =-=,又()f x 为偶函数,()f x ∴的最大值为2,故④正确.综上所述,①④正确,故选C .【名师点睛】本题也可画出函数()sin sin f x x x =+的图象(如下图),由图象可得①④正确.3.【2019年高考全国Ⅱ卷理数】下列函数中,以2π为周期且在区间(4π,2π)单调递增的是A .f (x )=|cos2x |B .f (x )=|sin2x |C .f (x )=cos|x |D .f (x )=sin|x |【答案】A【解析】作出因为sin ||y x =的图象如下图1,知其不是周期函数,排除D ; 因为cos cos y x x ==,周期为2π,排除C ;作出cos2y x =图象如图2,由图象知,其周期为π2,在区间(4π,2π)单调递增,A 正确; 作出sin 2y x =的图象如图3,由图象知,其周期为π2,在区间(4π,2π)单调递减,排除B ,故选A .图1图2图3【名师点睛】本题主要考查三角函数的图象与性质,渗透直观想象、逻辑推理等数学素养,画出各函数图象,即可作出选择.本题也可利用二级结论:①函数()y f x =的周期是函数()y f x =周期的一半;②sin y x ω=不是周期函数.4.【2019年高考全国Ⅱ卷理数】已知α∈(0,2π),2sin2α=cos2α+1,则sin α=A .15B .5C 3D 5【答案】B【解析】2sin 2cos21αα=+Q ,24sin cos 2cos .0,,cos 02αααααπ⎛⎫∴⋅=∈∴> ⎪⎝⎭Q ,sin 0,α>2sin cos αα∴=,又22sin cos 1αα+=,2215sin 1,sin 5αα∴==,又sin 0α>,sin 5α∴=,故选B .【名师点睛】本题是对三角函数中二倍角公式、同角三角函数基本关系式的考查,中等难度,判断正余弦的正负,运算准确性是关键,题目不难,需细心,解决三角函数问题,研究角的范围后得出三角函数值的正负很关键,切记不能凭感觉.解答本题时,先利用二倍角公式得到正余弦关系,再利用角范围及正余弦平方和为1关系得出答案.5.【2019年高考全国Ⅲ卷理数】设函数()f x =sin (5x ωπ+)(ω>0),已知()f x 在[]0,2π有且仅有5个零点,下述四个结论:①()f x 在(0,2π)有且仅有3个极大值点 ②()f x 在(0,2π)有且仅有2个极小值点③()f x 在(0,10π)单调递增 ④ω的取值范围是[1229510,)其中所有正确结论的编号是 A .①④ B .②③ C .①②③ D .①③④【答案】Dπ【名师点睛】本题为三角函数与零点结合问题,难度大,可数形结合,分析得出答案,要求高,理解深度高,考查数形结合思想.注意本题中极小值点个数是动态的,易错,正确性考查需认真计算,易出错. 6.【2019年高考天津卷理数】已知函数()sin()(0,0,||)f x A x A ωϕωϕ=+>><π是奇函数,将()y f x =的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象对应的函数为()g x .若()g x 的最小正周期为2π,且4g π⎛⎫= ⎪⎝⎭38f π⎛⎫= ⎪⎝⎭A .2-B . CD .2【答案】C【解析】∵()f x 为奇函数,∴(0)sin 0,=π,,0,f A k k k ϕϕ==∴∈∴=Z 0ϕ=; 又12π()sin,2π,122g x A x T ωω=∴==∴2ω=,又π()4g =2A =,∴()2sin 2f x x =,3π()8f =故选C. 【名师点睛】本题主要考查函数的性质和函数的求值问题,解题关键是求出函数()g x ,再根据函数性质逐步得出,,A ωϕ的值即可.7.【2019年高考北京卷理数】函数f (x )=sin 22x 的最小正周期是__________. 【答案】π2【解析】函数()2sin 2f x x ==1cos 42x -,周期为π2. 【名师点睛】本题主要考查二倍角的三角函数公式、三角函数的最小正周期公式,属于基础题.将所给的函数利用降幂公式进行恒等变形,然后求解其最小正周期即可.8.【2019年高考全国Ⅱ卷理数】ABC △的内角,,A B C 的对边分别为,,a b c .若π6,2,3b ac B ===,则ABC △的面积为_________.【答案】【解析】由余弦定理得2222cos b a c ac B =+-,所以2221(2)2262c c c c +-⨯⨯⨯=,即212c =,解得c c ==-,所以2a c ==11sin 22ABC S ac B ==⨯=△ 【名师点睛】本题易错点往往是余弦定理应用有误或是开方导致错误.解答此类问题,关键是在明确方法的基础上,准确记忆公式,细心计算.本题首先应用余弦定理,建立关于c 的方程,应用,a c 的关系、三角形面积公式计算求解,本题属于常见题目,难度不大,注重了基础知识、基本方法、数学式子的变形及运算求解能力的考查. 9.【2019年高考江苏卷】已知tan 2π3tan 4αα=-⎛⎫+ ⎪⎝⎭,则πsin 24α⎛⎫+ ⎪⎝⎭的值是 ▲ .【答案】10【解析】由()tan 1tan tan tan 2tan 1πtan 13tan 1tan 4αααααααα-===-++⎛⎫+ ⎪-⎝⎭,得23tan 5tan 20αα--=, 解得tan 2α=,或1tan 3α=-. πππsin 2sin 2cos cos 2sin 444ααα⎛⎫+=+ ⎪⎝⎭()22222sin cos cos sin sin 2cos 2=22sin cos αααααααα⎫+-=+⎪+⎝⎭222tan 1tan =2tan 1ααα⎛⎫+- ⎪+⎝⎭, 当tan 2α=时,上式222212==22110⎛⎫⨯+- ⎪+⎝⎭ 当1tan 3α=-时,上式=22112()1()33[]=1210()13⨯-+--⨯-+综上,πsin 2410α⎛⎫+= ⎪⎝⎭ 【名师点睛】本题考查三角函数的化简求值,渗透了逻辑推理和数学运算素养.采取转化法,利用分类讨论和转化与化归思想解题.由题意首先求得tan α的值,然后利用两角和的正弦公式和二倍角公式将原问题转化为齐次式求值的问题,最后切化弦求得三角函数式的值即可.10.【2019年高考浙江卷】在ABC △中,90ABC ∠=︒,4AB =,3BC =,点D 在线段AC 上,若45BDC ∠=︒,则BD =___________,cos ABD ∠=___________.【解析】如图,在ABD △中,由正弦定理有:sin sin AB BD ADB BAC =∠∠,而3π4,4AB ADB =∠=,5AC ,34sin ,cos 55BC AB BAC BAC AC AC ∠==∠==,所以BD =. ππcos cos()cos cos sin sin 44ABD BDC BAC BAC BAC ∠=∠-∠=∠+∠=.【名师点睛】本题主要考查解三角形问题,即正弦定理、三角恒等变换、数形结合思想及函数方程思想.在ABD △中应用正弦定理,建立方程,进而得解.解答解三角形问题,要注意充分利用图形特征. 11.【2019年高考全国Ⅰ卷理数】ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,设22(sin sin )sin sin sin B C A B C -=-.(1)求A ;(22b c +=,求sin C .【答案】(1)60A ︒=;(2)sin C =【解析】(1)由已知得222sin sin sin sin sin B C A B C +-=,故由正弦定理得222b c a bc +-=.由余弦定理得2221cos 22b c a A bc +-==.因为0180A ︒︒<<,所以60A ︒=.(2)由(1)知120B C ︒=-()sin 1202sin A C C ︒+-=,1sin 2sin 2C C C ++=,可得()cos 602C ︒+=-.由于0120C ︒︒<<,所以()sin 60C ︒+=,故 ()sin sin 6060C C ︒︒=+-()()sin 60cos60cos 60sin 60C C ︒︒︒︒=+-+=. 【名师点睛】本题考查利用正弦定理、余弦定理解三角形的问题,涉及到两角和差正弦公式、同角三角函数关系的应用,解题关键是能够利用正弦定理对边角关系式进行化简,得到余弦定理的形式或角之间的关系.12.【2019年高考全国Ⅲ卷理数】△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sinsin 2A Ca b A +=. (1)求B ;(2)若△ABC 为锐角三角形,且c =1,求△ABC 面积的取值范围.【答案】(1)B =60°;(2). 【解析】(1)由题设及正弦定理得sin sinsin sin 2A CA B A +=. 因为sin A ≠0,所以sinsin 2A CB +=. 由180A BC ︒++=,可得sincos 22A C B +=,故cos 2sin cos 222B B B=. 因为cos02B ≠,故1sin 22B =,因此B =60°. (2)由题设及(1)知△ABC的面积4ABC S a =△. 由正弦定理得()sin 120sin 1sin sin 2tan 2C c A a C C C ︒-===+.由于△ABC 为锐角三角形,故0°<A <90°,0°<C <90°,由(1)知A +C =120°,所以30°<C <90°,故122a <<ABC S <<△.因此,△ABC面积的取值范围是⎝⎭.【名师点睛】这道题考查了三角函数的基础知识,以及正弦定理的使用(此题也可以用余弦定理求解),最后考查V ABC 是锐角三角形这个条件的利用,考查的很全面,是一道很好的考题. 13.【2019年高考北京卷理数】在△ABC 中,a =3,b −c =2,cos B =12-. (1)求b ,c 的值; (2)求sin (B –C )的值. 【答案】(1)7b =,5c =;(2【解析】(1)由余弦定理2222cos b a c ac B =+-,得22213232b c c ⎛⎫=+-⨯⨯⨯- ⎪⎝⎭.因为2b c =+,所以2221(2)3232c c c ⎛⎫+=+-⨯⨯⨯- ⎪⎝⎭. 解得5c =. 所以7b =. (2)由1cos 2B =-得sin 2B =.由正弦定理得sin sin c C B b ==. 在ABC △中,∠B 是钝角, 所以∠C 为锐角.所以11cos 14C ==.所以sin()sin cos cos sin B C B C B C -=-=. 【名师点睛】本题主要考查余弦定理、正弦定理的应用,两角差的正弦公式的应用等知识,意在考查学生的转化能力和计算求解能力.14.【2019年高考天津卷理数】在ABC △中,内角,,A B C 所对的边分别为,,a b c .已知2b c a +=,3sin 4sin c B a C =.(1)求cos B 的值; (2)求sin 26B π⎛⎫+⎪⎝⎭的值. 【答案】(1)14-;(2)-【解析】(1)在ABC △中,由正弦定理sin sin b cB C=,得sin sin b C c B =,又由3sin 4sin c B a C =,得3sin 4sin b C a C =,即34b a =.又因为2b c a +=,得到43b a =,23c a =.由余弦定理可得222222416199cos 22423a a a a cb B ac a a +-+-===-⋅⋅.(2)由(1)可得sin B ==,从而sin 22sin cos B B B ==,227cos 2cos sin 8B B B =-=-,故71sin 2sin 2cos cos 2sin 66682B B B πππ⎛⎫+=+=⨯= ⎪⎝⎭. 【名师点睛】本小题主要考查同角三角函数的基本关系,两角和的正弦公式,二倍角的正弦与余弦公式,以及正弦定理、余弦定理等基础知识.考查运算求解能力. 15.【2019年高考江苏卷】在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .(1)若a =3c ,b ,cos B =23,求c 的值; (2)若sin cos 2A B a b =,求sin()2B π+的值.【答案】(1)c =(2.【解析】(1)因为23,3a cb B ===,由余弦定理222cos 2a c b B ac +-=,得2222(3)323c c c c +-=⨯⨯,即213c =.所以c =(2)因为sin cos 2A Ba b =, 由正弦定理sin sin a b A B =,得cos sin 2B Bb b=,所以cos 2sin B B =. 从而22cos (2sin )B B =,即()22cos 41cos B B =-,故24cos 5B =.因为sin 0B >,所以cos 2sin 0B B =>,从而cos B =.因此πsin cos 2B B ⎛⎫+== ⎪⎝⎭【名师点睛】本小题主要考查正弦定理、余弦定理、同角三角函数关系、诱导公式等基础知识,考查运算求解能力.16.【2019年高考江苏卷】如图,一个湖的边界是圆心为O 的圆,湖的一侧有一条直线型公路l ,湖上有桥AB (AB 是圆O 的直径).规划在公路l 上选两个点P 、Q ,并修建两段直线型道路PB 、QA .规划要求:线段PB 、QA 上的所有点到点O 的距离均不小于圆....O 的半径.已知点A 、B 到直线l 的距离分别为AC 和BD (C 、D 为垂足),测得AB =10,AC =6,BD =12(单位:百米).(1)若道路PB 与桥AB 垂直,求道路PB 的长;(2)在规划要求下,P 和Q 中能否有一个点选在D 处?并说明理由;(3)在规划要求下,若道路PB 和QA 的长度均为d (单位:百米).求当d 最小时,P 、Q 两点间的距离.【答案】(1)15(百米);(2)见解析;(3)17+. 【解析】解法一:(1)过A 作AE BD ⊥,垂足为E .由已知条件得,四边形ACDE 为矩形,6, 8DE BE AC AE CD =====.' 因为PB ⊥AB ,所以84cos sin 105PBD ABE ∠=∠==. 所以12154cos 5BD PB PBD ===∠.因此道路PB 的长为15(百米).(2)①若P 在D 处,由(1)可得E 在圆上,则线段BE 上的点(除B ,E )到点O 的距离均小于圆O 的半径,所以P 选在D 处不满足规划要求. ②若Q 在D 处,连结AD ,由(1)知10AD ==,从而2227cos 0225AD AB BD BAD AD AB +-∠==>⋅,所以∠BAD 为锐角. 所以线段AD 上存在点到点O 的距离小于圆O 的半径. 因此,Q 选在D 处也不满足规划要求. 综上,P 和Q 均不能选在D 处. (3)先讨论点P 的位置.当∠OBP <90°时,线段PB 上存在点到点O 的距离小于圆O 的半径,点P 不符合规划要求;当∠OBP ≥90°时,对线段PB 上任意一点F ,OF ≥OB ,即线段PB 上所有点到点O 的距离均不小于圆O 的半径,点P 符合规划要求.设1P 为l 上一点,且1PB AB ⊥,由(1)知,1P B =15, 此时11113sin cos 1595PD PB PBD PB EBA =∠=∠=⨯=; 当∠OBP >90°时,在1PPB △中,115PB PB >=. 由上可知,d ≥15. 再讨论点Q 的位置.由(2)知,要使得QA ≥15,点Q 只有位于点C 的右侧,才能符合规划要求.当QA =15时,CQ ===此时,线段QA 上所有点到点O 的距离均不小于圆O 的半径.综上,当PB ⊥AB ,点Q 位于点C 右侧,且CQ =d 最小,此时P ,Q 两点间的距离PQ =PD +CD +CQ =17+因此,d 最小时,P ,Q 两点间的距离为17+. 解法二:(1)如图,过O 作OH ⊥l ,垂足为H.以O 为坐标原点,直线OH 为y 轴,建立平面直角坐标系.因为BD =12,AC =6,所以OH =9,直线l 的方程为y =9,点A ,B 的纵坐标分别为3,−3. 因为AB 为圆O 的直径,AB =10,所以圆O 的方程为x 2+y 2=25. 从而A (4,3),B (−4,−3),直线AB 的斜率为34. 因为PB ⊥AB ,所以直线PB 的斜率为43-, 直线PB 的方程为42533y x =--.所以P (−13,9),15PB ==. 因此道路PB 的长为15(百米).(2)①若P 在D 处,取线段BD 上一点E (−4,0),则EO =4<5,所以P 选在D 处不满足规划要求. ②若Q 在D 处,连结AD ,由(1)知D (−4,9),又A (4,3), 所以线段AD :36(44)4y x x =-+-剟.在线段AD 上取点M (3,154),因为5OM =<=,所以线段AD 上存在点到点O 的距离小于圆O 的半径. 因此Q 选在D 处也不满足规划要求. 综上,P 和Q 均不能选在D 处. (3)先讨论点P 的位置.当∠OBP <90°时,线段PB 上存在点到点O 的距离小于圆O 的半径,点P 不符合规划要求;当∠OBP ≥90°时,对线段PB 上任意一点F ,OF ≥OB ,即线段PB 上所有点到点O 的距离均不小于圆O 的半径,点P 符合规划要求.设1P 为l 上一点,且1PB AB ⊥,由(1)知,1P B =15,此时1P (−13,9); 当∠OBP >90°时,在1PPB △中,115PB PB >=. 由上可知,d ≥15. 再讨论点Q 的位置.由(2)知,要使得QA ≥15,点Q 只有位于点C 的右侧,才能符合规划要求.当QA =15时,设Q (a ,9),由15(4)AQ a ==>,得a =4+Q (4+,9),此时,线段QA 上所有点到点O 的距离均不小于圆O 的半径.综上,当P (−13,9),Q (4+9)时,d 最小,此时P ,Q 两点间的距离4(13)17PQ =+-=+.因此,d 最小时,P ,Q两点间的距离为17+.【名师点睛】本小题主要考查三角函数的应用、解方程、直线与圆等基础知识,考查直观想象和数学建模及运用数学知识分析和解决实际问题的能力.17.【2019年高考浙江卷】设函数()sin ,f x x x =∈R .(1)已知[0,2),θ∈π函数()f x θ+是偶函数,求θ的值;(2)求函数22[()][()]124y f x f x ππ=+++的值域. 【答案】(1)π2θ=或3π2;(2)[122-+. 【解析】(1)因为()sin()f x x θθ+=+是偶函数,所以,对任意实数x 都有sin()sin()x x θθ+=-+, 即sin cos cos sin sin cos cos sin x x x x θθθθ+=-+,故2sin cos 0x θ=,所以cos 0θ=.又[0,2π)θ∈,因此π2θ=或3π2. (2)2222ππππsin sin 124124y f x f x x x ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+++=+++ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦ππ1cos 21cos 213621cos 2sin 222222x x x x ⎛⎫⎛⎫-+-+ ⎪ ⎪⎛⎫⎝⎭⎝⎭=+=-- ⎪ ⎪⎝⎭π1223x ⎛⎫=-+ ⎪⎝⎭.因此,函数的值域是[122-+. 【名师点睛】本题主要考查三角函数及其恒等变换等基础知识,同时考查运算求解能力.18.【重庆西南大学附属中学校2019届高三第十次月考数学试题】已知角α的顶点在坐标原点,始边与x 轴正半轴重合,终边经过点(1)P ,则cos2=αAB.13C.13-D.3-【答案】B【解析】因为角α的顶点在坐标原点,始边与x轴正半轴重合,终边经过点(1)P,所以cos3==-α,因此21cos22cos13=-=αα.故选B.【名师点睛】本题主要考查三角函数的定义,以及二倍角公式,熟记三角函数的定义与二倍角公式即可,属于常考题型.解答本题时,先由角α的终边过点(1)P,求出cosα,再由二倍角公式,即可得出结果.19.【四川省宜宾市2019届高三第三次诊断性考试数学试题】已知4cos5=-α,()π,0∈-α,则πtan4⎛⎫-=⎪⎝⎭αA.17B.7C.17-D.7-【答案】C【解析】()4cos,π,05a=-∈-Qα,∴ππ,2⎛⎫∈--⎪⎝⎭α,33sin,tan54∴=-=αα,则πtan1tan41tan-⎛⎫-=⎪+⎝⎭ααα31143714-==-+.故选C.【名师点睛】本题主要考查了同角三角函数关系式及两角差的正切公式的简单应用,属于基础题.解答本题时,根据已知cosα的值,结合同角三角函数关系式可求tanα,然后根据两角差的正切公式即可求解.20.【广东省韶关市2019届高考模拟测试(4月)数学文试题】已知函数π()sin()6f x x =+ω(0)>ω的相邻对称轴之间的距离为π2,将函数图象向左平移π6个单位得到函数()g x 的图象,则()g x = A .πsin()3x + B .πsin(2)3x + C .cos2xD .πcos(2)3x + 【答案】C 【解析】由函数π()sin()(0)6f x x =+>ωω的相邻对称轴之间的距离为π2,得π22T =,即πT =,所以2ππ=ω,解得2=ω, 将函数π()sin(2)6f x x =+的图象向左平移π6个单位, 得到ππππ()sin[2()]sin 2cos 26636g x x x x ⎛⎫=++=++= ⎪⎝⎭的图象,故选C . 【名师点睛】本题考查的知识要点:三角函数关系式的平移变换和伸缩变换的应用,正弦型函数性质的应用,主要考查学生的运算能力和转换能力,属于基础题型.解答本题时,首先利用函数的图象求出函数的关系式,进一步利用图象的平移变换的应用求出结果.21.【河南省郑州市2019届高三第三次质量检测数学试题】已知函数()()sin f x A x =+ωϕ,π0,0,2A >><ωϕ的部分图象如图所示,则使()()0f a x f a x +--=成立的a 的最小正值为A .π12B .π6 C .π4 D .π3 【答案】B 【解析】由图象易知,2A =,(0)1f =,即2sin 1=ϕ,且π2<ϕ,即6π=ϕ, 由图可知,11π()0,12f =所以11ππ11ππsin()0,π,126126k k ⋅+=∴⋅+=∈Z ωω,即122,11k k -=∈Z ω,又由图可知,周期11π2π11π24,121211T >⇒>∴<ωω,且0>ω, 所以由五点作图法可知2,2k ==ω, 所以函数π()2sin(2)6f x x =+,因为()()0f a x f a x +--=,所以函数()f x 关于x a =对称, 即有ππ2π,62a k k +=+∈Z ,所以可得ππ,26k a k =+∈Z , 所以a 的最小正值为π6. 故选B.【名师点睛】本题考查了三角函数的图象和性质,熟练运用三角函数的图象和周期对称性是解题的关键,属于中档题.解答本题时,先由图象,求出,,A ϕω,可得函数()f x 的解析式,再由()()0f a x f a x +--=易知()f x 的图象关于x a =对称,即可求得a 的值.22.【山东省实验中学等四校2019届高三联合考试数学试题】在ABC △中,a ,b ,c 分别为角A ,B ,C 的对边,若ABC △的面积为S ,且()22a b c =+-,则πsin 4C ⎛⎫+= ⎪⎝⎭A .1 BC D 【答案】D【解析】由()22a b c =+-,得2221sin 22ab C a b c ab =+-+,∵2222cos a b c ab C +-=,∴sin 2cos 2C ab C ab =+,cos 1C C -=,即π2sin 16C ⎛⎫-= ⎪⎝⎭,则π1sin 62C ⎛⎫-= ⎪⎝⎭, ∵0πC <<,∴ππ5π666C -<-<,∴ππ66C -=,即π3C =,则πππππππsin sin sin cos cos sin 4343434C ⎛⎫⎛⎫+=+=+= ⎪ ⎪⎝⎭⎝⎭12=, 故选D .【名师点睛】本题主要考查解三角形的应用,结合三角形的面积公式以及余弦定理求出C 的值以及利用两角和差的正弦公式进行计算是解决本题的关键.解答本题时,根据三角形的面积公式以及余弦定理进行化简求出C 的值,然后利用两角和的正弦公式进行求解即可.23.【山东省烟台市2019届高三3月诊断性测试(一模)数学试题】在ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,若1a =cos )cos 0A C C b A ++=,则角A =A .2π3B .π3 C .π6 D .5π6 【答案】D【解析】∵1a =cos )cos 0A C C b A ++=,cos cos cos A C C A b A =-,)cos A C B b A +==-,sin cos B b A =-,sin sin cos A B B A =-,∵sin 0B >cos A A =-,即tan A =, ∵(0,π)A ∈,∴5π6A =.故选D . 【名师点睛】本题主要考查解三角形,熟记正弦定理,两角和的正弦公式即可,属于基础题.解答本cos )cos 0A C C b A ++=sin cos B b A =-,再由正弦定理得到tan A =,结合(0,π)A ∈,即可求得A 的值. 24.【广东省韶关市2019届高考模拟测试(4月)数学试题】在ABC △中,a 、b 、c 分别是内角A 、B 、C cos sin (cos cos )A A a C c A =+.(1)求角A 的大小;(2)若a =ABC △,求ABC △的周长.【答案】(1)π3A =;(2).【解析】(1cos sin (cos cos )A A a C c A =+,∴由正弦定理可得:cos sin (sin cos sin cos )B A A A C C A =+sin sin()sin sin A A C A B =+=,cos B A sin sin A B =,∵sin 0B ≠,∴tan A =∵(0,π)A ∈, ∴π3A =.(2)∵π3A =,a =ABC △,1sin 2bc A ∴==, ∴5bc =,∴由余弦定理可得:2222cos a b c bc A =+-,即222212()3()15b c bc b c bc b c =+-=+-=+-,解得:b c +=∴ABC △的周长为a b c ++==.【名师点睛】本题主要考查了正弦定理,两角和的正弦函数公式,三角形的面积公式,余弦定理在解三角形中的综合应用,考查了计算能力和转化思想,属于基础题.(1)由正弦定理,cos sin sin B A A B =,由sin 0B ≠,可求tan A =(0,π)A ∈,可求π3A =.(2)利用三角形的面积公式可求5bc =,进而根据余弦定理可得b c +=ABC △的周长的值.25.【北京市昌平区2019届高三5月综合练习(二模)数学试题】已知函数1(=cos cos )+2f x x x x -).(1)求π()3f 的值;(2)当π[0,]2x ∈时,不等式()2c f x c <<+恒成立,求实数c 的取值范围.【答案】(1)1;(2)1(1,)2--. 【解析】(1)21(cos cos +2f x x x x -1=2cos 222x x - π=sin(2)6x -, 所以π()13f =. (2)因为π02x ≤≤, 所以ππ5π2666x -≤-≤, 所以1sin 226x π-≤-≤()1. 由不等式()2c f x c <<+恒成立,得1221c c ⎧<-⎪⎨⎪+>⎩,解得112c -<<-. 所以实数c 的取值范围为1(1,)2--.【名师点睛】本题主要考查三角函数的性质及其应用,恒成立问题的处理方法等知识,意在考查学生的转化能力和计算求解能力.(1)首先整理函数的解析式,然后结合函数的解析式求解函数值即可;(2)首先求得函数()f x 在区间π0,2⎡⎤⎢⎥⎣⎦上的值域,然后结合恒成立的结论得到关于c 的不等式组,求解不等式组可得c 的取值范围.。

2019-2020学年度最新人教版高考数学二轮复习:三角函数专题Word版

2019-2020学年度最新人教版高考数学二轮复习:三角函数专题Word版

2019-2020学年度最新人教版高考数学二轮复习:三角函数专题Word 版(附参考答案)本人在十多年的职中数学教学实践中,面对三角函数内容的相关教学时,积累了一些解题方面的处理技巧以及心得、体会。

下面尝试进行探讨一下:一、关于)2sin (cos sin cos sin ααααα或与±的关系的推广应用:1、由于ααααααααcos sin 21cos sin 2cos sin )cos (sin 222±=±+=±故知道)cos (sin αα±,必可推出)2sin (cos sin ααα或,例如:例1 已知θθθθ33cos sin ,33cos sin -=-求。

分析:由于)cos cos sin )(sin cos (sin cos sin 2233θθθθθθθθ++-=-]cos sin 3)cos )[(sin cos (sin 2θθθθθθ+--=其中,θθcos sin -已知,只要求出θθcos sin 即可,此题是典型的知sin θ-cos θ,求sin θcos θ的题型。

解:∵θθθθcos sin 21)cos (sin 2-=-故:31cos sin 31)33(cos sin 212=⇒==-θθθθ ]cos sin 3)cos )[(sin cos (sin cos sin 233θθθθθθθθ+--=- 3943133]313)33[(332=⨯=⨯+= 例2 若sin θ+cos θ=m 2,且tg θ+ctg θ=n ,则m 2 n 的关系为( )。

A .m 2=nB .m 2=12+nC .n m 22=D .22mn = 分析:观察sin θ+cos θ与sin θcos θ的关系:sin θcos θ=2121)cos (sin 22-=-+m θθ 而:n ctg tg ==+θθθθcos sin 1 故:1212122+=⇒=-nm n m ,选B 。

人教版最新高中数学三角函数复习专题Word版.docx

人教版最新高中数学三角函数复习专题Word版.docx

高中数学三角函数复习专题( 附参考答案 )一、知识点整理 :1、角的概念的推广:正负,范围,象限角,坐标轴上的角;2、角的集合的表示:①终边为一射线的角的集合:x x2k, k Z =|k360 , k Z②终边为一直线的角的集合:x x k, k Z ;③两射线介定的区域上的角的集合:x 2k x2k, k Z④两直线介定的区域上的角的集合:x k x k, k Z;3、任意角的三角函数:(1)弧长公式: l a R R 为圆弧的半径, a 为圆心角弧度数,l为弧长。

(2)扇形的面积公式:S 1lR R 为圆弧的半径,l为弧长。

2(3)三角函数定义:角中边上任意一点 P 为( x, y),设| OP |r 则:sin y, cos x ,tan y r= a 2b2 r r x反过来,角的终边上到原点的距离为r 的点P的坐标可写为: P r cos, r sin 比如:公式 cos()cos cossin sin的证明(4)特殊角的三角函数值α032 64322sin α012310-10222cosα13210-101222tan α0313不存0不存03在在(5)三角函数符号规律:第一象限全正,二正三切四余弦。

(6)三角函数线:(判断正负、比较大小,解方程或不等式等)y T 如图,角的终边与单位圆交于点P,过点 P 作 x 轴的垂线,P 垂足为 M ,则Ao 过点 A(1,0)作 x 轴的切线,交角终边OP 于点 T,则M x。

(7)同角三角函数关系式:①倒数关系: tan a cot a 1sin a ②商数关系: tan acos a③平方关系: sin 2 a cos2 a1( 8)诱导公试sin cos tan三角函数值等于的同名三角函数值,前面-- sin+ cos- tan加上一个把看作锐角时,原三角函数值的- tan-+ sin- cos符号;即:函数名不变,符号看象限+- sin- cos+ tan2-- sin+ cos- tan2k++ sin+ cos+ tansin con tan2+ cos+ sin+ cot三角函数值等于的异名三角函数值,前面2+ cos- sin- cot加上一个把看作锐角时,原三角函数值的3- cos- sin+ cot2符号 ;3- cos+ sin- cot2即:函数名改变,符号看象限 :sin x cos x cos x比如444cos x sin x444.两角和与差的三角函数:(1)两角和与差公式:cos() cos a cos sin a sin s i na( ) s i na c o s c o as s i ntan a(atan a tan注:公式的逆用或者变形)1 tan a tan.........(2)二倍角公式:sin 2a 2 sin acosa c o 2sa2222c o sa s i n a 1 2s i n a 2 c o sa 1tan 2a2 tan a 1 tan 2 a(3)几个派生公式:①辅助角公式: a sin x bcosx a2b2 sin(x)a2b2 cos(x)例如: sinα±cosα=2 sin= 2 cos.44sinα±3 cosα= 2sin=2cos等.33②降次公式: (sin cos) 2 1 sin 2cos2 1 cos 2,sin 2 1 cos 222③ tan tan tan()(1tan tan)5、三角函数的图像和性质:(其中 k z )三角函数y sin x定义域( - ∞, +∞)值域[-1,1]最小正周期T2奇偶性奇[ 2 k,2 k]22单调性单调递增[ 2 k,2 k 3 ]22单调递减x k对称性2(k ,0)零值点x ky cos x(- ∞, +∞)[-1,1]T 2偶[( 2k 1) ,2k]单调递增[( 2k ,( 2k 1) ]单调递减x k(k,0)2x ky tan xx k2( - ∞, +∞)T奇(k,k)22单调递增k(,0)x k2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

教学资料范本【2020最新】人教版最新高考数学二轮复习:三角函数专题Word版编辑:__________________时间:__________________本人在十多年的职中数学教学实践中,面对三角函数内容的相关教学时,积累了一些解题方面的处理技巧以及心得、体会。

下面尝试进行探讨一下:一、关于的关系的推广应用:)2sin (cos sin cos sin ααααα或与±1、由于故知道,必可推出,例如:ααααααααcos sin 21cos sin 2cos sin )cos (sin 222±=±+=±)cos (sin αα±)2sin (cos sin ααα或例1 已知。

分析:由于其中,已知,只要求出即可,此题是典型的知sin-cos ,求sincos 的题型。

θθθ解:∵θθθθcos sin 21)cos (sin 2-=- 故:31cos sin 31)33(cos sin 212=⇒==-θθθθ例2 若sin+cos=m2,且tg+ctg=n ,则m2 n 的关系为( )。

A .m2=nB .m2=C .D .12+nn m 22=22m n = 分析:观察sin+cos 与sincos 的关系:θθsincos= 而:nctg tg ==+θθθθcos sin 1故:,选B 。

1212122+=⇒=-n m n m例3 已知:tg+ctg=4,则sin2的值为( )。

αααA .B .C .D .2121-4141-分析:tg+ctg=αα41cos sin 4cos sin 1=⇒=αααα 故:。

答案选A 。

212sin cos sin 22sin =⇒=αααα例4 已知:tg+ctg=2,求αααα44cos sin +分析:由上面例子已知,只要能化出含sin ±cos 或sincos 的式子,则即可根据已知tg+ctg 进行计算。

由于tg+ctg=αα44cos sin +αααααααα⇒=2cos sin 1αα21cos sin =αα,此题只要将化成含sincos 的式子即可:αα44cos sin +αα解:=+2 sin2cos2-2 sin2cos2αα44cos sin +αα44cos sin +αααα =(sin2+cos2)- 2 sin2cos2αααα =1-2 (sincos)2αα=1-2)21(2⨯ =211-=21通过以上例子,可以得出以下结论:由于,sincos 及tg+ctg 三者之间可以互化,知其一则必可知其余二。

这种性质适合于隐含此三项式子的三角式的计算。

但有一点要注意的;如果通过已知sincos ,求含的式子,必须讨论其象限才能得出其结果的正、负号。

这是由于()2=1±2sincos,要进行开方运算才能求出ααcos sin ±ααααααααcos sin ±ααcos sin ±ααααcos sin ±二、关于“托底”方法的应用:在三角函数的化简计算或证明题中,往往需要把式子添加分母,这常用在需把含tg (或ctg )与含sin (或cos )的式子的互化中,本文把这种添配分母的方法叫做“托底”法。

方法如下:αα例5 已知:tg=3,求的值。

分析:由于,带有分母cos ,因此,可把原式分子、分母各项除以cos ,“造出”tg ,即托出底:cos ;αααα解:由于tg=3αcos 2≠⇒+≠⇒αππαk故,原式=013233123cos cos cos sin 2cos cos 3cos sin =+⨯-=+-=+⋅⋅-ααααααααααtg tg例6 已知:ctg= -3,求sincos-cos2=?αααα分析:由于,故必将式子化成含有的形式,而此题与例4有所不同,式子本身没有分母,为了使原式先出现分母,利用公式:及托底法托出其分母,然后再分子、分母分别除以sin ,造出ctg :αααsin cos =ctg ααsin cos 1cos sin 22=+αααα解:αααααααααα222222cos sin cos cos sin cos cos sin 1cos sin +-=-⇒=+ 例7 (95年全国成人高考理、工科数学试卷) 设,20,20ππ<<<<y x )6sin()3sin(sin sin y x y x --=ππ且求:的值)3)(33(--ctgy ctgx分析:此题是典型已知含正弦函数的等式求含正切、余切的式子,故要用“托底法”,由于,故,在等式两边同除以,托出分母为底,得:20,20ππ<<<<y x 0sin ,0sin ≠≠y x y x sin sin y x sin sin解:由已知等式两边同除以得:y x sin sin“托底”适用于通过同角的含正弦及余弦的式子与含正切、余切的式子的互化的计算。

由于,,即正切、余切与正弦、余弦间是比值关系,故它们间的互化需“托底”,通过保持式子数值不变的情况下添加分母的方法,使它们之间可以互相转化,达到根据已知求值的目的。

而添加分母的方法主要有两种:一种利用,把作为分母,并不改变原式的值,另一种是通过等式两边同时除以正弦或余弦又或者它们的积,产生分母。

αααcos sin =tg αααsin cos =ctg 1cos sin 22=+αααα22cos sin +三、关于形如:的式子,在解决三角函数的极值问题时的应用:x b x a sin cos ±可以从公式中得到启示:式子与上述公式有点相似,如果把a ,b 部分变成含sinA ,cosA 的式子,则形如的式子都可以变成含的式子,由于-1≤≤1,)sin(sin cos cos sin x A x A x A ±=±x b x a sin cos ±x b x a sin cos ±)sin(x A ±)sin(x A ±所以,可考虑用其进行求极值问题的处理,但要注意一点:不能直接把a 当成sinA ,b 当成cosA ,如式子:中,不能设sinA=3,cosA=4,考虑:-1≤sinA ≤1,-1≤cosA ≤1,可以如下处理式子: x x sin 4cos 3+由于。

1)()(222222=+++b a b b a a故可设:,则,即:22sin b a aA +=AA sin 1cos -±=22cos b a b A +±=∴)sin()sin cos cos (sin sin cos 2222x A b a x A x A b a x b x a ±+=±+=± 无论取何值,-1≤sin(A ±x)≤1,x A ± 22b a +-≤≤)sin(22x A b a ±+22b a + 即:≤≤22b a +-x b x a sin cos ±22b a +下面观察此式在解决实际极值问题时的应用:例1(98年全国成人高考数学考试卷)求:函数的最大值为(AAAA )x x x y cos sin cos 32-= A . B . C . D .231+分析:,再想办法把变成含的式子:212cos cos 1cos 22cos 22+=⇒-=x x x x于是:x x y 2sin 21212cos 3-+⋅=由于这里:1)21()23(,21,232222=+=+==b a b a 则∴23)2sin 212cos 23(1+-⨯=x x y设:21cos ,23123sin 22===+=A b a a A 则∴232sin cos 2cos sin +-=x A x A y无论A-2x 取何值,都有-1≤sin(A-2x)≤1,故≤≤231+-y 231+∴的最大值为,即答案选A 。

y231+例2 (96年全国成人高考理工科数学试卷)在△ABC 中,已知:AB=2,BC=1,CA=,分别在边AB 、BC 、CA 上任取点D 、E 、F ,使△DEF 为正三角形,记∠FEC=∠α,问:sin α取何值时,△EFD 的边长最短?并求此最短边长。

3分析:首先,由于,可知△ABC 为Rt △,其中AB 为斜边,所对角∠C 为直角,又由于,则∠B=222224)3(1ABCA BC ==+=+︒===30,21sin A AB BC A 故90°—∠A=60°,由于本题要计算△DEF 的最短边长,故必要设正△DEF 的边长为,且要列出有关为未知数的方程,对进行求解。

观察△BDE ,已知:∠B=60°,DE=,再想办法找出另两个量,即可根据正弦定理列出等式,从而产生关于的方程。

在图中,由于EC=·cos α,则BE=BC-EC=1-·cos α。

l l l l l l l而∠B+∠BDE+∠1=180°∠α+∠DEF+∠1=180° ∠BDE=∠α⇒ ∠B=60°,∠DEF=60°∴在△BDE 中,根据正弦定理:在这里,要使有最小值,必须分母:有最大值,观察:l ααsin cos 23+271)23(1,23,sin cos 232222=+=+⇒==+b a b a αα∴)sin 772cos 721(27sin cos 23αααα+=+设:,则721sin =A 772cos =A故:)sin cos cos (sin 27sin cos 23ααααA A +=+∴的最大值为。

ααsin cos 23+27即:的最小值为:l 7212723=而取最大值为1时,)sin(α+A Ak k A -+=⇒+=+2222ππαππα∴772cos )22sin(sin ==-+=A A k ππα即:时,△DEF 的边长最短,最短边长为。

772sin =α721从以上例子可知,形如适合于计算三角形函数的极值问题。

计算极值时与式子的加、减是无关,与的最值有关;其中最大值为,最小值为。

在计算三角函数的极值应用题时,只要找出形如的关系式,即能根据题意,求出相关的极值。

x b x a sin cos ±22ba +22b a +22b a +-x b x a sin cos ±三角函数知识点解题方法总结一、见“给角求值”问题,运用“新兴”诱导公式 一步到位转换到区间(-90º,90º)的公式.1.sin(kπ+α)=(-1)ksinα(k∈Z);2. cos(kπ+α)=(-1)kcosα(k∈Z);3. tan(kπ+α)=(-1)ktanα(k∈Z);4. cot(kπ+α)=(-1)kcotα(k∈Z). 二、见“sinα±cosα”问题,运用三角“八卦图”1.sinα+cosα>0(或<0)óα的终边在直线y+x=0的上方(或下方);2. sinα-cosα>0(或<0)óα的终边在直线y-x=0的上方(或下方);3.|sinα|>|cosα|óα的终边在Ⅱ、Ⅲ的区域内;4.|sinα|<|cosα|óα的终边在Ⅰ、Ⅳ区域内.三、见“知1求5”问题,造Rt△,用勾股定理,熟记常用勾股数(3,4,5),(5,12,13),(7,24,25),仍然注意“符号看象限”。

相关文档
最新文档