鸡兔同笼练习课
最新人教版四年级数学下册重点,鸡兔同笼问题讲解及习题(含答案)

鸡兔同笼问题讲解及习题例1:小梅数她家的鸡与兔,数头有16个,数脚有44只。
问:小梅家的鸡与兔各有多少只?分析:假设16只都是鸡,那么就应该有2×16=32(只)脚,但实际上有44只脚,比假设的情况多了44-32=12(只)脚,出现这种情况的原因是把兔当作鸡了。
如果我们以同样数量的兔去换同样数量的鸡,那么每换一只,头的数目不变,脚数增加了2只。
因此只要算出12里面有几个2,就可以求出兔的只数。
解:有兔(44-2×16)÷(4-2)=6(只)有鸡16-6=10(只)。
答:有6只兔,10只鸡。
当然,我们也可以假设16只都是兔子,那么就应该有4×16=64(只)脚,但实际上有44只脚,比假设的情况少了64-44=20(只)脚,这是因为把鸡当作兔了。
我们以鸡去换兔,每换一只,头的数目不变,脚数减少了4-2=2(只)。
因此只要算出20里面有几个2,就可以求出鸡的只数。
有鸡(4×16-44)÷(4-2)=10(只),有兔16-10=6(只)。
由例1看出,解答鸡兔同笼问题通常采用假设法,可以先假设都是鸡,然后以兔换鸡;也可以先假设都是兔,然后以鸡换兔。
因此这类问题也叫置换问题。
例2:100个和尚140个馍,大和尚1人分3个馍,小和尚1人分1个馍。
问:大、小和尚各有多少人?分析与解:本题由中国古算名题“百僧分馍问题”演变而得。
如果将大和尚、小和尚分别看作鸡和兔,馍看作腿,那么就成了鸡兔同笼问题,可以用假设法来解。
假设100人全是大和尚,那么共需馍300个,比实际多300-140=160(个)。
现在以小和尚去换大和尚,每换一个总人数不变,而馍就要减少3-1=2(个),因为160÷2=80,故小和尚有80人,大和尚有100-80=20(人)。
同样,也可以假设100人都是小和尚,同学们不妨自己试试。
在下面的例题中,我们只给出一种假设方法。
例3:彩色文化用品每套19元,普通文化用品每套11元,这两种文化用品共买了16套,用钱280元。
《鸡兔同笼》练习题及答案

鸡兔同笼一1.鸡兔同笼,共有头30个,足86只,求鸡兔各有多少只?2、鸡兔同笼,鸡兔共35个头,94条腿,问鸡兔各多少只?3、鸡兔同笼,头共20个,脚共62只,求鸡兔各有几只?4、有20张5元和10元的人民币,一共是175元,5元和10元的人民币各有多少张?5、王老师圆珠笔和钢笔共买了15枝,圆珠笔每枝1.5元,钢笔每枝4.5元,共花了49.5元,圆珠笔和钢笔各买了多少枝?6、在一个停车场内,汽车、摩托车共停了48辆,其中每辆汽车有4个轮子,每辆摩托车有3个轮子,这些车共有172个轮子,停车场内有汽车摩托车各多少辆?7、小刚买回8分邮票和4分邮票共100张,共付出6.8元,问,小刚买回这两种邮票各多少张?9、某运输队为超市运送暖瓶500箱,每箱装有6个暖瓶。
已知每10个暖瓶的运费为5元,损坏一个不但不给运费还要赔10元,运后结算时,运输队共得1350元的运费。
问损坏了多少暖瓶?10、小华买了2元和5元邮票一共34张,用去98元钱。
求小华买了2元和5元的邮票各多少张?11、全班46人去划船,共乘12只船,其中大船每只坐5人,小船每只坐3人,求大船和小船各有多少只?12、在一个停车场上,停了汽车和摩托车一共32辆。
其中汽车有4个轮子,摩托车有3个轮子,总共有108个轮子,汽车和摩托车各多少辆?小明得了52分,他做错了几道题?14、100名师生绿化校园,老师每人栽3课,学生每两人栽1棵,共栽树100棵。
求老师和同学各栽树多少棵?15、东风小学有3名同学去参加数学竞赛,一份试卷共10道题,答对一题得10分,答错一题不但不得分还要扣去3分,这三名同学都答了全部题目,小明得74分,小华得22分,小红得87分,他们三人共答对多少题?鸡兔同笼二1.,鸡兔共35个头,94条腿,问鸡兔各多少只?2.例题:鸡兔同笼,鸡比兔多15只,鸡兔共有脚132只,问鸡兔各多少只?3.例题:鸡兔同笼,鸡兔共40个头,鸡脚比兔脚共多32只,问鸡兔各多少只?4.例题:鸡兔同笼,鸡比兔多10只,但脚却比兔子少60只,问鸡兔各多少只?5.鸡兔同笼,鸡比兔多10只,鸡脚比兔脚多10只,问鸡兔各多少只?6.在一个停车场内,汽车、摩托车共停了48辆,其中每辆汽车有4个轮子,每辆摩托车有3个轮子,这些车共有172个轮子,停车场内有汽车、摩托车各多少辆?7.张大妈养鸡兔共200只,鸡兔足数共560只,求鸡兔各有多少只?8.张大妈家养的鸡比兔多13只,兔足比鸡足少16只,求鸡兔各有多少只?9.鹤龟同池,鹤比龟多12只,鹤龟足共72只,求鹤龟各有多少只?10.小刚买回8分邮票和4分邮票共100张,共付出6.8元,问,小刚买回这两种邮票个多少张?各付出多少元?11.东风小学有3名同学去参加数学竞赛,一份试卷共10道题,答对一题得10分,答错一道不但不得分,还要扣去3分,这3名同学都回答了所有的题目,小明得74分,小华得22分,小红得87分,他们三人共答对多少题?12.在知识竞赛中,有10道判断题,评分规定:每答对一题得2分,答错一题要倒扣一分。
奥数专题:鸡兔同笼(讲练测)-数学四年级下册人教版

奥数专题:鸡兔同笼(讲练测)-数学四年级下册人教版知识点讲解鸡兔同笼,这是一个古老的数学问题,在现实生活中也是普遍存在的.重点掌握鸡兔同笼问题的解法——假设法,并会将这种方法应用到一些实际问题中.解鸡兔同笼问题的基本关系式是:鸡数=(每只兔子脚数×鸡兔总数-实际脚数)÷(每只兔子脚数-每只鸡的脚数)兔数=鸡兔总数-鸡数当然,也可以先假设全是鸡,那么就有:兔数=(实际脚数-每只鸡脚数×鸡兔总数)÷(每只兔子脚数-每只鸡的脚数)鸡数=鸡兔总数-兔数练习巩固一、选择题1.某新兵连进行野外军训,晴天每天行20千米,雨天每天行10千米,8天共行了140千米(假设8天只有晴天和雨天),晴天有()天。
A.2B.3C.5D.62.在数学活动课上,可可用115根小棒摆了35个三角形和正方形,正方形摆了几个?下面列式正确的是()。
A.(115-35×3)÷4B.(35×4-115)÷(4-3)C.(115-35×3)÷(4-3)D.(35×4-115)÷43.山水酒店有3人房和2人房共50间,总共可以住112位客人,则该酒店有()。
A.3人房12间,2人房38间B.3人房38间,2人房12间C.3人房16间,2人房34间D.3人房8间,2人房42间4.鸡兔同笼,头共50个,脚共140只,鸡有()只。
5.组装车间要装配两轮摩托车和三轮摩托车共21辆,需要51个轮胎。
两轮摩托车有()辆。
A.12B.10C.9D.86.动物园里的孔雀和梅花鹿共有20只,共有脚52只,其中孔雀有()只。
A.14B.12C.10D.67.小明买了钢笔和圆珠笔共6支,其中钢笔每支12元,圆珠笔每支7元,用了52元,小明共买钢笔()支。
A.5B.4C.3D.28.一次学法知识竞赛共20道题,做对一题得5分,做错或者不做倒扣2分,小林考了79分,他答对了()道题。
鸡兔同笼问题练习课二

例1 有若干只鸡和兔子,它们共有88个头,244只脚,鸡和兔各有多少只?
解:设免有X只,则鸡有(88-X)只。
4X+(88-X)×2=244
4X+(176-2X)=244
4X+176-2X=244 2X=68 X=34 88-34=54(只)
例2.六年级进行数学竞赛活动,答对1题加10分,答错1题扣10分,共20道,最后得分160分,做对了几道?
3χ+4(25-χ)=86 3χ+100-4χ=86χ=14
2012年:兄:14-4=10(岁) 弟:17-10-7(岁)
2016年:弟:7+4=11(岁)
父:11×4=44(岁) 则2012年父44-4=40(岁)
当父的年龄是兄的3倍时:10×3=30(岁)
因此,当父的年龄是兄的年龄的3倍时,兄的年龄是
解:设甲打字用了χ小时,则乙打字用了(7-χ)小时。
χ+ (7-χ)=1 χ+ - χ=1 χ= χ=4.5
例5.今年是2012年,父母年龄和是78岁,兄弟的年龄和是17岁.四年(2016年)后父的年龄是弟的年龄的4倍,母的年龄是兄的年龄的3倍.那么当父的年龄是兄的年龄的3倍时,是公元哪一年?
解:4年后两人年龄和都要加8.此时兄弟年龄之和是17+8=25,父母年龄之和是78+8=86.设4年后兄的年龄为χ岁,则弟的年龄为(25-χ)岁,
6.某人徒步旅行,平路每天走38千米,山路每天走 23千米,他15天共走了450千米。问:这期间他走了多少千米山路?
(40-10)÷(3-1)=15(岁).这是2017年.
答:公元2017年时,父年龄是兄年龄的3倍.
人教版四年级下册数学第九单元鸡兔同笼教案(含单元测试)

龙泉三小四年级下册数学集体备课教案教学反思:龙泉三小四年级下册数学集体备课教案教学反思:龙泉三小四年级下册数学第九单元检测试卷一、填空。
(36分)1、解答“在同一笼子里有鸡和兔共36只,它们一共有96只脚,笼子里的鸡和兔各有多少只?”这道题时,按下面各种解法:(1)假设36只动物全是兔子,一共就有()只脚,比实际有96只多了()只。
多出的脚是因为每一只鸡多算了()只脚,这样就知道共有鸡()只,从而知道兔子有()只。
(2)假设这36只动物全是鸡,一共就有()只脚,比实际的96只少了()只。
这是因为每一只兔子被少算了()只脚,这样就知道了有兔子()只,从而知道了鸡有()只。
2、有龟和鹤共8只,有22只脚,鹤()只,龟()只。
二、选择题。
(把正确答案的序号填在括号里)(24分)1、全班有54人去划船,共租了11条船,每条船都坐满了。
已知小船限乘4人,大船限乘6人,大船租了()条。
A、5B、6C、72、妈妈去文化用品商店给佳佳买了笔记本和作文本共9本,笔记本每本0.3元,作文每本0.8元,一共用了4.7元,笔记本买了()本。
A、5B、4C、33、袋子里装有5分和2分的硬币若干枚,从中任意取出10枚,正好是3角2分,取出的钱中,5分硬币有()枚。
A、2B、3C、4三、解决问题。
(40分)1、有鸡、兔同居一笼,已知鸡头和兔头共35个,鸡脚与兔脚共94只,问鸡、兔各有多少只?(10分)2、面值是2元、5元的人民币共27张,合计99元,面值是2元、5元的人民币各有多少张?(10分)3、全班46人去划船,共乘12只船,其中大船每只坐5人,小船每只坐3人,每只船上都坐满了人,则大船和小船各有多少只?(10分)4、小霞花了4元钱买贺年卡片和明信片共14张,贺年卡每张0.35元,明信片每张0.25元。
问贺年卡片和明信片各买了多少张?(10分)。
北师大版八年级数学第五章《应用二元一次方程组-鸡兔同笼》课时练习题(含答案)

北师大版八年级数学第五章《3.应用二元一次方程组-鸡兔同笼》课时练习题(含答案)一、单选题1.甲是乙现在的年龄时,乙8岁,乙是甲现在的年龄时,甲26岁,那么()A.甲20岁,乙14岁B.甲22岁,乙16岁C.乙比甲大18岁D.乙比甲大34岁2.五一小长假,小华和家人到公园游玩.湖边有大小两种游船.小华发现1艘大船与2艘小船一次共可以满载游客32人,2艘大船与1艘小船一次共可以满载游客46人.则1艘大船与1艘小船一次共可以满载游客的人数为()A.30 B.26 C.24 D.223.《九章算术》中有这样一道题:“今有醇酒一斗,直钱五十;行酒一斗,直钱一十.今将钱三十,得酒二斗.问醇、行酒各得几何?”其译文是:今有醇酒(优质酒)1斗,价值50钱;行酒(劣质酒)1斗,价值10钱.现有30钱,买得2斗酒.问醇酒、行酒各买得多少?设醇酒买得x斗,行酒买得y斗,则可列二元一次方程组为()A.2501030x yx y+=⎧⎨-=⎩B.2501030x yx y-=⎧⎨+=⎩C.2105030x yx y+=⎧⎨+=⎩D.2501030x yx y+=⎧⎨+=⎩4.《九章算术》卷八方程第十题原文为:“今有甲、乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而亦钱五十.问:甲、乙持钱各几何?”题目大意是:甲、乙两人各带了若干钱.如果甲得到乙所有钱的一半,那么甲共有钱50;如果乙得到甲所有钱的23,那么乙也共有钱50.问:甲、乙两人各带了多少钱?设甲、乙两人持钱的数量分别为x,y,则可列方程组为()A.15022503x yy x⎧+=⎪⎪⎨⎪+=⎪⎩B.15022503x yy x⎧-=⎪⎪⎨⎪-=⎪⎩C.2502503x yx y+=⎧⎪⎨+=⎪⎩D.2502503x yx y-=⎧⎪⎨-=⎪⎩5.我国古代数学名著《九章算术》记载:“今有牛五、羊二,直金十九两;牛二、羊三,直金十二两.问牛、羊各直金几何?”题目大意是:5头牛、2只羊共19两银子;2头牛、3只羊共12两银子,每头牛、每只羊各多少两银子?设1头牛x两银子,1只羊y两银子,则可列方程组为()A.52192312x yx y+=⎧⎨+=⎩B.52122319x yx y+=⎧⎨+=⎩C.25193212x yx y+=⎧⎨+=⎩D.25123219x yx y+=⎧⎨+=⎩6.用如图的长方形和正方形纸板作侧面和底面,做成如图的竖式和横式两种无盖纸盒.现在仓库里有500张正方形纸板和1000张长方形纸板,问两种纸盒各做多少个,恰好将库存的纸板用完?若设做竖式纸盒x个,横式纸盒y个,则可列方程组()A.+=5004+3=1000x yx y⎧⎨⎩B.+2=5004+3=1000x yx y⎧⎨⎩C.2+=50003+4=1000x yx y⎧⎨⎩D.2+2=5003+4=1000x yx y⎧⎨⎩7.现用190张铁皮做盒子,每张铁皮可做8个盒身,或做22个盒底,一个盒身与两个盒底配成一个盒子.设用x张铁皮做盒身,y张铁皮做盒底正好配套,则可列方程组为()A.1902822x yx y+=⎧⎨⨯=⎩B.1902228x yy x+=⎧⎨⨯=⎩C.2190822y xx y+=⎧⎨=⎩D.21902822y xx y+=⎧⎨⨯=⎩8.普通火车从绵阳至成都历时大约2小时,成绵城际快车开通后,时间大大缩短至几十分钟,现假定普通火车与城际快车两列对开的火车于同一时刻发车,其中普通火车由成都至绵阳,城际快车由绵阳至成都,这两车在途中相遇之后,各自用了80分钟和20分钟到达自己的终点绵阳、成都,则城际快车的平均速度是普通火车平均速度的()倍.A.2 B.2.5 C.3 D.4二、填空题9.一名学生问老师:“你今年多大了?”老师风趣地说“我像你这样大的时候,你才2岁;你到我这么大时,我已经38岁了”,则今年老师的岁数是_____.10.《孙子算经》是中国古代重要的数学著作,其中记载了这样一道有趣的问题:“一百马,一百瓦,大马一拖三,小马三拖一.”意思是:“现有100匹马恰好拉100片瓦.已知1匹大马能拉3片瓦,3匹小马能拉1片瓦.”则共有大马_____匹.11.《九章算术》中记载:“今有甲乙二人持钱不知其数,甲得乙半而钱五十,乙得甲太半而亦钱五十,问甲、乙持钱各几何?”译文是:今有甲、乙两人持钱不知道各有多少,甲若得到乙所有钱的12,则甲有50钱,乙若得到甲所有钱的23,则乙也有50钱,问甲、乙各持钱多少?设甲持钱数为x钱,乙持钱数为y钱,列出关于x,y的二元一次方程组是______.12.某中学为积极开展校园足球运动,计划购买A和B两种品牌的足球,已知一个A品牌足球价格为120元,一个B品牌足球价格为150元.学校准备用3000元购买这两种足球(两种足球都买),并且3000元全部用完,请写出一种购买方案:买_______个A品牌足球,买________个B品牌足球.13.《九章算术》记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两,问一牛一羊共直金几何?”译文:“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两.问一头牛和一只羊共值金多少两?”根据题意可得,一头牛和一只羊共值金____两.三、解答题14.一张方桌由1个桌面,4条桌腿组成,如果1m3木料可以做方桌的桌面50个或做桌腿300条,现有10m3木料,那么用多少立方米的木料做桌面,多少立方米的木料做桌腿,做出的桌面与桌腿,恰好能配成方桌?15.某村经济合作社决定把22吨竹笋加工后再上市销售,刚开始每天加工3吨,后来在乡村振兴工作队的指导下改进加工方法,每天加工5吨,前后共用6天完成全部加工任务,问该合作社改进加工方法前后各用了多少天?16.有A、B两种型号的货车:用2辆A型货车和1辆B型货车装满货物一次可运货10吨;用1辆A型货车和2辆B型货车装满货物一次可运货11吨.请用学过的方程(组)知识解答下列问题:(1)求A型、B型两种货车装满货物每辆分别能运货多少吨?(2)现某物流公司有31吨货物,计划同时租用A型车m辆,B型车n辆,一次运完,且恰好每辆车都装满货物.若A 型货车每辆需租金100元/次,B 型货车每辆需租金120元/次.请你帮该物流公司选出最省钱的租车方案,并求出最少租车费用.17.某地区2020年进出口总额为520亿元.2021年进出口总额比2020年有所增加,其中进口额增加了25%,出口额增加了30%.注:进出口总额=进口额+出口额. (1)设2020年进口额为x 亿元,出口额为y 亿元,请用含x ,y 的代数式填表:(2)已知2021年进出口总额比2020年增加了140亿元,求2021年进口额和出口额度分别是多少亿元?18.今年(2022年)4月20日,是云大附中建校95周年暨云大附中恢复办学40周年校庆日,我校初一年级数学兴趣小组的小明同学发现这样一个有趣的巧合;小明的爸爸和爷爷都是云附的老校友,且爸爸和妹妹的年龄差恰好与爷爷和小明的年龄差的和为95,而爸爸的年龄恰好比爷爷的年龄小40.已知小明今年13岁,妹妹今年4岁.(1)求今年小明的爸爸和爷爷的年龄分别是多少岁?(要求用二元一次方程组解答) (2)假如小明的爸爸和爷爷都是15岁初中华业的,请问小明的爸爸和爷爷分别是哪一年毕业的云附学子?19.某企业有A ,B 两条加工相同原材料的生产线,在一天内,A 生产线共加工a 吨原材料,加工时间为()41a +小时;在一天内,B 生产线共加工b 吨原材料,加工时间为()23b +小时. (1)当1a b ==时,两条生产线的加工时间分别时多少小时?(2)第一天,该企业把5吨原材料分配到A .B 两条生产线,两条生产线都在一天内完成了加工,且加工时间相同,则分配到两条生产线的的吨数是多少?(3)第二天开工前,该企业按第一天的分配结果分配了5吨原材料后,又给A 生产线分配了m 吨原材料,给B 生产线分配了n 吨原材料,若两条生产线都能在一天内加工完各自分配到的所有原材料,且加工时间相同,则m 和n 有怎样的数量关系?若此时m 与n 的和为6吨,则m 和n 的值分别为多少吨?参考答案1.A2.B3.D4.A5.A6.B7.A8.A 9.26 10.2511.15022503x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩12. 10 12 13.187##42714.解:设用x 立方米的木料做桌面,y 立方米的木料做桌腿,即做桌面50x 个,做桌腿300y 条,此时恰好能配成方桌50x 张,根据题意得10450300x y x y +=⎧⎨⨯=⎩ 解得64x y =⎧⎨=⎩ 则能配成方桌650300⨯=(张)故用6 m 3的木料做桌面,4 m 3的木料做桌腿,恰好能配成方桌300张. 15.解:设改进加工方法前用了x 天,改进加工方法后用了y 天, 则6,3522.x y x y +=⎧⎨+=⎩解得4,2.x y =⎧⎨=⎩ 经检验,符合题意.答:改进加工方法前用了4天,改进加工方法后用了2天.16.(1)设1辆A 型车装满货物一次可运货x 吨,1辆B 型车装满货物一次可运货y 吨,依题意,得:210211x y x y +=⎧⎨+=⎩,解得:34x y =⎧⎨=⎩.答:1辆A 型车装满货物一次可运货3吨,1辆B 型车装满货物一次可运货4吨. (2)由题意可得:3m +4n =31,即3134mn -=, ∵m ,n 均为整数,∴有17m n =⎧⎨=⎩,54m n =⎧⎨=⎩,91m n =⎧⎨=⎩三种情况.设租车费用为W 元, 则W =100m +120n =100m +120•3134m- =10m +930, ∵10>0,∴W 随m 的增大而增大,∴当m =1时,W 最小,此时W =10×1+930=940.∴当租用A 型车1辆,B 型车7辆,最少租车费用为940元. 17.(1)解:故答案为:1.25x +1.3y ; (2)解:根据题意1.25x +1.3y =520+140,∴5201.25 1.3520140x y x y +=⎧⎨+=+⎩,解得:320200x y =⎧⎨=⎩,2021年进口额1.25x =1.25320400⨯=亿元,2021年出口额是1.3 1.3200260y =⨯=亿元. 18.(1)设今年小明的爸爸x 岁,爷爷y 岁.()()4139540x y y x ⎧-+-=⎨-=⎩. 解得:3676x y =⎧⎨=⎩答:今年小明的爸爸36岁,爷爷76岁; (2)202236152001-+=(年) 202276151961-+=(年)小明的爸爸是2001年华业,爷爷是1961年毕业的云附学子. 19.(1)解:当1a b ==时, 415a +=,235b +=; 即两条生产线的的加工时间分别为5小时和5小时.(2)解∶设分配到A 生产线x 吨,则分配到B 生产线y 吨,根据题意得:54123x y x y +=⎧⎨+=+⎩,解得23x y =⎧⎨=⎩, 即分配到A 生产线2吨,则分配到B 生产线3吨; (3)解:根据题意得:()()421233m n ++=++, 整理得:2m n =, ∵6m n +=, ∴2m =,4n =,答:m 与n 的关系为2m n =,当6m n +=吨时,m 为2吨,n 为4吨.。
鸡兔同笼_练习

龙王小学:李少红
ห้องสมุดไป่ตู้
昨天我们学习了“鸡兔同笼”问 题
知道“鸡兔”共有几个 “头 ”和 几只“脚”。
求“鸡兔”各有几只? 比较好的方法有:假设 法和方程解。
练习:
鸡、兔共50只,共有脚160 只。鸡、兔各多少只?
智慧城堡
鹤龟同池,鹤比龟多 12只,鹤龟足共72只,求 鹤龟各有多少只?
停车场上有两轮摩托车和小 轿车共40辆,总共有110个轮子, 摩托车小轿车各有几辆?
拓展练习
某场球赛赛售出40元、 30元、50元的门票共400张, 收入15600元。其中40元和 50元的张数相等,每种门票 各售出多少张?
2011年12月13日
有1角和5角的硬币,一共30 枚,合起来共是9.8元。这两种 硬币各有多少枚?
答对一道得8分,答错一 道扣4分,王华答了15道题得 了72分,答对几道?
勇攀高峰
同学们对自己有信心吗?
100个和尚吃100个馒头,1 个大和尚吃3个,3个小和尚吃1 个,大和尚小和尚各有多少人?
某玻璃杯厂要为商场运送1000 个玻璃杯,双方商定每个运费为1 元,如果打碎一个,这个不但不给 运费,而且要赔偿3元。结果运到 目的地后结算时,玻璃杯厂共得运 费920元。求打碎了几个玻璃杯?
假设法解鸡兔同笼 小学数学 课后练习

一、选择题1. 笼子里有鸡兔若干只,从上面数10个头,从下面数36只脚.有()只鸡.A.1 B.2 C.32. 鸡兔同笼,有20个头,54条腿,那么有()A.鸡13只,兔7只B.鸡7只,兔13只C.鸡10只,兔10只3. 在池塘边,有几只青蛙正和鸭子们一起玩耍。
数一数,共有15个头,48只脚,那么一共有()只青蛙。
A.8 B.9 C.104. 小明一共有34元钱,买了笔和本子,笔1元钱一支,本子3元钱一本,本子和笔总数为20,最后正好花完钱,问本子多少本?()A.10 B.9 C.8 D.75. 一只鸡2只脚,一只兔子4只脚。
5只鸡和1只兔子一共有()只脚。
A.18 B.14 C.22二、填空题6. 20张乒乓球桌上一共有50个同学比赛,单打的乒乓球桌有( )张,双打的乒乓球桌有( )张。
7. 活动课上有30个同学在12张乒乓球桌上同时进行乒乓球单打和双打比赛,其中正在进行单打比赛的乒乓球桌有( )张,进行双打的乒乓球桌有( )张。
8. 今有鸡兔同笼,共有头28个,腿92条.鸡有_____只,兔有_____只.9. 鸡兔同笼,从上面数8个头,有22只脚,鸡有( )只.10. 60人参加脑筋急转弯答题游戏,共有10道题,每道题每人都答1次,共答对452次,已知每人都至少答对了6道题,且只答对6道题的有21人,只答对8道题的有12人,只答对7道题和只答对9道题的人数一样多,那么10道题全答对的有________人.三、解答题11. 学校买回4个篮球和5个排球,一共用了185元,一个篮球比一个排球贵8元,篮球、排球的单价各多少元?12. 有鸡兔共20只,脚44只,鸡兔各几只?13. 有一辆货车运输2000只玻璃瓶,运费按到达时完好的瓶子数目计算,每只2角,如有破损,破损瓶子不给运费,还要每只赔偿1元.结果得到运费379.6元,问这次搬运中玻璃瓶破损了几只?14. 小梅数她家的鸡与兔,数头有16个,数脚有44只.问:小梅家的鸡与兔各有多少只?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学
重
难
点
建立解决“鸡兔同笼”问题的模型
教具
准备
习题课件
教学过程
二次备课
一、问题引入,回顾再现。
“鸡兔同笼”是一类有名的中国古算题。最早出现在《孙子算经》中。许多小学算术应用题都可以转化成这类问题,或者用解它的典型解法--“假设法”来求解。因此很有必要学会它的解法和思路。你知道解决“鸡兔同笼”问题有几种方法吗?并通过比较发现它们有什么特点?
四、归纳小结、课外延伸
1、教师:这节课我们做了这么多题,你有什么感受和收获?
指生说一说感受和收获,教师总结。
2、课外延伸
同学们课下共同合作学习,完成思考题:
思考题安排了另一个类似的古代数学趣题“100个和尚吃100个馒头”,这个问题同样可以用“假设法”或列方程来求解。也可根据题意“大和尚一人吃3个,小和尚3人吃1个”,知道1个大和尚和3个小和尚一共吃4个馒头,也就是每4个馒头正好分给1个大和尚和3个小和尚。所以不妨把100个馒头每4个分为一组,一共可分100÷4=25(组),而100个和尚也正好分为这样的25组,在每组中,必有1个大和尚和3个小和尚,这样就可以找出答案了。
4、完成练习二十六的第6题:第6题是一个游戏活动,和鸡兔同笼问题很相似。实际操作时5分和2分的硬币也可以换成其他方便的教具,如5角和1角的硬币等。
[设计意图:拓宽学生的视野,使学生体会到“鸡兔同笼”问题在生活中的广泛应用,感受数学学习的价值。引导学生观察比较,提炼出这类问题的结构特征,把学习引向深入。]
费县小学数学集体备课教案
ห้องสมุดไป่ตู้2010年7月10日
六年级上册第七单元
课题
鸡兔同笼练习课
课型
新授
主备单位、教师
马庄小学 张晓东
使用单位、教师
教
学
目
标
1、复习解决“鸡兔同笼”问题的多种方法,分析比较各种方法,让学生感受到代数法和假设法的一般性;
2、通过不同的练习,帮助学生建立一个解决这类问题的模型,从而让学生更熟练解决生活中的“鸡兔同笼”问题;
4、星期日,小英一家八口人到博物馆参观,博物馆的票价是成人每人30元,儿童每人15元,买门票共花去210元钱,其中儿童有几人?
5、三年级(4)班48人去北海公园划船,租了大船和小船共10条,每6人可坐满一条大船,每4人可坐满一条小船,且每条船都没有空位,他们租大船和小船各几条?
[设计意图:根据新知识的特点和学生生活中遇到的一些实际问题,适当进行了一下变式练习,使练习的题型多样化,而不仅仅是“鸡兔同笼”问题,这样练习就不再单一,学生练习的热情也就会比较高,同时也让学生的思维能力和灵活解决问题的能力得到了提高,充分体现了这组练习设计的实效性。]
三、自主检测,评价完善
1、动物园中的问题
动物园有龟和鹤共40只,龟的腿和鹤的腿共有112条。龟、鹤各有几只?
2、游乐园中的问题
有38个同学去游乐园划船,共租了8条船,每条船都坐满了。大船每条乘6人,小船每条乘4人。大小船各租了几条?
3、摆三角形和正方形一共用了19根小棒,(任意两个图形之间没有公共边),你能算出摆了多少个三角形和多少个正方形吗?
1、列表法:适合数据较小的问题;
2、假设法;一般都适合,数量关系比较容易理解;
3、列方程法;一般都适合,理解起来教抽象;
二、分层练习、强化提高
(一)基本练习。
帮助学生建立解决“鸡兔同笼”问题的模型(以成P116的第1题为例题)
1、学生独立用列方程法解决;
2、探讨用假设法解决:
(1)学生小组探讨;
(2)小组汇报探讨结果;
(3)集体讲解,帮助学生建立用假设法解决这类问题的模型。
(二)综合练习。
1、用列方程法完成练习二十六的第2题。
2、用假设法完成练习二十六的第3题;
3、完成练习二十六的第4题: 第4题是知识抢答中的“鸡兔同笼”问题。如果用“假设法”解决,要注意答对一题比答错一题要多得10+6=16分,而不是10-6=4分。答错一题则比答对一题要少得16分。
教学反思: