2019年数学第二次模拟考试试题

合集下载

2019年高三下学期第二次模拟考试数学(理)试题含答案

2019年高三下学期第二次模拟考试数学(理)试题含答案

2019年高三下学期第二次模拟考试数学(理)试题含答案本试卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟。

注意事项:1.答第I卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上。

2.每题选出答案后,用2B铅笔把答题卡对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,在改涂在其他答案标号。

一.选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知i是虚数单位,复数z满足,则z的模是A. B. C.1 D.2.已知m,n∈R,集合A={2,},B={m,},若={1},m+n=A.5B.6C.7D.83. 甲乙两名运动员的5次测试成绩如图,设分别表示甲、乙两名运动员测试成绩的标准差,分别表示甲、乙两名运动员测试成绩的平均数,则有A.,B.,C.,D. ,4. 将函数=图像上所有的点的横坐标缩短为原来的,纵坐标不变,得到g(x)的图象,则函数g(x)的一个减区间为A.[-,]B.[-,]C.[-,]D.[-,]5.已知,则sin2x=A. B.- C. D. -6. 已知,分别是定义在R上的奇函数和偶函数,若+=,则下列结论正确的是A.=B.g(1)=C.若a>b,则f(a)>f(b)D.若a>b,则g(a)>g(b)7. 已知,若从[0,10]中任取一个数x,则使|x-1|≤a的概率为A. B. C. D.8. 如图,在三棱锥P-ABC中,面PAC⊥面ABC,AB⊥BC,AB=BC=PA=PC=2,M,N为线段PC上的点,若MN=,则三棱锥A-MNB的体积为A. B. C. D.9. 对于同一平面内的单位向量,若的夹角为,则的最大值为A. B.2 C. D.310. 已知e为自然对数的底数,若对任意的x∈[0,1],总存在唯一的y∈[-1,1],使得成立,则实数a的取值范围是A.(1+,e]B.[1+,e]C.(1,e]D.(2+,e]第II卷(非选择题共100分)注意事项:第II卷所有题目的答案考生需用黑色签字笔答在“数学”答题卡指定的位置。

2019年中考数学二模试卷(含解析)

2019年中考数学二模试卷(含解析)

中考数学二模试卷一.选择题(共10小题,满分30分,每小题3分)1.﹣2019的倒数是()A.2019B.C.﹣D.﹣2019 2.如图是由几个相同的正方体搭成的一个几何体,从正面看到的平面图形是()A.B.C.D.3.已知5x=3,5y=2,则52x﹣3y=()A.B.1C.D.4.下列说法正确的是()A.掷一枚质地均匀的正方体骰子,骰子停止转动后,5点朝上是必然事件B.审查书稿中有哪些学科性错误适合用抽样调查法C.甲乙两人在相同条件下各射击10次,他们的成绩的平均数相同,方差分别是S甲2=0.4,S乙2=0.6,则甲的射击成绩较稳定D.掷两枚质地均匀的硬币,“两枚硬币都是正面朝上”这一事件发生的概率为5.若关于x的方程=1﹣无解,则k的值为()A.3B.1C.0D.﹣16.将一副三角板(∠A=30°)按如图所示方式摆放,使得AB∥EF,则∠1等于()A.75°B.90°C.105°D.115°7.关于x的方程x2﹣mx﹣1=0根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.不能确定8.如图,∠AOB=50°,∠OBC=40°,则∠OAC=()A.15°B.25°C.30°D.40°9.如图,为估算学校的旗杆的高度,身高1.6米的小红同学沿着旗杆在地面的影子AB由A向B走去,当她走到点C处时,她的影子的顶端正好与旗杆的影子的顶端重合,此时测得AC=2m,BC =8m,则旗杆的高度是()A.6.4m B.7m C.8m D.9m10.二次函数y=ax2+bx+c的图象如图,给出下列四个结论:①4ac﹣b2<0;②4a+c<2b;③2a﹣b=0;④abc>0,其中正确结论的个数是()A.4个B.3个C.2个D.1个二.填空题(共8小题,满分24分,每小题3分)11.58万千米用科学记数法表示为:千米.12.函数y=的自变量x的取值范围是.13.分解因式:3x2﹣3y2=.14.某商品原价100元,连续两次涨价后,售价为144元.若平均增长率为x,则x=.15.一个扇形的弧长是20πcm,面积是240πcm2,则这个扇形的圆心角是度.16.如图,矩形纸片ABCD,BC=2,∠ABD=30度.将该纸片沿对角线BD翻折,点A落在点E 处,EB交DC于点F,则点F到直线DB的距离为.17.如图,△ABC中,AB=10,AC=7,AD是角平分线,CM⊥AD于M,且N是BC的中点,则MN=.18.用形状大小完全相同的等边三角形和正方形按如图所示的规律拼图案,即从第2个图案开始每个图案比前一个图案多4个等边三角形和1个正方形,则第n个图案中等边三角形的个数为个.三.解答题(共8小题,满分66分)19.(4分)计算:+()﹣1﹣(π﹣3.14)0﹣tan60°.20.(6分)先化简÷,然后从﹣1,0,2中选一个合适的x的值,代入求值.21.(8分)如图所示,A、B两地之间有一条河,原来从A地到B地需要经过桥DC,沿折线A→D →C→B到达,现在新建了桥EF(EF=DC),可直接沿直线AB从A地到达B地,已知BC=12km,∠A=45°,∠B=30°,桥DC和AB平行.(1)求桥DC与直线AB的距离;(2)现在从A地到达B地可比原来少走多少路程?(以上两问中的结果均精确到0.1km,参考数据:≈1.14,≈1.73)22.(8分)某电视台的一档娱乐性节目中,在游戏PK环节,为了随机分选游戏双方的组员,主持人设计了以下游戏:用不透明的白布包住三根颜色长短相同的细绳AA1、BB1、CC1,只露出它们的头和尾(如图所示),由甲、乙两位嘉宾分别从白布两端各选一根细绳,并拉出,若两人选中同一根细绳,则两人同队,否则互为反方队员.(1)若甲嘉宾从中任意选择一根细绳拉出,求他恰好抽出细绳AA1的概率;(2)请用画树状图法或列表法,求甲、乙两位嘉宾能分为同队的概率.23.(8分)如图,直线y=﹣x+m与x轴,y轴分别交于点B,A两点,与双曲线y=(k≠0)相交于C,D两点,过C作CE⊥x轴于点E,已知OB=4,OE=2.(1)求直线和双曲线的表达式;(2)设点F是x轴上一点,使得S△CEF =2S△COB,求点F的坐标;(3)求点D的坐标,并结合图象直接写出不等式﹣x+m≥的解集.24.(10分)如图,在△ABC中,点F是BC的中点,点E是线段AB的延长线上的一动点,连接EF,过点C作AB的平行线CD,与线段EF的延长线交于点D,连接CE、BD.(1)求证:四边形DBEC是平行四边形.(2)若∠ABC=120°,AB=BC=4,则在点E的运动过程中:①当BE=时,四边形BECD是矩形,试说明理由;②当BE=时,四边形BECD是菱形.25.(10分)如图,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于点D,点E在AB上,以AE为直径的⊙O经过点D.(1)求证:直线BC是⊙O的切线;(2)若∠B=30°,AC=3,求图中阴影部分的面积.26.(12分)如图1,抛物线y=ax2+(a+2)x+2(a≠0)与x轴交于点A(4,0),与y轴交于点B,在x轴上有一动点P(m,0)(0<m<4),过点P作x轴的垂线交直线AB于点N,交抛物线于点M.(1)求a的值;(2)若PN:MN=1:3,求m的值;(3)如图2,在(2)的条件下,设动点P对应的位置是P1,将线段OP1绕点O逆时针旋转得到OP2,旋转角为α(0°<α<90°),连接AP2、BP2,求AP2+BP2的最小值.二模试卷参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.【分析】直接利用倒数的定义进而得出答案.【解答】解:﹣2019的倒数是:﹣.故选:C.【点评】此题主要考查了倒数,正确把握倒数的定义是解题关键.2.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看第一层是三个小正方形,第二层在中间位置一个小正方形,故D符合题意,故选:D.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.3.【分析】首先根据幂的乘方的运算方法,求出52x、53y的值;然后根据同底数幂的除法的运算方法,求出52x﹣3y的值为多少即可.【解答】解:∵5x=3,5y=2,∴52x=32=9,53y=23=8,∴52x﹣3y==.故选:D.【点评】此题主要考查了同底数幂的除法法则,以及幂的乘方与积的乘方,同底数幂相除,底数不变,指数相减,要熟练掌握,解答此题的关键是要明确:①底数a≠0,因为0不能做除数;②单独的一个字母,其指数是1,而不是0;③应用同底数幂除法的法则时,底数a可是单项式,也可以是多项式,但必须明确底数是什么,指数是什么.4.【分析】由随机事件和必然事件的定义得出A错误,由统计的调查方法得出B错误;由方差的性质得出C正确,由概率的计算得出D错误;即可得出结论.【解答】解:A、掷一枚质地均匀的正方体骰子,骰子停止转动后,5点朝上不是必然事件,是随机事件,选项A错误;B、审查书稿中有哪些学科性错误适合用全面调查法,选项B错误;C、甲乙两人在相同条件下各射击10次,他们的成绩的平均数相同,方差分别是S甲2=0.4,S乙2=0.6,则甲的射击成绩较稳定,选项C正确;D、掷两枚质地均匀的硬币,“两枚硬币都是正面朝上”这一事件发生的概率为,不是,选项D错误;故选:C.【点评】本题考查了求概率的方法、全面调查与抽样调查、方差的性质以及随机事件与必然事件;熟记方法和性质是解决问题的关键.5.【分析】分式方程去分母转化为整式方程,由分式方程无解确定出x的值,代入整式方程计算即可求出k的值.【解答】解:去分母得:3=x﹣1+k,由分式方程无解,得到x=1,把x=1代入整式方程得:k=3,故选:A.【点评】此题考查了分式方程的解,始终注意分母不为0这个条件.6.【分析】依据AB∥EF,即可得∠BDE=∠E=45°,再根据∠A=30°,可得∠B=60°,利用三角形外角性质,即可得到∠1=∠BDE+∠B=105°.【解答】解:∵AB∥EF,∴∠BDE=∠E=45°,又∵∠A=30°,∴∠B=60°,∴∠1=∠BDE+∠B=45°+60°=105°,故选:C.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等.7.【分析】先计算△=(﹣m)2﹣4×1×(﹣1)=m2+4,由于m2为非负数,则m2+4>0,即△>0,根据一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac的意义即可判断方程根的情况.【解答】解:△=(﹣m)2﹣4×1×(﹣1)=m2+4,∵m2≥0,∴m2+4>0,即△>0,∴方程有两个不相等的实数根.故选:A.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.8.【分析】根据圆周角定理求出∠ACB,根据三角形外角性质求出即可.【解答】解:设AC和OB交于M,如图,∵∠AOB=50°,∴由圆周角定理得:∠ACB=∠AOB=25°,∵∠OBC=40°,∴∠AMB=∠ACB+∠OBC=25°+40°=65°,∴∠OAC=∠AMB﹣∠AOB=65°﹣50°=15°,故选:A.【点评】本题考查了三角形外角的性质和圆周角定理,能根据圆周角定理得出∠ACB=∠AOB 是解此题的关键.9.【分析】因为人和旗杆均垂直于地面,所以构成相似三角形,利用相似比解题即可.【解答】解:设旗杆高度为h,由题意得=,h=8米.故选:C.【点评】本题考查了考查相似三角形的性质和投影知识,解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立适当的数学模型来解决问题.10.【分析】根据二次函数的图象与性质即可求出答案.【解答】解:①由图象可知:△>0,∴b2﹣4ac>0,∴4ac﹣b2<0,故①正确;②当x=﹣2时,y>0,∴4a﹣2b+c>0,∴4a+c>2b,故②错误;③由对称轴可知:=﹣1,∴2a﹣b=0,故③正确;④由图象可知:a<0,c>0,对称轴可知:<0,∴b<0,∴abc>0,故④正确;故选:B.【点评】本题考查二次函数,解题的关键是熟练运用二次函数的图象与性质,本题属于基础题型.二.填空题(共8小题,满分24分,每小题3分)11.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:根据58万=580000,用科学记数法表示为:5.8×105.故答案为:5.8×105.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.【分析】求函数自变量的取值范围,就是求函数解析式有意义的条件,分式有意义的条件是:分母不等于0.【解答】解:根据题意知3﹣2x≠0,解得:x≠,故答案为:x≠.【点评】本题主要考查自变量得取值范围的知识点,当函数表达式是分式时,考虑分式的分母不能为0.13.【分析】原式提取3,再利用平方差公式分解即可.【解答】解:原式=3(x2﹣y2)=3(x+y)(x﹣y),故答案为:3(x+y)(x﹣y)【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.14.【分析】根据原价为100元,连续两次涨价x后,现价为144元,根据增长率的求解方法,列方程求x.【解答】解:依题意,有:100(1+x)2=144,1+x=±1.2,解得:x=20%或﹣2.2(舍去).故答案为:20%.【点评】此题主要考查了一元二次方程的应用,解题关键是根据增长率的求解公式列出方程.15.【分析】根据扇形的面积公式求出半径,然后根据弧长公式求出圆心角即可.【解答】解:扇形的面积公式=lr=240πcm2,解得:r=24cm,又∵l==20πcm,∴n=150°.故答案为:150.【点评】此题主要是利用扇形的面积公式先求出扇形的半径,再利用弧长公式求出圆心角.16.【分析】由折叠性质可以得到,∠FBD=∠ABD=30°,△DEB≌△BCD,进而得到△DFB是等腰三角形,有DF=FD,作FG⊥BD,由等腰三角形的性质:底边上的高与底边上的中线重合,则点G是BD的中点,而BD=AD sin30°=4,所以可求得FG=BG tan30°=.【解答】解:∵矩形纸片沿对角线BD翻折,点A落在点E处∴∠FBD=∠ABD=30°,△DEB≌△BCD,∴∠DBE=∠CDB,∴DF=FB,∴△DFB是等腰三角形,过点F作FG⊥BD,则点G是BD的中点∵BD=AD÷sin30°=4∴BG=2∴FG=BG tan30°=.【点评】本题利用了:1、折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等;2、矩形的性质,等腰三角形的性质,锐角三角函数的概念求解.17.【分析】延长CM交AB于E,根据ASA证△EAM≌△CAM,推出CM=ME,AE=AC=7,根据三角形的中位线定理求出MN=BE,代入求出即可.【解答】解:延长CM交AB于E,∵AM⊥CM,AD是∠BAC的角平分线,∴∠AME=∠AMC=90°,∠EAM=∠CAM,∵在△EAM和△CAM中∴△EAM≌△CAM(ASA),∴CM=ME,AE=AC=7,∵N是BC的中点,∴MN=BE=(AB﹣AE)=×(10﹣7)=1.5.故答案为:1.5.【点评】本题主要考查对三角形的中位线定理,全等三角形的性质和判定等知识点的理解和掌握,能求出MN是三角形CEB的中位线是解此题的关键.18.【分析】根据题目中的图形,可以发现正三角形个数的变化情况,从而可以求得第n个图案中等边三角形的个数.【解答】解:当n=1时,等边三角形的个数为:2,当n=2时,等边三角形的个数为:2+4×1=6,当n=3时,等边三角形的个数为:2+4×2=10,当n=4时,等边三角形的个数为:2+4×3=14,故第n个图案中等边三角形的个数为:2+4(n﹣1)=4n﹣2,故答案为:(4n﹣2).【点评】本题考查图形的变化类,解答本题的关键是明确题意,发现题目中三角形个数的变化规律,利用数形结合的思想解答.三.解答题(共8小题,满分66分)19.【分析】先化简二次根式、计算负整数指数幂、零指数幂、代入三角函数值,再计算加减可得.【解答】解:原式=2+3﹣1﹣=+2.【点评】此题主要考查了实数运算,解题的关键是熟练掌握实数的混合运算顺序和运算法则及其运算律.20.【分析】先根据分式混合运算顺序和运算法则化简原式,再由分式有意义的条件选取合适的x 的值代入计算可得.【解答】解:原式=•﹣=﹣==﹣,当x=2时,原式=﹣.【点评】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则及分式有意义的条件.21.【分析】(1)要求桥DC与直线AB的距离,只要作CH⊥AB于点H,求出CH的长度即可,由BC和∠B可以求得CH的长,本题得以解决;(2)要求现在从A地到达B地可比原来少走多少路程,只要求出AD与BC的和比AB﹣EF的长度多多少即可,由于DC=EF,有题意可以求得各段线段的长度,从而可以解答本题.【解答】解:(1)作CH⊥AB于点H,如下图所示,∵BC=12km,∠B=30°,∴km,BH=km,即桥DC与直线AB的距离是6.0km;(2)作DM⊥AB于点M,如下图所示,∵桥DC和AB平行,CH=6km,∴DM=CH=6km,∵∠DMA=90°,∠B=45°,MH=EF=DC,∴AD=km,AM=DM=6km,∴现在从A地到达B地可比原来少走的路程是:(AD+DC+BC)﹣(AM+MH+BH)=AD+DC+BC﹣AM﹣MH﹣BH=AD+BC﹣AM﹣BH==6≈4.1km,即现在从A地到达B地可比原来少走的路程是4.1km.【点评】本题考查解直角三角形的应用,解题的关键是明确题意,作出合适的图形,利用数形结合的思想解答问题,注意ME=DC=EF.22.【分析】(1)直接根据概率公式求解即可;(2)根据题意先画出树状图,得出所有情况数和甲、乙两位嘉宾能分为同队的结果数,再根据概率公式即可得出答案.【解答】解:(1)∵共有三根细绳,且抽出每根细绳的可能性相同,∴甲嘉宾从中任意选择一根细绳拉出,恰好抽出细绳AA1的概率是=;(2)画树状图:共有9种等可能的结果数,其中甲、乙两位嘉宾能分为同队的结果数为3种情况,则甲、乙两位嘉宾能分为同队的概率是=.【点评】此题考查了列表法或树状图法求概率.注意首先分别求得左右两端的情况,再画出树状图是关键.用到的知识点为:概率=所求情况数与总情况数之比.23.【分析】(1)根据已知条件求出A、B、C点坐标,用待定系数法求出直线AB和反比例函数的解析式;(2)根据三角形面积公式求得EF的长,即可求得点F的坐标;(3)联立一次函数的解析式和反比例的函数解析式可得交点D的坐标,然后根据函数的图象和交点坐标即可求解.【解答】解:(1)∵OB=4,OE=2,∴B(4,0),C点的横坐标为﹣2,∵直线y=﹣x+m经过点B,∴0=﹣+m,解得m=,∴直线为:y=﹣x+,把x=﹣2代入y=﹣x+得,y=﹣×(﹣2)+=2,∴C(﹣2,2),∵点C在双曲线y=(k≠0)上,∴k=﹣2×2=﹣4,∴双曲线的表达式为:y=﹣;(2)∵B(4,0),C(﹣2,2),∴OB=4,CE=2,∴S△COB=×4×2=4,∵S△CEF =2S△COB,∴S△CEF=×EF×2=8,∴EF=8,∵E(﹣2,0),∴F(﹣10,0)或(6,0);(3)联立反比例函数的解析式和直线AB的解析式可得,可得交点D的坐标为(6,﹣),由图象得,不等式﹣x+m≥的解集为x≤﹣2或0<x≤6.【点评】本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.24.【分析】(1)先证明△EBF≌△DCF,可得DC=BE,可证四边形BECD是平行四边形;(2)①根据四边形BECD是矩形时,∠CEB=90°,再由∠ABC=120°可得∠ECB=30°,再根据直角三角形的性质可得BE=2;②根据四边形BECD是菱形可得BE=EC,再由∠ABC=120°,可得∠CBE=60°,进而可得△CBE是等边三角形,再根据等边三角形的性质可得答案.【解答】(1)证明:∵AB∥CD,∴∠CDF=∠FEB,∠DCF=∠EBF,∵点F是BC的中点,∴BF=CF,在△DCF和△EBF中,,∴△EBF≌△DCF(AAS),∴DC=BE,∴四边形BECD是平行四边形;(2)解:①BE=2;∵当四边形BECD是矩形时,∠CEB=90°,∵∠ABC=120°,∴∠CBE=60°;∴∠ECB=30°,∴BE=BC=2,故答案为:2;②BE=4,∵四边形BECD是菱形时,BE=EC,∵∠ABC=120°,∴∠CBE=60°,∴△CBE是等边三角形,∴BE=BC=4.故答案为:4.【点评】此题主要考查了菱形和矩形的性质,以及平行四边形的判定,关键是掌握菱形四边相等,矩形四个角都是直角.25.【分析】(1)连接OD,由AD平分∠BAC,可知∠OAD=∠CAD,易证∠ODA=∠OAD,所以∠ODA=∠CAD,所以OD∥AD,由于∠C=90°,所以∠ODB=90°,从而可证直线BC是⊙O的切线;(2)根据含30度角的直角三角形性质可求出AB的长度,然后求出∠AOD的度数,然后根据扇形的面积公式即可求出答案.【解答】解:(1)连接OD,∵AD平分∠BAC,∴∠OAD=∠CAD,∵OA=OD,∴∠ODA=∠OAD,∴∠ODA=∠CAD,∴OD∥AD,∵∠C=90°,∴∠ODB=90°,∴OD⊥BC,∴直线BC是⊙O的切线;(2)由∠B=30°,∠C=90°,∠ODB=90°,得:AB=2AC=6,OB=2OD,∠AOD=120°,∠DAC=30°,∵OA=OD,∴OB=2OA,∴OA=OD=2,由∠DAC=30°,得DC=,∴S阴影=S扇形OAD﹣S△OAD=π×4﹣×2×=π﹣.【点评】本题考查圆的综合问题,涉及角平分线的性质,平行线的判定与性质,含30度角的直角三角形的性质,扇形面积公式等,需要学生灵活运用所学知识.26.【分析】(1)把A点坐标代入可得到关于a的方程,可求得a的值;(2)由△OAB∽△PAN可用m表示出PN,且可表示出PM,由条件可得到关于m的方程,则可求得m的值;(3)在y轴上取一点Q,使=,可证得△P2OB∽△QOP2,则可求得Q点坐标,则可把AP2+BP2化为AP2+QP2,利用三角形三边关系可知当A、P2、Q三点在一条线上时有最小值,则可求得答案.【解答】解:(1)∵A(4,0)在抛物线上,∴0=16a+4(a+2)+2,解得a=﹣;(2)由(1)可知抛物线解析式为y=﹣x2+x+2,令x=0可得y=2,∴OB=2,∵OP=m,∴AP=4﹣m,∵PM⊥x轴,∴△OAB∽△PAN,∴=,即=,∴PN=(4﹣m),∵M在抛物线上,∴PM=﹣m2+m+2,∵PN:MN=1:3,∴PN:PM=1:4,∴﹣m2+m+2=4×(4﹣m),解得m=3或m=4(舍去);(3)在y轴上取一点Q,使=,如图,中考数学模拟由(2)可知P1(3,0),且OB=2,∴=,且∠P2OB=∠QOP2,∴△P2OB∽△QOP2,∴=,∴当Q(0,)时QP2=BP2,∴AP2+BP2=AP2+QP2≥AQ,∴当A、P2、Q三点在一条线上时,AP2+QP2有最小值,∵A(4,0),Q(0,),∴AQ==,即AP2+BP2的最小值为.【点评】本题为二次函数的综合应用,涉及待定系数法、相似三角形的判定和性质、勾股定理、三角形三边关系等知识.在(2)中用m分别表示出PN和PM是解题的关键,在(3)确定出取得最小值时的位置是解题的关键.本题考查知识点较多,综合性较强,特别是(3)中构造三角形相似,难度较大.。

2019届高三数学二模考试试题理(含解析)

2019届高三数学二模考试试题理(含解析)

2019届高三数学二模考试试题理(含解析)一、选择题1.已知是虚数单位,复数的共轭复数是()A. B. C. 1 D. -1【答案】B【解析】【分析】先把复数化简,然后可求它的共轭复数.【详解】因为,所以共轭复数就是.故选:B.【点睛】本题主要考查复数的运算及共轭复数的求解,把复数化到最简形式是求解的关键,侧重考查数学运算的核心素养. 2.已知集合,则满足的集合的个数是()A. 4B. 3C. 2D. 1【答案】A【解析】【分析】先求解集合,然后根据可求集合的个数.【详解】因为,,所以集合可能是.故选:A.【点睛】本题主要考查集合的运算,化简求解集合是解决这类问题的关键,侧重考查数学运算的核心素养.3.设向量,满足,,则()A. -2B. 1C. -1D. 2【答案】C【解析】【分析】由平面向量模的运算可得:,①,②,则①②即可得解.【详解】因为向量,满足,,所以,①,②由①②得:,即,故选:.【点睛】本题主要考查了平面向量模和数量积的运算,意在考查学生对这些知识的理解掌握水平,属基础题.4.定义运算,则函数的大致图象是()A. B.C. D.【答案】A【解析】【分析】图象题应用排除法比较简单,先根据函数为奇函数排除、;再根据函数的单调性排除选项,即可得到答案.【详解】根据题意得,且函数为奇函数,排除、;;当时,,令,令,函数在上是先递减再递增的,排除选项;故选:.【点睛】本题主要考查了函数的奇偶性与单调性的判断,考查根据解析式找图象,意在考查学生对这些知识的理解掌握水平,属于基础题.5.已知圆:,定点,直线:,则“点在圆外”是“直线与圆相交”的()A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】C【解析】【分析】通过圆心到直线的距离与圆的半径进行比较可得.【详解】若点在圆外,则,圆心到直线:的距离,此时直线与圆相交;若直线与圆相交,则,即,此时点在圆外.故选:C.【点睛】本题主要考查以直线和圆的位置关系为背景的条件的判定,明确直线和圆位置关系的代数表示是求解的关键,侧重考查逻辑推理的核心素养.6.某程序框图如图所示,若输入的,则输出的值是()A. B.C. D.【答案】D【解析】分析】按照程序框图的流程,写出前五次循环的结果,直到第六次不满足判断框中的条件,执行输出结果.【详解】经过第一次循环得到经过第二次循环得到经过第三次循环得到经过第四次循环得到经过第五次循环得到经过第六次循环得到此时,不满足判断框中的条件,执行输出故输出结果为故选:.【点睛】本题主要考查解决程序框图中的循环结构,常按照程序框图的流程,采用写出前几次循环的结果,找规律.7.在公差不等于零的等差数列中,,且,,成等比数列,则()A. 4B. 18C. 24D. 16【答案】D【解析】【分析】根据,,成等比数列可求公差,然后可得.【详解】设等差数列的公差为,因为,,成等比数列,所以,即有,解得,(舍),所以.故选:D.【点睛】本题主要考查等差数列的通项公式,根据已知条件构建等量关系是求解的关键,侧重考查数学运算的核心素养. 8.已知,为椭圆的左右焦点,点在上(不与顶点重合),为等腰直角三角形,则的离心率为()A. B. C. D.【答案】B【解析】【分析】先根据为等腰直角三角形可得,结合椭圆的定义可求离心率.【详解】由题意等腰直角三角形,不妨设,则,由椭圆的定义可得,解得.故选:B.【点睛】本题主要考查椭圆离心率的求解,离心率问题的求解关键是构建间的关系式,侧重考查数学运算的核心素养.9.若三棱锥的三视图如图所示,则该三棱锥的体积为()A. B.C. D.【答案】D【解析】【分析】由三视图知该几何体是一个三棱锥,由三视图求出几何元素的长度,由锥体的体积公式求出几何体的体积.【详解】根据三视图可知几何体是一个三棱锥,由俯视图和侧视图知,底面是一个直角三角形,两条直角边分别是、4,由正视图知,三棱锥的高是4,该几何体的体积,故选:.【点睛】本题主要考查三视图求几何体的体积,由三视图正确复原几何体是解题的关键,考查空间想象能力.10.若的展开式中的各项系数的和为1,则该展开式中的常数项为()A. 672B. -672C. 5376D. -5376【答案】A【解析】【分析】先根据的展开式中的各项系数的和为1,求解,然后利用通项公式可得常数项.【详解】因为的展开式中的各项系数的和为1,所以,即;的通项公式为,令得,所以展开式中的常数项为.【点睛】本题主要考查二项式定理展开式的常数项,利用通项公式是求解特定项的关键,侧重考查数学运算的核心素养.11.已知函数,则的最大值为()A. 1B.C.D. 2【答案】B【解析】【分析】先化简函数,然后利用解析式的特点求解最大值.【详解】,因为,所以.故选:B.【点睛】本题主要考查三角函数的最值问题,三角函数的最值问题主要是先化简为最简形式,结合解析式的特点进行求解.12.将边长为2的正方形(及其内部)绕旋转一周形成圆柱,点、分别是圆和圆上的点,长为,长为,且与在平面的同侧,则与所成角的大小为()A. B. C. D.【答案】C【解析】【分析】由弧长公式可得,,由异面直线所成角的作法可得为异面直线与所成角,再求解即可.【详解】由弧长公式可知,,在底面圆周上去点且,则面,连接,,,则即为异面直线与所成角,又,,所以,故选:.【点睛】本题主要考查了弧长公式及异面直线所成角的作法,考查了空间位置关系的证明,意在考查学生对这些知识的理解掌握水平.二、填空题13.向平面区域内随机投入一点,则该点落在曲线下方概率为______.【答案】【解析】【分析】由题意画出图形,分别求出正方形及阴影部分的面积,再由几何概型概率面积比得答案.【详解】作出平面区域,及曲线如图,,.向平面区域,内随机投入一点,则该点落在曲线下方的概率为.故答案为:.【点睛】本题主要考查几何概型概率的求法,考查数形结合的解题思想方法,意在考查学生对这些知识的理解掌握水平.14.设,满足约束条件,则的取值范围是______.【答案】【解析】【分析】作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求的取值范围.【详解】作出,满足约束条件,则对应的平面区域(阴影部分),由,得,平移直线,由图象可知当直线经过点时,直线的截距最大,此时最大.此时的最大值为,由图象可知当直线经过点时,直线的截距最小,此时最小.此时的最小值为,故答案为:,.【点睛】本题主要考查线性规划的应用,意在考查学生对这些知识的理解掌握水平,利用数形结合是解决线性规划题目的常用方法.15.设等差数列的前项和为,若,,,则______.【答案】8【解析】【分析】根据等差数列的通项公式及求和公式可得.【详解】因为,所以,因为,所以,设等差数列的公差为,则,解得,由得,解得.故答案为:8.【点睛】本题主要考查等差数列的基本量的运算,熟记相关的求解公式是求解的关键,侧重考查数学运算的核心素养.16.若直线既是曲线的切线,又是曲线的切线,则______.【答案】1【解析】【分析】分别设出两个切点,根据导数的几何意义可求.详解】设直线与曲线相切于点,直线与曲线相切于点,则且,解得;同理可得且,解得;故答案为:1.【点睛】本题主要考查导数的几何意义,设出切点建立等量关系式是求解的关键,侧重考查数学运算的核心素养.三、解答题17.在中,内角,,的对边分别为,,,已知.(1)若,求和;(2)求的最小值.【答案】(1),(2)【解析】【分析】(1)利用已知条件求出的余弦函数值,然后求解的值,然后求解三角形的面积;(2)通过余弦定理结合三角形的面积转化求解即可.【详解】(1)因为,代入,得,所以,,由正弦定理得,所以,.(2)把余弦定理代入,得,解得.再由余弦定理得.当且仅当,即时,取最小值.【点睛】本题主要考查三角形的解法、正余弦定理的应用、三角形的面积以及基本不等式的应用,意在考查学生对这些知识的理解掌握水平和分析推理能力,是中档题.18.一只红玲虫的产卵数和温度有关.现收集了7组观测数据如下表:温度21产卵数/7个为了预报一只红玲虫在时的产卵数,根据表中的数据建立了与的两个回归模型.模型①:先建立与的指数回归方程,然后通过对数变换,把指数关系变为与的线性回归方程:;模型②:先建立与的二次回归方程,然后通过变换,把二次关系变为与的线性回归方程:.(1)分别利用这两个模型,求一只红玲虫在时产卵数的预测值;(2)你认为用哪个模型得到的预测值更可靠?并说明理由.(参考数据:模型①的残差平方和,模型①的相关指数;模型②的残差平方和,模型②的相关指数;,,;,,,,,,)【答案】(1),(2)模型①得到的预测值更可靠,理由见解析【解析】【分析】(1)把分别代入两个模型求解即可;(2)通过残差及相关指数的大小进行判定比较.【详解】(1)当时,根据模型①,得,,根据模型②,得.(2)模型①得到的预测值更可靠.理由1:因为模型①的残差平方和小于模型②的残差平方和,所以模型①得到的预测值比模型②得到的预测值更可靠;理由2:模型①的相关指数大于模型②的相关指数,所以模型①得到的预测值比模型②得到的预测值更可靠;理由3:因为由模型①,根据变换后的线性回归方程计算得到的样本点分布在一条直线的附近;而由模型②,根据变换后的线性回归方程得到的样本点不分布在一条直线的周围,因此模型②不适宜用来拟合与的关系;所以模型①得到的预测值比模型②得到的预测值更可靠.(注:以上给出了3种理由,考生答出其中任意一种或其他合理理由均可得)【点睛】本题主要考查回归分析,模型拟合程度可以通过两个指标来判别,一是残差,残差平方和越小,拟合程度越高;二是相关指数,相关指数越接近1,则拟合程度越高.19.如图,在四棱锥中,已知底面,,,,,是上一点.(1)求证:平面平面;(2)若是的中点,且二面角的余弦值是,求直线与平面所成角的正弦值.【答案】(1)证明见解析(2)【解析】【分析】(1)先证明平面,然后可得平面平面;(2)建立坐标系,根据二面角的余弦值是可得的长度,然后可求直线与平面所成角的正弦值.【详解】(1)平面,平面,得.又,在中,得,设中点为,连接,则四边形为边长为1的正方形,所以,且,因为,所以,又因为,所以平面,又平面,所以平面平面.(2)以为坐标原点,分别以射线、射线为轴和轴的正方向,建立如图空间直角坐标系,则,,.又设,则,,,,.由且知,为平面的一个法向量.设为平面的一个法向量,则,即,取,,则,有,得,从而,.设直线与平面所成的角为,则.即直线与平面所成角的正弦值为.【点睛】本题主要考查空间平面与平面垂直及线面角的求解,平面与平面垂直一般转化为线面垂直来处理,空间中的角的问题一般是利用空间向量来求解.20.设为抛物线:的焦点,是上一点,的延长线交轴于点,为的中点,且.(1)求抛物线的方程;(2)过作两条互相垂直的直线,,直线与交于,两点,直线与交于,两点,求四边形面积的最小值.【答案】(1)(2)32【解析】【分析】(1)由题意画出图形,结合已知条件列式求得,则抛物线的方程可求;(2)由已知直线的斜率存在且不为0,设其方程为,与抛物线方程联立,求出,,可得四边形的面积,利用基本不等式求最值.【详解】(1)如图,为的中点,到轴的距离为,,解得.抛物线的方程为;(2)由已知直线的斜率存在且不为0,设其方程为.由,得.△,设,、,,则;同理设,、,,,则.四边形的面积.当且仅当时,四边形的面积取得最小值32.线相交弦长问题、一元二次方程的根与系数的关系、基本不等式的性质、三角形面积计算公式,考查了推理能力与计算能力,属于中档题.21.是自然对数的底数,已知函数,.(1)求函数的最小值;(2)函数在上能否恰有两个零点?证明你结论.【答案】(1)(2)能够恰有两个零点,证明见解析【解析】【分析】(1)先求导数,再求极值。

2019年江西省中等学校中考第二次模拟数学试卷(解析版)

2019年江西省中等学校中考第二次模拟数学试卷(解析版)

2019年江西省中等学校中考数学第二次试卷一.选择题(每题3分,满分18分)1.下列四个数:3-,-0.5,23,5中,绝对值最大的数是()A. 3-B. -0.5C. 23D. 5【答案】A【解析】【分析】根据绝对值的性质以及正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小判断即可.【详解】∵|-3|=3,|-0.5|=0.5,|23|=23,|5|=5且0.5<23<5<3,∴所给的几个数中,绝对值最大的数是-3.故选:A.【点睛】此题主要考查了实数大小比较的方法以及绝对值的性质,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.2.一元一次不等式3(x+1)≤6的解集在数轴上表示正确的是()A. B.C. D.【答案】B【解析】【分析】先求出不等式的解集,再在数轴上表示出来即可.【详解】去括号,得:3x+3≤6,移项,得:3x≤6–3,合并同类项,得:3x≤3,系数化为1,得:x≤1,故选B.【点睛】本题考查的是在数轴上表示不等式的解集,熟知“小于向左,大于向右”是解答此题的关键.3.如图是由6个大小相同的小正方体搭成的几何体,这个几何体的左视图是()A. B.C. D.【答案】D【解析】【分析】根据简单几何体的三视图即可求解.【详解】解:左视图有2列,每列小正方形数目分别为2,2.故选:D.【点睛】此题主要考查三视图的识别,解题的关键是熟知三视图的定义.4.下列分式运算中,结果正确的是()A. a﹣3b2÷a﹣2b2=1aB. (﹣34xy)4=﹣4334xy-C. (2aa c+)2=22acD.ba+dc=bdac【答案】A【解析】【分析】结合分式混合运算的运算法则、整式的除法的运算法则以及负整数指数幂的概念进行求解即可.【详解】解:A、a-3b2÷a﹣2b2=1a,本选项正确;B、(﹣34xy)4=4481256xy≠﹣4334xy-,本选项错误;C、(2aa c+)2=224()aa c+≠22ac,本选项错误;D、dc+ba=bc daac+≠bdac,本选项错误;故选:A.【点睛】本题考查了分式的混合运算、整式的除法和负整数指数幂,解答本题的关键在于熟练掌握各知识点的概念和运算法则.5.如图,△ABC的中线AD、BE相交于点P,四边形与△ABP的面积分别记为S1、S2,则S1与S2的大小关系为()A. S1>S2B. S1=S2C. S1<S2D. 以上都有可能【答案】B【解析】【分析】连接DE,根据三角形的中位线的性质得到DE∥AB,求得S△ABD=S△ABE,根据三角形的一边的中线分的三角形的面积相等即可得到结论.【详解】解:连接DE,∵△ABC的中线AD、BE相交于点P,∴DE∥AB,∴S△ABD=S△ABE,∴S△PBD=S△PAE,∵S△ABE=S2+S△PAE=S△BCE=S△PBD+S1,∴S1=S2,∴S1与S2的大小关系为相等,故选:B.【点睛】本题考查了三角形的面积,正确的识别图形是解题的关键.6.在平面直角坐标系中,二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,现给以下结论:①abc <0;②c +2a <0;③9a ﹣3b +c =0;④a ﹣b ≥m (am +b )(m 为实数);⑤4ac ﹣b 2<0.其中错误结论的个数有( )A. 1个B. 2个C. 3个D. 4个【答案】A 【解析】 【分析】由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断. 【详解】解:①由抛物线可知:a >0,c <0, 对称轴x =﹣2ba<0, ∴b >0,∴abc <0,故①正确; ②由对称轴可知:﹣2ba=﹣1, ∴b =2a ,∵x =1时,y =a+b+c =0, ∴c+3a =0,∴c+2a =﹣3a+2a =﹣a <0,故②正确;③(1,0)关于x =﹣1的对称点为(﹣3,0), ∴x =﹣3时,y =9a ﹣3b+c =0,故③正确; ④当x =﹣1时,y 的最小值为a ﹣b+c , ∴x =m 时,y =am 2+bm+c , ∴am 2+bm+c≥a -b+c ,即a ﹣b≤m (am+b ),故④错误; ⑤抛物线与x 轴有两个交点, ∴△>0, 即b 2﹣4ac >0,∴4ac ﹣b 2<0,故⑤正确; 故选:A .【点睛】主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a 与b 的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.二.填空题(满分18分,每小题3分)7.分解因式:3x 2﹣6x 2y +3xy 2=_____. 【答案】3x (x ﹣2xy +y 2) 【解析】 【分析】原式提取公因式分解即可. 【详解】解:原式=3x (x-2xy+y 2), 故答案为:3x (x-2xy+y 2)【点睛】此题考查了提公因式法与公式法的综合运用,找出原式的公因式是解本题的关键.8.春节期间,某景区共接待游客约1260000人次,将“1260000”用科学记数法表示为_____.【答案】1.26×106.【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】将“1260000”用科学记数法表示为1.26×106.故答案是:1.26×106.【点睛】考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.9.如图,把△ABC绕点A时针旋转20°得到△AB'C',若B'C'经过点C,则∠C'的度数为______.【答案】80°【解析】【分析】根据旋转的性质和等腰三角形性质可得∠C'=00 180202-.【详解】解:∵把△ABC绕点A时针旋转20°得到△AB'C',∴∠CAC'=20°,AC=C'A,∴∠C'=00 180202-=80°,故答案为:80°【点睛】考核知识点:利用旋转性质求解.10.如图,AB为⊙O的直径,C,D,E为⊙O上的点,CD DB=,∠ABD=60°,则∠CEB=_____°.【答案】60【解析】【分析】连接OC,OD,根据圆周角定理即可得到结论.【详解】解:连接OC,OD,∵AB为⊙O的直径,∠ABD=60°,∴∠AOD=120°,∴∠BOD=60°,∵CD DB=,∴∠DOC=∠BOD=60°,∴∠BOC=120°,∴∠CEB=12∠BOC=60°,故答案为:60.【点睛】本题考查了圆周角定理,圆心角,弧,弦的关系,正确的作出辅助线是解题的关键.11.设α,β是方程x2﹣x﹣2019=0的两个实数根,则α3﹣2021α﹣β的值为_____;【答案】2018【解析】【分析】根据一元二次方程根与系数的关系,结合“α,β是方程x2-x-2019=0的两个实数根”,得到α+β的值,再把α代入方程x2-x-2019=0,经过整理变化,即可得到答案.【详解】解:∵α,β是方程x2﹣x﹣2019=0的两个实数根,∴α+β=1,∵α3-2021α-β=α(α2-2020)-(α+β)=α(α2-2020)-1,∵α2-α-2019=0,∴α2-2020=α-1,把α2-2020=α-1代入原式得:原式=α(α-1)-1=α2-α-1=2019-1=2018.故答案为:2018.【点睛】本题考查了根与系数的关系以及一元二次方程的解,正确掌握一元二次方程根与系数的关系是解题的关键.12.如图,在▱ABCD中,已知AD=10cm,tanB=2,AE⊥BC于点E,且AE=4cm,点P是BC边上一动点.若△PAD为直角三角形,则BP的长为_____【答案】2cm或4cm或10cm【解析】【分析】由三角函数得出BE=2,分两种情况:①当∠PAD=90°时,点P与E重合,BP=BE=2;②当∠APD=90°时,作DF⊥ABC于F,则∠DFP=∠AEP=90°,DF=AE=4,证明△APE∽△PDF,得出PE AEDF PF=,解得PE=2,或PE=8,得出BP=BE+PE=4,或BP=BE+PE=10;即可得出答案.【详解】解:∵AE⊥BC,∴∠AEB=∠AEC=90°,∵tanB=AEBE=2,且AE=4,∴BE=2,分两种情况:①当∠PAD=90°时,点P与E重合,BP=BE=2;②当∠APD=90°时,作DF⊥ABC于F,如图所示:则∠DFP=∠AEP=90°,DF=AE=4,∵∠APE+∠PAE=∠APE+∠DPF=90°,∴∠PAE=∠DPF,∴△APE∽△PDF,∴PE AEDF PF=,即PE4=410PE-,解得:PE=2,或PE=8,∴BP═BE+PE=4,或BP=BE+PE=10综上所述,若△PAD为直角三角形,则BP的长为2cm或4cm或10cm;故答案为:2cm或4cm或10cm.【点睛】本题考查了平行四边形的性质、解直角三角形、相似三角形的判定与性质、直角三角形的性质等知识;熟练掌握平行四边形的性质,证明三角形相似是解题的关键.三.解答题:13.先化简,再求值:(3x+2y)(3x﹣2y)﹣10x(x﹣y)+(x﹣y)2,其中x2+1,y2﹣1.【答案】8xy﹣3y2,2﹣1.【解析】【分析】首先根据平方差公式展开,在合并同类项,将其化简,在代入计算即可.【详解】原式=9x2﹣4y2﹣10x2+10xy+x2﹣2xy+y2=8xy﹣3y2,当x=2+1,y=2-1时,原式=8﹣3(3﹣22)=62﹣1.【点睛】本题主要考查因式分解和合并同类项,关键在于化简.14.如图,在矩形ABCD中,AB=2,BC=4,对角线AC与BD交于点O,点E在BC边上,DE与AC交于点F,∠CDE=∠CBD.求:(1)CE的长;(2)EF的长.【答案】(1)CE=1;(2)EF 5.【解析】【分析】(1)由在矩形ABCD中,∠EDC=∠ADB,易证得△CDE∽△CBD,然后由相似三角形的对应边成比例,求得答案;(2)首先求得△CDE的面积,然后证得△ADF∽△CEF,即可得:EF:DE=1:5,根据勾股定理得到DE,于是得到结论.【详解】解:(1)∵四边形ABCD是矩形,AB=2,BC=4,∴AD∥BC,CD=AB=2,∴∠ADB=∠CBD,∵∠EDC=∠ADB,∴∠EDC=∠CBD,∵∠ECD=∠DCB,∴△CDE∽△CBD,∴CE:CD=CD:CB,∴CE:2=2:4,解得:CE=1;(2)∵AD∥BC,∴△ADF∽△CEF,∴DF:EF=AD:CE=4:1,∴EF:DE=1:5,∵∠DCB=90°,∴DE∴EF.【点睛】此题考查了相似三角形的判定与性质以及矩形的性质.注意证得△CDE∽△CBD与△ADF∽△CEF 是关键.15.只有1和它本身两个因数且大于1的正整数叫做素数.我国数学家陈景润哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数都表示为两个素数的和”.如20=3+17.(1)从7、11、19、23这4个素数中随机抽取一个,则抽到的数是7的概率是;(2)从7、11、19、23这4个素数中随机抽取1个数,再从余下的3个数中随机抽取1个数,用画树状图或列表的方法,求抽到的两个素数之和等于30的概率.【答案】(1)14;(2)抽到两个素数之和等于30的概率是13【解析】【分析】(1)四个数中,抽到7只有一种可能,根据概率公式直接计算即可得;(2)画树状图得到所有等可能的情况,然后再从中找出符合条件的结果数,利用概率公式进行计算即可. 【详解】(1)总共有四个数,7是其中的一个数,所以从7、11、19、23这4个素数中随机抽取一个,抽到的数是7的概率是1÷4=14,故答案为:14;(2)画树状图如图所示:共有12各等可能的结果,其中抽到两个数的和为30的有4种可能,∴抽到两个素数之和等于30的概率是4÷12=1 3 .【点睛】本题考查了列表法或树状图法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.16.在等腰三角形ABD 中,AB=AD.(I)试利用无刻度的直尺和圆规作图,求作:点C ,使得四边形ABCD 是菱形.(保留作图痕迹,不写作法和证明);(II)在菱形ABCD 中,连结AC 交BD 于点O,若AC=8,BD=6,求AB边上的高h的长.【答案】(I)见解析;(II)24 5【解析】【分析】(I)根据菱形的尺规作图的方法作图即可.(II)先由勾股定理可得出AB的长度,然后根据菱形的面积:11AC?BD AB?h22=即可求出h的长度.【详解】(I)如图,点是所求作的点,∴四边形是菱形.(II) 如图:连接AC,交BD于点O.∵四边形是菱形,∴,,,在中,由勾股定理得:,∵,∴,解得:.【点睛】本题考查了菱形的尺规作图和菱形的性质,难点在于根据等面积法求出h的值.四.解答题17.中国共产党第十九次全国代表大会于2017年10月18日至24日在北京召开,大会主题是:不忘初心,牢记使命,高举中国特色社会主义伟大旗帆,决胜全面建成小康社会,夺取新时代中国特色社会主义伟大胜利,为实现中华民族伟大复兴的中国梦不懈奋斗!某校学习小组为了解同学们对大会主题的了解情况,随机抽取部分学生进行问卷调查,按照“理解、了解、不太了解、不知道”四个类型,学习小组绘制了如下两幅不完整的统计图,请根据统计图中提供的信息,回答下列问题:(1)本次调查共抽取了多少名学生?(2)补全条形统计图和扇形统计图;(3)若该校有1800名学生,请估计“不知道”的学生有多少名?(4)针对以上调查结果,请你提出一条合理化建议或者发表一点你的观点.【答案】(1)本次调查共抽取了40名学生;(2)见解析;(3)“不知道”的学生有90名;(4)从调查结果可以发现,大部分学生比较关心国家时政,这是一种比较好的表现.【解析】【分析】(1)根据统计图中的数据可以求得本次调查的学生数;(2)根据统计图中的数据可以求得条形统计图和扇形统计图中缺少的数据,从而可以解答本题;(3)根据统计图中的数据可以解答本题;(4)根据题意和统计图中数据,说出的建议和观点只要合情合理即可,本题答案不唯一.【详解】解:(1)16÷40%=40,即本次调查共抽取了40名学生;(2)不大了解的学生有:40﹣12﹣16﹣2=10(名),理解的占的百分比为:12÷40×100%=30%,不大了解占的百分比为:10÷40×100%=25%,补全的条形统计图和扇形统计图如下图所示:(3)1800×5%=90(名),∴“不知道”的学生有90名;(4)从调查结果可以发现,大部分学生比较关心国家时政,这是一种比较好的表现.【点睛】本题考查条形统计图、扇形统计图、统计表、用样本估计总体,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.18.如图1,2分别是某款篮球架的实物图与示意图,已知AB ⊥BC 于点B ,底座BC 的长为1米,底座BC 与支架AC 所成的角∠ACB =60°,点H 在支架AF 上,篮板底部支架EH ∥BC ,EF ⊥EH 于点E ,已知AH 长122米,HF 长2米,HE 长1米.(1)求篮板底部支架HE 与支架AF 所成的角∠FHE 的度数. (2)求篮板底部点E 到地面的距离.(结果保留根号)【答案】(1) 篮板底部支架HE 与支架AF 所成的角∠FHE 的度数为45°;(2) 篮板底部点E 到地面的距离是(123 【解析】 【分析】(1)在Rt △EFH 中,利用cos ∠FHE的值即可求解;(2)延长FE 交CB 的延长线于M ,过A 作AG ⊥FM 于G ,过点H 作HN ⊥AG 于点N ,在Rt △ABC 中,利用tan ∠ACB 求出GM ,在Rt △AHN 中,利用sin ∠HAG ,求出EG 即可得解. 【详解】解:(1)由题意可得:cos ∠FHE=222HE HF ==, 则∠FHE=45°;(2)延长FE 交CB 延长线于M ,过A 作AG ⊥FM 于G ,过点H 作HN ⊥AG 于点N ,在Rt△ABC中,tan∠ACB=AB BC,∴AB=BC•tan60°=1.3×3≈2.249,∴GM=AB≈2.249,在Rt△AHN中,∵∠HAG=∠FHE=45°,sin∠HAG=HNAH,∴sin45°=2,∴HN=0.5∴EG=HN=0.5(米),∴EM=EG+GM=2.249+0.5=2.749(米)≈2.75米答:篮板顶端F到地面的距离是2.75米.故答案为:(1)45°;(2)2.75米.【点睛】本题考查解直角三角形、锐角三角函数、解题的关键是添加辅助线,构造直角三角形,记住锐角三角函数的定义,属于中考常考题型.19.如图,在矩形OABC中,OA=5,OC=4,F是AB上的一个动点(F不与A,B重合),过点F的反比例函数y=kx(k>0)的图象与BC边交于点E.(1)当F 为AB 的中点时,求该函数的表达式;(2)当k 为何值时,△EFA 的面积最大,最大面积是多少? 【答案】(1)y =10x ;(2)当k =10时,S △EFA 有最大值,S 最大值=52. 【解析】 【分析】(1)当F 为AB 的中点时,点F 的坐标为(5,2),由此代入求得函数解析式即可;(2)根据图中的点的坐标表示出三角形的面积,得到关于k 的二次函数,利用二次函数求出最值即可. 【详解】解:(1)∵在矩形OABC 中,OA =5,OC =4, ∴B (5,4), ∵F 为AB 的中点, ∴F (5,2),∵点F 在反比例函数y =kx 的图象上, ∴k =10,∴该函数的解析式为y =10x;(2)由题意知E ,F 两点坐标分别为E (4k,4),F (5,5k ),∵S △EFA =12AF•BE =12×5k (5-4k )=-140k 2+2k =-140(k ﹣10)2+52,∴当k =10时,S △EFA 有最大值,S 最大值=52. 【点睛】此题属于反比例函数综合题,涉及的知识有:坐标与图形性质,待定系数法确定反比例解析式,以及二次函数的性质,熟练掌握待定系数法是解本题的关键.五.解答题20.如图,A B 是⊙C 的直径,M 、D 两点在AB 的延长线上,E 是⊙C 上的点,且DE 2=DB· DA.延长AE 至F ,使AE =EF ,设BF =10,cos ∠BED=45. (1)求证:△DEB ∽△DAE ; (2)求DA ,DE 的长;(3)若点F在B、E、M三点确定的圆上,求MD的长.【答案】(1)证明见解析;(2)DA=1607,DE=1207;(3)MD=35235.【解析】【分析】(1)根据两边对应成比例且夹角相等的两个三角形相似进行判定即可;(2)由直径所对的圆周角是直角可得BE⊥AF,再根据中垂线的性质可得AB=BF=10,由△DEB ∽△DAE,cos ∠BED=45,可得cos ∠EAD =45,在Rt△ABE中,解直角三角形可求得AE的长,BE的长,再由△DEB∽△DAE,根据相似三角形的对应边成比例可得6384DE DB EBDA DE AE====,结合DB=DA-AB即可求得AD、DE的长;(3)连接FM,根据∠BEF=90°,根据90度角所对的弦是直径可确定出BF是B、E、F三点确定的圆的直径,再根据点F在B、E、M三点确定的圆上,可得四点F、E、B、M在同一个圆上,继而确定出点M在以BF为直径的圆上,在Rt△AMF中,由cos ∠FAM=AMAF可求得AM的长,再根据MD=DA-AM即可求得答案.【详解】(1)DE2=DB·DA,∴DE DB DA DE=,又∵∠D=∠D,∴△DEB∽△DAE;(2)∵AB是⊙C的直径,E是⊙C上的点,∴∠AEB=90°,即BE⊥AF,又∵AE=EF,BF=10,∴AB=BF=10,∵△DEB ∽△DAE,cos ∠BED=45,∴∠EAD=∠BED,cos ∠EAD =cos ∠BED=45,在Rt△ABE中,由于AB=10,cos ∠EAD=45,得AE=ABcos∠EAD=8,∴226 BE AB AE=-=,∵△DEB ∽△DAE,∴6384 DE DB EBDA DE AE====,∵DB=DA-AB=DA-10,∴341034DEDADADE⎧=⎪⎪⎨-⎪=⎪⎩,解得16071207DADE⎧=⎪⎪⎨⎪=⎪⎩,经检验,16071207DADE⎧=⎪⎪⎨⎪=⎪⎩是341034DEDADADE⎧=⎪⎪⎨-⎪=⎪⎩的解,∴DA=1607,DE=1207;(3)连接FM,∵BE⊥AF,即∠BEF=90°,∴BF是B、E、F三点确定的圆的直径,∵点F 在B 、E 、M 三点确定的圆上,即四点F 、E 、B 、M 在同一个圆上, ∴点M 在以BF 为直径的圆上, ∴FM ⊥AB ,在Rt △AMF 中,由cos ∠FAM =AMAF得 AM =AFcos ∠FAM =2AEcos ∠EAB =2×8×45=645, ∴MD =DA -AM =160643527535-=. 【点睛】本题考查了相似三角形的判定与性质,确定圆条件,圆周角定理的推论,解直角三角形等知识,综合性较强,有一定的难度,正确添加辅助线,灵活运用相关知识是解题的关键.注意数形结合思想的运用.21.如图1,△AOB 的三个顶点A 、O 、B 分别落在抛物线F 1:21733y x x =+的图象上,点A 的横坐标为﹣4,点B 的纵坐标为﹣2.(点A 在点B 的左侧) (1)求点A 、B 的坐标;(2)将△AOB 绕点O 逆时针旋转90°得到△A 'OB ',抛物线F 2:24y ax bx =++经过A '、B '两点,已知点M 为抛物线F 2的对称轴上一定点,且点A '恰好在以OM 为直径的圆上,连接OM 、A 'M ,求△OA 'M 的面积; (3)如图2,延长OB '交抛物线F 2于点C ,连接A 'C ,在坐标轴上是否存在点D ,使得以A 、O 、D 为顶点的三角形与△OA 'C 相似.若存在,请求出点D 的坐标;若不存在,请说明理由.【答案】(1)点A 坐标为(﹣4,﹣4),点B 坐标为(﹣1,﹣2);(2)S △OA 'M =8;(3)点D 坐标为(4,0)、(8,0)、(0,4)或(0,8)时,以A 、O 、D 为顶点的三角形与△OA 'C 相似. 【解析】 【分析】(1)把x =﹣4代入解析式,求得点A 的坐标,把y=-2代入解析式,根据点B 与点A 的位置关系即可求得点B 的坐标;(2)如图1,过点B 作BE ⊥x 轴于点E ,过点B'作B'G ⊥x 轴于点G ,先求出点A'、B'的坐标,OA =OA'==然后利用待定系数法求得抛物线F 2解析式为:21y x 3x 44=-+,对称轴为直线:x 6=,设M(6,m),表示出OM 2,A'M 2,进而根据OA'2+A'M 2=OM 2,得到)2+m 2+8m+20=36+m 2,求得m =﹣2,继而求得A'M=S △OA'M =12OA'•A'M 通过计算即可得; (3)在坐标轴上存在点D ,使得以A 、O 、D 为顶点的三角形与△OA'C 相似,先求得直线OA 与x 轴夹角为45°,再分点D 在x 轴负半轴或y 轴负半轴时,∠AOD =45°,此时△AOD 不可能与△OA'C 相似,点D 在x轴正半轴或y 轴正半轴时,∠AOD =∠OA'C =135°(如图2、图3),此时再分△AOD ∽△OA'C ,△DOA ∽△OA'C 两种情况分别讨论即可得.【详解】(1)当x =﹣4时,()()217y 44433=⨯-+⨯-=-, ∴点A 坐标为(﹣4,﹣4),当y =﹣2时,217x x 233+=-, 解得:x 1=﹣1,x 2=﹣6,∵点A 在点B 的左侧,∴点B 坐标为(﹣1,﹣2);(2)如图1,过点B 作BE ⊥x 轴于点E ,过点B'作B'G ⊥x 轴于点G ,∴∠BEO =∠OGB'=90°,OE =1,BE =2,∵将△AOB 绕点O 逆时针旋转90°得到△A'OB',∴OB =OB',∠BOB'=90°,∴∠BOE+∠B'OG =∠BOE+∠OBE =90°,∴∠B'OG =∠OBE ,在△B'OG 与△OBE 中B B B OG BEO OG OBE O BO ∠=∠⎧⎪∠=='∠'⎨'⎪⎩,∴△B'OG ≌△OBE(AAS),∴OG =BE =2,B'G =OE =1,∵点B'在第四象限,∴B'(2,﹣1),同理可求得:A'(4,﹣4),∴OA =OA'=∵抛物线F 2:y =ax 2+bx+4经过点A'、B',∴164444241a b a b ++=-⎧⎨++=-⎩, 解得:143a b ⎧=⎪⎨⎪=-⎩,∴抛物线F 2解析式为:21y x 3x 44=-+, ∴对称轴为直线:3x 6124-=-=⨯, ∵点M 在直线x =6上,设M(6,m),∴OM 2=62+m 2,A'M 2=(6﹣4)2+(m+4)2=m 2+8m+20,∵点A'在以OM 为直径的圆上,∴∠OA'M =90°,∴OA'2+A'M 2=OM 2,∴2+m 2+8m+20=36+m 2,解得:m =﹣2,∴A'M=∴S △OA'M =12OA'•A'M=182⨯=; (3)在坐标轴上存在点D ,使得以A 、O 、D 为顶点的三角形与△OA'C 相似,∵B'(2,﹣1),∴直线OB'解析式为y =﹣12x , 2121x 344y x y x ⎧=⎪⎪⎨⎪=-+⎪⎩,解得:11x 2y 1=⎧⎨=-⎩(即为点B'),22x 8y 4=⎧⎨=-⎩, ∴C(8,﹣4),∵A'(4,﹣4),∴A'C ∥x 轴,A'C =4,∴∠OA'C =135°,∴∠A'OC <45°,∠A'CO <45°,∵A(﹣4,﹣4),即直线OA 与x 轴夹角为45°,∴当点D 在x 轴负半轴或y 轴负半轴时,∠AOD =45°,此时△AOD 不可能与△OA'C 相似,∴点D 在x 轴正半轴或y 轴正半轴时,∠AOD =∠OA'C =135°(如图2、图3), ①若△AOD ∽△OA'C , 则OD OA 1A C OA ''==, ∴OD =A'C =4,∴D(4,0)或(0,4);②若△DOA ∽△OA'C ,则DO OA 422OA A C 4''===, ∴OD =2OA'=8,∴D(8,0)或(0,8),综上所述,点D 坐标为(4,0)、(8,0)、(0,4)或(0,8)时,以A 、O 、D 为顶点的三角形与△OA'C 相似.【点睛】本题考查是二次函数与几何的综合题,涉及了待定系数法,全等三角形的判定与性质,相似三角形的判定与性质,圆周角定理等知识,综合性较强,有一定的难度,熟练掌握和灵活运用相关知识是解题的关键.注意数形结合思想与分类讨论思想的运用.六.解答题22.已知如图1,在△ABC中,∠ACB=90°,BC=AC,点D在AB上,DE⊥AB交BC于E,点F是AE 的中点(1)写出线段FD与线段FC的关系并证明;(2)如图2,将△BDE绕点B逆时针旋转α(0°<α<90°),其它条件不变,线段FD与线段FC的关系是否变化,写出你的结论并证明;(3)将△BDE绕点B逆时针旋转一周,如果BC=4,BE=22,直接写出线段BF的范围.【答案】(1)结论:FD=FC,DF⊥CF.理由见解析;(2)结论不变.理由见解析;(3)2≤BF32.【解析】【分析】(1)结论:FD=FC,DF⊥CF.由直角三角形斜边中线定理即可证明;(2)如图2中,延长AC到M使得CM=CA,延长ED到N,使得DN=DE,连接BN、BM.EM、AN,延长ME交AN于H,交AB于O.想办法证明△ABN≌△MBE,推出AN=EM,再利用三角形中位线定理即可解决问题;(3)分别求出BF的最大值、最小值即可解决问题;【详解】解:(1)结论:FD=FC,DF⊥CF.理由:如图1中,∵∠ADE=∠ACE=90°,AF=FE,∴DF=AF=EF=CF,∴∠F AD=∠FDA,∠F AC=∠FC A,∴∠DFE=∠FDA+∠F AD=2∠F AD,∠EFC=∠F AC+∠FCA=2∠F AC,∵CA=CB,∠ACB=90°,∴∠BAC=45°,∴∠DFC=∠EFD+∠EFC=2(∠F AD+∠F AC)=90°,∴DF=FC,DF⊥FC.(2)结论不变.理由:如图2中,延长AC到M使得CM=CA,延长ED到N,使得DN=DE,连接BN、BM.EM、AN,延长ME交AN于H,交AB于O.∵BC⊥AM,AC=CM,∴BA=BM,同法BE=BN,∵∠ABM=∠EBN=90°,∴∠NBA=∠EBM,∴△ABN≌△MBE,∴AN=EM,∴∠BAN=∠BME,∵AF=FE,AC=CM,∴CF=12EM,FC∥EM,同法FD=12AN,FD∥AN,∴FD=FC,∵∠BME+∠BOM=90°,∠BOM=∠AOH,∴∠BAN+∠AOH=90°,∴∠AHO=90°,∴AN⊥MH,FD⊥FC.(3)如图3中,当点E落在AB上时,BF的长最大,最大值=32如图4中,当点E落在AB的延长线上时,BF的值最小,最小值=2.2BF≤32【点睛】本题考查等腰直角三角形的性质、旋转变换、全等三角形的判定和性质、直角三角形斜边中线的性质、三角形中位线定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.。

2019届黑龙江省大庆市高三第二次模拟考试数学(理)试题(解析版)

2019届黑龙江省大庆市高三第二次模拟考试数学(理)试题(解析版)

2019届黑龙江省大庆市高三第二次模拟考试数学(理)试题一、单选题1.已知集合,,则( )A.B.C.D.【答案】D【解析】解一元二次不等式求得集合的具体范围,然后求两个集合的交集,从而得出正确选项【详解】由解得,故.故选D.【点睛】本小题主要考查集合交集的概念及运算,考查一元二次不等式的解法,属于基础题. 2.若复数满足(其中是虚数单位),则()A.2 B.4 C.D.【答案】A【解析】利用复数乘法和除法运算,化简为的形式,再求的模.【详解】依题意,故.故选A.【点睛】本小题主要考查复数的乘法运算,考查复数的除法运算,考查复数的模,属于基础题.3.设命题在定义域上为减函数;命题为奇函数,则下列命题中真命题是( )A.B.C.D.【答案】C【解析】分别判断命题的真假性,由此判断出正确的选项.【详解】对于命题,的减区间是和,不能写成并集,故命题为假命题.对于命题,为奇函数,故命题为真命题.所以为真命题,故选C.【点睛】本小题主要考查含有简单逻辑连接词命题真假性的判断,还考查了函数的单调性,三角函数的诱导公式以及三角函数的奇偶性,属于中档题.4.设,满足约束条件则的最小值是( )A.-7 B.-6 C.-5 D.-3【答案】B【解析】试题分析:作出可行域:,并作出直线,平移到经过点E(3,4)时,目标函数取得最小值为:;故选B.【考点】线性规划.5.在等差数列中,,是方程的两个实根,则( )A.B.-3 C.-6 D.2【答案】A【解析】利用韦达定理列出,的关系式,然后利用等差数列的性质求得所求表达式的值.【详解】由于,是方程的两个实根,所以,所以.故选A.【点睛】本小题主要考查等差数列的基本性质,考查一元二次方程根与系数关系,属于中档题. 6.已知,,,则,,的大小关系为()A.B.C.D.【答案】C【解析】利用对数运算的公式化简为形式相同的表达式,由此判断出的大小关系.【详解】依题意得,,,而,所以,故选C.【点睛】本小题主要考查对数的运算公式,考查化归与转化的数学思想方法,属于基础题. 7.我国南北朝时期的数学家祖暅提出了计算几何体体积的祖暅原理:“幂势既同,则积不容异”.意思是两个同高的几何体,如果在等高处的截面积都相等,那么这两个几何体的体积相等.现有同高的三棱锥和圆锥满足祖暅满足祖暅原理的条件.若圆锥的侧面展开图是半径为2的半圆,由此推算三棱锥的体积为()A.B.C.D.【答案】D【解析】根据圆锥侧面展开图是半径为的半圆,计算出圆锥的体积,也即是三棱锥的体积.【详解】设圆锥的底面半径为,则,解得,故圆锥的高为,所以圆锥的体积也即三棱锥的体积为.故选D.【点睛】本小题主要考查圆锥侧面展开图与底面圆的半径的关系,考查中国古代数学文化,属于基础题.8.已知是抛物线的焦点,过点的直线与抛物线交于,两点,为线段的中点,若,则直线的斜率为( )A.3 B.1 C.2 D.【答案】B【解析】根据求得的值,利用点差法求得直线的斜率.【详解】由于为中点,根据抛物线的定义,解得,抛物线方程为.设,则,两式相减并化简得,即直线的斜率为,故选B.【点睛】本小题主要考查抛物线的定义,考查利用点差法求解有关弦的中点问题,属于中档题. 9.已知函数,的值域为,则的取值范围是( )A.B.C.D.【答案】C【解析】先由的取值范围,求得的取值范围,结合函数的值域,求得的取值范围.【详解】由于,所以,由于,所以,解得.故选C.【点睛】本小题主要考查三角函数值域,考查三角函数的性质,考查运算求解能力,属于中档题. 10.某四棱锥的三视图如图所示,其俯视图为等腰直角三角形,则该四棱锥4个侧面中,直角三角形共有()A.4个B.3个C.2个D.1个【答案】A【解析】画出三视图对应的直观图,根据直观图,判断出个侧面中有几个直角三角形.【详解】画出三视图对应的四棱锥如下图所示.由三视图可知是直角三角形.而,所以,即为直角三角形.所以直角三角形一共有个,故选A.【点睛】本小题主要考查三视图和直观图,考查空间想象能力,属于基础题.11.已知双曲线的右焦点为,过作双曲线渐近线的垂线,垂足为,直线交双曲线右支于点,且为线段的中点,则该双曲线的离心率是()A.2 B.C.D.【答案】D【解析】先求得点的坐标,根据中点坐标公式求得点坐标,将点坐标代入双曲线方程,化简后求得双曲线的离心率.【详解】由于双曲线焦点到渐近线的距离为,所以,所以,由于是的中点,故,代入双曲线方程并化简得,即,.【点睛】本小题主要考查双曲线的几何性质,考查双曲线焦点到渐近线的距离,考查中点坐标公式,考查双曲线离心率的求法,考查化归与转化的数学思想方法,属于中档题.双曲线焦点到渐近线的距离是一个定值,这个要作为结论来记忆.要求双曲线的离心率,可从一个等式中得到,本题通过双曲线上一个点的坐标来得到一个等式,由此解出双曲线的离心率.12.已知是定义在上的可导函数,且,则不等式的解集为()A.B.C.D.【答案】B【解析】构造函数,利用已知条件求得的正负,由此判断函数的单调性,并解出不等式的解集.【详解】由得,构造函数,,故为上的减函数.原不等式可转化为,即,所以,解得,故选B.【点睛】本小题主要考查函数导数运算,考查利用导数判断函数的单调性,考查构造函数法解函数不等式,考查化归与转化的数学思想方法,属于中档题.题目给定一个含有导数的式子,此类题目主要的解题方法是构造函数法,构造出符合题目已知条件的函数,通过所给的条件得出所构造函数的单调性,由此来解不等式.二、填空题13.______.【答案】【解析】利用微积分基本定理计算出定积分.【详解】依题意.【点睛】本小题主要考查利用微积分基本定理计算定积分,考查原函数的求法,属于基础题. 14.已知,为锐角,且,则_____.【答案】【解析】将题目所给方程展开后,化简为的形式,由此求得的大小.【详解】将展开得,即,由于,为锐角,,故.【点睛】本小题主要考查利用两角和的正切公式对已知条件进行化简,考查特殊角的三角函数值,属于中档题.15.已知球是棱长为4的正方体的外接球,,分别是和的中点,则球截直线所得弦长为______.【答案】【解析】先求得球心到直线的距离,然后利用勾股定理求得所求弦长.【详解】依题意可知球心为正方体体对角线的交点处,将球心和投影到平面内,画出图像如下图所示,由图可知到直线的距离为.由于球的半径等于正方体对角线的一半,即,根据勾股定理求得所求弦长为.【点睛】本小题主要考查正方体的外接球,考查与球有关的长度的计算,考查空间想象能力,属于中档题.与球有关的问题求解的关键在于找到球心的位置,本题由于几何体为正方体,球心在体对角线的中点处.求与球有关的弦长问题,主要先求得球心到弦的距离,然后利用勾股定理可求出弦长.16.已知为的外心,,,,设,则_____.【答案】3【解析】以为坐标原点建立平面直角坐标系,计算出外心的坐标,由此求得的值.【详解】以为坐标原点建立平面直角坐标系如下图所示,根据已知条件可知.根据外心的几何性质可知在直线上.中点坐标为,的斜率为,故中垂线的斜率为,方程为,令,解得.由得,解得,所以.【点睛】本小题主要考查向量的坐标运算,考查利用向量求解有关平面几何的问题,考查外心的定义以及找外心的方法,考查数形结合的数学思想方法,属于中档题.由于题目涉及到向量的运算,而且题目所给三角形的角度比较特殊,故可采用建立坐标系的方法,利用代数化来解决几何问题.三、解答题17.设数列的前项和为,且.(Ⅰ)求数列的通项公式;(Ⅱ)设,求数列的前项和.【答案】(1)(2)【解析】(1)利用,求得数列{}是等比数列,由此求得数列的通项公式.(2)先求得的通项公式,然后利用裂项求和法求得的值.【详解】(Ⅰ)当时,由得,∴.当时,,∴.∴是以为首项,以为公比的等比数列.其通项公式为.(Ⅱ)∵∴【点睛】本小题主要考查利用求数列的通项公式,考查利用裂项求和法求数列的前项和.属于中档题.18.在中,内角,,所对的边分别为,,,且.(Ⅰ)求的值;(Ⅱ)若,面积为1,求边中线的长度.【答案】(1)(2)【解析】(1)利用三角形内角和定理以及正弦定理化简已知条件,求得的值,利用齐次方程求得的值.(2)根据(1)求得的值,求出的值,根据三角形的面积列方程,求得的值,利用余弦定理求得的值,然后可利用余弦定理、向量的模或者平行四边形的性质,求得边中线的长.【详解】(Ⅰ)∵,∴,由正弦定理得∵,∴,∴.∴.(Ⅱ)∵,且,∴为锐角.且,∴,∵,∴.在中,由余弦定理得,.设边的中点为,连接.法一:在,中,分别由余弦定理得:∴,∴.法二:∵,∴,.法三:由平行四边形的性质得:,∴.【点睛】本小题主要考查利用正弦定理解三角形,考查三角形的面积公式,考查利用余弦定理解三角形,属于中档题.19.如图所示,在四棱锥中,平面,,,AP=AD=2AB=2BC,点在棱上.(Ⅰ)求证:;(Ⅱ)当平面时,求直线与平面所成角的正弦值.【答案】(1)见证明;(2)【解析】(I)设中点为,连接、.设出的边长,通过计算证明,根据已知得到,由此证得平面,从而证得.(II)以为空间坐标原点建立空间直角坐标系,利用平面计算出点的坐标,根据直线的方向向量和平面的法向量计算出线面角的正弦值.【详解】(Ⅰ)设中点为,连接、.由题意.∵,∴四边形为平行四边形,又,∴为正方形.设,在中,,又,.∴,∴.∵平面,平面,∴.∵,平面,且,∴平面.∵平面,∴.(Ⅱ)因为平面,所以,,又,故,,两两垂直,以为坐标原点,分别以,,所在直线为轴,轴,轴建立如图所示的空间直角坐标系.由(Ⅰ)所设知,则,,,.由已知平面,∴,设,则.,∵,∴,,∴.设平面的法向量,则令,得.设所求的角为,.所以直线与平面所成角的正弦值为.【点睛】本小题主要考查线线垂直的证明,考查线面垂直的证明,考查利用空间向量的方法计算直线与平面所成角的正弦值,属于中档题.20.已知椭圆的离心率为,短轴长为4.(Ⅰ)求椭圆的方程;(Ⅱ)过点作两条直线,分别交椭圆于,两点(异于点).当直线,的斜率之和为定值时,直线是否恒过定点?若是,求出定点坐标;若不是,请说明理由.【答案】(1) (2)见解析【解析】(I)根据椭圆的离心率和短轴长列方程组,解方程组求得的值,进而求得椭圆方程.(II)当直线的斜率存在时,设出直线的方程,根据化简得到表达式.联立直线的方程和椭圆的方程,写出韦达定理,并代入上面求得的表达式,化简后可求得的关系式,带回直线的方程,由此求得直线所过定点.当直线斜率不存在时,设直线的方程为,利用,求出的值,由此判断此时直线所过定点.【详解】(Ⅰ)由题意知:,,.解得,,,所以椭圆方程为.(Ⅱ)当直线的斜率存在时,设直线方程为,,由,得,整理得联立,消去得,由题意知二次方程有两个不等实根.∴,,代入得.整理得.∵,∴,∴,即.所以直线过定点.当直线的斜率不存在时,设直线的方程为,,,其中.∴ ,由,得,∴.∴当直线的斜率不存在时,直线也过定点.综上所述,直线恒过定点.【点睛】本小题主要考查椭圆标准方程的求法,考查直线和椭圆的位置关系,考查化归与转化的数学思想方法,属于中档题.求解椭圆的标准方程,主要方法是根据题目所给已知条件,结合列方程组,解方程组求得的值,进而求得椭圆方程.在设直线方程时,要注意考虑直线斜率是否存在.21.已知函数.(Ⅰ)若点在函数的图象上运动,直线与函数的图象不相交,求点到直线距离的最小值;(Ⅱ)若当时,恒成立,求实数的取值范围.【答案】(1)(2)【解析】(I)先求得函数的定义域,然后利用导数求得函数对应图像上与平行的切线方程,利用两平行线间的距离公式求得到直线距离的最小值.(II)(1)构造函数,利用的导函数,对分类讨论函数的单调性,结合求得的取值范围. (2)将分类常数,转化为,利用导数求得的最小值,由此求得的范围.结合(1)(2)可求得的的取值范围.【详解】(Ⅰ)的定义域为,.由题意,令,得,解得或(舍去),∵,∴到直线的距离为所求的最小值.(Ⅱ)(1)当,恒成立时,设,.①当即时,,,,所以,即在上是增函数.又,即,∴时满足题意.②当即时,令.因为,所以存在,使.当时,,即,在上是减函数,,∴时,不恒成立;(2)当,恒成立时,.设,,,,,,∴在上是减函数,在上是增函数,,∴.综上所述,的取值范围是.【点睛】本小题主要考查曲线上的点到直线的最小距离的求法,考查利用导数求解不等式恒成立问题,考查化归与转化的数学思想方法,属于难题.要求曲线上的点到直线的最小距离,是通过找到曲线上和直线平行的一条直线,利用两条平行直线间的距离公式,来求得最小值.22.选修4-4:坐标系与参数方程在直角坐标系中,曲线的参数方程为(为参数),是上的动点,点满足,点的轨迹为曲线.(Ⅰ)求的普通方程;(Ⅱ)在以为极点,轴的正半轴为极轴的极坐标系中,直线与交于,两点,交轴于点,求的值.【答案】(1) (2)【解析】(I)设出点的坐标,根据两个向量相等的坐标表示,求得点的坐标,消去参数后得到的普通方程.(II)方法一:先求得直线的直角坐标方程,联立直线的方程和的方程,求得交点的坐标,利用两点间的距离公式求得的长,进而求得的值.方法二:先求出直线的参数方程,将参数方程代入的方程,利用直线参数的几何意义,求得的值.【详解】(Ⅰ)设,.∵∴,消去得的普通方程为.(Ⅱ)法一:直线的极坐标方程,即.∵,,得直线的直角坐标方程为.∴,由得,∴,.∴,,∴.法二:直线的极坐标方程,即.∵,,得直线的直角坐标方程为.∴.∵直线的倾斜角为,∴可得直线的参数方程为(为参数).代入,得,设此方程的两个根为,,则.∴.本小题主要考查轨迹方程的求法,考查极坐标和直角坐标的转化,考查直线的参数方程,属于中档题.23.选修4-5:不等式选讲已知函数.(Ⅰ)解不等式;(Ⅱ)求函数的值域.【答案】(1) (2)【解析】(I)利用零点分段法去绝对值,然后解不等式求得解集.(II)利用绝对值不等式求得的最小值,根据的单调性,求得的值域【详解】(Ⅰ)∵,即,当时,原不等式化为,解得,∴,当时,原不等式化为,解得,∴,当时,原不等式化为,解得,∴,综上,原不等式的解集为.(Ⅱ)设,则.∵,∴的最小值为1.∵在上是减函数,∴,∴函数的值域为.本小题主要考查含有绝对值不等式的解法,考查利用绝对值不等式求不等式的最小值,考查指数函数的单调性,属于中档题.。

2019年数学第二次模拟考试试题(答案及评分标准)

2019年数学第二次模拟考试试题(答案及评分标准)

2018—2019学年第二学期第二次模拟测试数学(学科)试题参考答案及评分标准题号 1 2 3 4 5 6 7 8 9 10 答案 CDCBBABCCA二.填空题 11. _____________ 12. 3 ; 13 .17; 14. x=4 ; 15.10; 16._____三、解答题(一)(本大题3小题,每小题6分,共18分) 17. 解:原式= 1312-+-- L L L 4分 = 1- L L L 6分 18. 解:原式 )1211()1(12-+--÷-+=x x x x x L L L 1分11)1(12-+÷-+=x x x xL L L 2分11)1(12+-•-+=x x x xL L L 3分11-=xL L L 4分2131313131313+=+-+=-==))((时,原式当x L L L 6分19.解:(1)如图所示,DE 即为所求. L L L 2分 (2)证明:∵DE 垂直平分AB∴DA=DB L L L 3分 ∴∠DBA=∠A=30° L L L 4分 ∵∠C=90°∴∠ABC=180°-∠C -∠A =180°- 90° -30°= 60°, ∴∠CBD=∠ABC -∠DBA =60°- 30°=30°∴∠CBD =∠DBA L L L 5分 ∴BD 平分∠ABC , 又∵DE ⊥AB ,DC ⊥BC ,∴DE=DC L L L 6分第一行每个“点”1分,共4分 第二行2分 432-π)3)(3(3-+x x四、解答题(二)(本大题3小题,每小题7分,共21分)20.解:(1)m = 30, n = 20 ;补充条形统计图如图所示;L L L 3分 (2)90° L L L 4分(3)被抽查的人数:15÷15%=100(人)全校不合格的人数:)(450100251510900人=++⨯L L L 6分答:估计这所学校本次听写比赛不合格的学生人数为450人。

2019二模数学(理科带答案)

绝密★启用前2019年普通高等学校招生全国统一考试理科数学试题卷( 银川一中第二次模拟考试 )注意事项:1.答卷前,考生务必将自己得姓名、准考证号填写在答题卡上。

2.作答时,务必将答案写在答题卡上。

写在本试卷及草稿纸上无效。

3.考试结束后,将本试卷与答题卡一并交回。

一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出得四个选项中,只有一项就是符合题目要求得.1.如果复数(,为虚数单位)得实部与虚部相等,则得值为 A.1 B.1 C.3D.32.若,则A. B 、 C 、 D 、 3. 向量,若得夹角为钝角,则t 得范围就是A.t<B.t>C.t< 且t≠6D.t<6 4.直线kx2y+1=0与圆x+(y1)=1得位置关系就是 A.相交 B.相切 C .相离D.不确定5.有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同得选法共有 A.60种B.70种C.75种D.150种6.已知某个几何体得三视图如下,根据图中 标出得尺寸,可得这个几何体得表面积就是 A. B. C. D.7、 下列函数中,最小正周期为,且图象关于直线x=对称得函数就是 A.y=2sin(2x+) B.y=2sin(2x) C.y=2sin D.y=2sin(2x)8.我国古代名著《庄子•天下篇》中有一句名言“一尺之棰, 日取其半,万世不竭”,其意思为:一尺得木棍,每天截 取一半,永远都截不完.现将该木棍依此规律截取,如图 所示得程序框图得功能就就是计算截取20天后所剩木棍得 长度(单位:尺),则①②③处可分别填入得就是2422A. B.C. D.9.已知就是第二象限角,且sin(,则tan2得值为 A. B. C. D. 10.已知函数,则得图像大致为A 、B 、C 、D 、11.已知抛物线x=4y 焦点为F,经过F 得直线交抛物线于A(x,y),B(x,y),点A,B 在抛物线准线上得射影分别为A,B,以下四个结论:①xx=, ②=y+y+1, ③=,④AB 得中点到抛物线得准线得距离得最小值为2 其中正确得个数为A.1B.2C.3D. 4 12.已知函数,,当时,不等式恒成立,则实数得取值范围为A . B. C. D.二、填空题:本大题共4小题,每小题5分. 13.(x+y)(2xy)5得展开式中x 3y 3得系数为_______、 14.在锐角三角形ABC 中,分别为角A 、B 、C 所对得边,且c=,且ΔABC 得面积为,得值为_______、15.如图所示,有三根针与套在一根针上得n 个金属片,按下列规则,把金属片从一根针上全部移到另一根针上. (1)每次只能移动一个金属片;(2)在每次移动过程中,每根针上较大得金属片不能放在 较小得金属片上面.将n 个金属片从1号针移到3号针 最少需要移动得次数记为f (n ),则f (n )=________、16.一个四面体得顶点在空间直角坐标系Oxyz 中得坐标分别就是A(0,0,),B(,0,0),C(0,1,0),D(,1,),则该四面体得外接球得体积 为______、三、解答题:共70分,解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答;第22、23题为选考题,考生根据要求作答。

2019年中考数学二模试卷(含解析)

2019年中考数学二模试卷一、选择题(每小题4分,共48分)1.(4分)在实数﹣2,|﹣2|,(﹣2)0,0中,最大的数是()A.﹣2B.|﹣2|C.(﹣2)0D.02.(4分)据《经济日报》2018年5月21日报道:目前,世界集成电路生产技术水平最高已达到7nm(1nm=10﹣9m),主流生产线的技术水平为14~28nm,中国大陆集成电路生产技术水平最高为28nm.将28nm用科学记数法可表示为()A.28×10﹣9m B.2.8×10﹣8m C.28×109m D.2.8×108m 3.(4分)如图,它是由5个完全相同的小正方体搭建的几何体,若将最右边的小正方体拿走,则下列结论正确的是()A.主视图不变B.左视图不变C.俯视图不变D.三视图都不变4.(4分)如图,若直线MN∥PQ,∠ACB的顶点C在直线MN与PQ之间,若∠ACB=60°,∠CFQ=35°,则∠CEN的度数为()A.35°B.25°C.30°D.45°5.(4分)下列几道题目是小明同学在黑板上完成的作业,他做错的题目有()①a3÷a﹣1=a2②(2a3)2=4a5③(ab2)3=a3b6④2﹣5=⑤(a+b)2=a2+b2A.2道B.3道C.4道D.5道6.(4分)在一次数学测试后,随机抽取九年级(3)班5名学生的成绩(单位:分)如下:80、98、98、83、91,关于这组数据的说法错误的是()A.众数是98B.平均数是90C.中位数是91D.方差是56 7.(4分)若二次函数y=x2﹣2x+m的图象与x轴有两个交点,则实数m的取值范围是()A.m≥1B.m≤1C.m>1D.m<18.(4分)如图,AC是矩形ABCD的一条对角线,E是AC中点,连接BE,再分别以A,D为圆心,大于的长为半径作弧,两弧相交于点F,连接EF交AD于点G.若AB =3,BC=4,则四边形ABEG的周长为()A.8B.8.5C.9D.9.59.(4分)点P的坐标是(m,n),从﹣5,﹣3,0,4,7这五个数中任取一个数作为m的值,再从余下的四个数中任取一个数作为n的值,则点P(m,n)在平面直角坐标系中第四象限内的概率是()A.B.C.D.10.(4分)如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧在第二象限交于点P.若点P的坐标为(2x,y+1),则y关于x的函数关系为()A.y=x B.y=﹣2x﹣1C.y=2x﹣1D.y=1﹣2x 11.(4分)如图,把△ABC沿着BC的方向平移到△DEF的位置,它们重叠部分的面积是△ABC面积的一半,若BC=,则△ABC移动的距离是()A.B.C.D.﹣12.(4分)如图,在直角坐标系中,已知点A(﹣3,0),B(0,4),对△OAB连续作旋转变换,依次得到△1,△2,△3,△4,…,则△2019的直角顶点的坐标为()A.(8076,0)B.(8064,0)C.(8076,)D.(8064,)二、填空题(每小题4分,共24分)13.(4分)分解因式:a3b+2a2b2+ab3=.14.(4分)如图,在▱ABCD中,点E在BC边上,且AE⊥BC于点E,ED平分∠CDA,若BE:EC=1:2,则∠BCD的度数为.15.(4分)如图,等边三角形△ABC的边长为4,以BC为直径的半圆O交AB于点D,交AC于点E,阴影部分的面积是.16.(4分)新定义:[a,b]为一次函数y=ax+b(a≠0,a,b为实数)的“关联数”.若“关联数”[2,m+1]的一次函数是正比例函数,则关于x的方程+=1的解为.17.(4分)若函数y=与y=x+2图象的一个交点坐标为(a,b),则﹣的值是.18.(4分)如图①,在正方形ABCD中,点E是AB的中点,点P是对角线AC上一动点,设PC的长度为x,PE与PB的长度和为y,图②是y关于x的函数图象,则图象上最低点H的坐标为.三、解答题(7小题,共78分)19.(8分)先化简,再求值:(x﹣1﹣)÷,其中x是方程x2+2x=0的解.20.(10分)为推进“全国亿万学生阳光体育运动”的实施,组织广大同学开展健康向上的第二课堂活动.我市某中学准备组建球类社团(足球、篮球、羽毛球、乒乓球)、舞蹈社团、健美操社团、武术社团,为了解在校学生对这4个社团活动的喜爱情况,该校随机抽取部分初中生进行了“你最喜欢哪个社团”调查,依据相关数据绘制成以下不完整的统计表,请根据图表中的信息解答下列问题:(1)求样本容量及表格中m、n的值;(2)请补全统计图;(3)被调查的60个喜欢球类同学中有3人最喜欢足球,若该校有3000名学生,请估计该校最喜欢足球的人数.21.(10分)如图,AB为⊙O的直径,ED切⊙O于点C,AD交⊙O于点F,连接AC,BF,且BF∥CD.(1)求证:AC平分∠BAD;(2)若⊙O的半径为,AF=2,求CD的长度.22.(12分)如图,在Rt△ABC中,∠ACB=90°,以点A为圆心,AC为半径,作⊙A,交AB于点D,交CA的延长线于点E,过点E作AB的平行线交⊙A于点F,连接AF,BF,DF.(1)求证:△ABC≌△ABF;(2)填空:①当∠CAB=°时,四边形ADFE为菱形;②在①的条件下,BC=cm时,四边形ADFE的面积是6cm2.23.(12分)数学兴趣小组几名同学到某商场调查发现,一种纯牛奶进价为每箱40元,厂家要求售价在40~70元之间,若以每箱70元销售平均每天销售30箱,价格每降低1元平均每天可多销售3箱.老师要求根据以上资料,解答下列问题,你能做到吗?(1)写出平均每天销售量y(箱)与每箱售价x(元)之间的函数关系;(2)写出平均每天销售利润W(元)与每箱售价x(元)之间的函数关系;(3)现该商场要保证每天盈利900元,同时又要使顾客得到实惠,那么每箱售价为多少元?(4)你认为每天赢利900元,是牛奶销售中的最大利润吗?为什么?24.(12分)定义:我们知道,四边形的一条对角线把这个四边形分成了两个三角形,如果这两个三角形相似(不全等),我们就把这条对角线叫做这个四边形的“相似对角线”.理解:(1)如图1,已知Rt△ABC在正方形网格中,请你只用无刻度的直尺在网格中找到一点D,使四边形ABCD是以AC为“相似对角线”的四边形(保留画图痕迹,找出3个即可);(2)如图2,在四边形ABCD中,∠ABC=80°,∠ADC=140°,对角线BD平分∠ABC.求证:BD是四边形ABCD的“相似对角线”;(3)如图3,已知FH是四边形EFGH的“相似对角线”,∠EFH=∠HFG=30°,连接EG,若△EFG的面积为2,求FH的长.25.(14分)如图,在平面直角坐标系中,∠ACB=90°,OC=2OB,tan∠ABC=2,点B 的坐标为(1,0).抛物线y=﹣x2+bx+c经过A、B两点.(1)求抛物线的解析式;(2)点P是直线AB上方抛物线上的一点,过点P作PD垂直x轴于点D,交线段AB 于点E,使PE=DE.①求点P的坐标;②在直线PD上是否存在点M,使△ABM为直角三角形?若存在,求出符合条件的所有点M的坐标;若不存在,请说明理由.2019年中考数学二模试卷参考答案与试题解析一、选择题(每小题4分,共48分)1.【解答】解:∵|﹣2|=2,(﹣2)0=1,∵﹣2<0<1<2,∴最大的数是|﹣2|,故选:B.2.【解答】解:28nm=28×10﹣9m=2.8×10﹣8m.故选:B.3.【解答】解:根据三视图的定义,若将最右边的小正方体拿走,俯视图、主视图都发生变化,左视图不变.故选:B.4.【解答】解:如图作CK∥MN,∵MN∥PQ,MN∥CK,∴PQ∥CK,∴∠CEN=∠ACK,∠FCK=∠CFQ,∴∠ACB=∠CEN+∠CFQ,∴60°=∠CEN+35°,∴∠CEN=25°,故选:B.5.【解答】解:①a3÷a﹣1=a4,故此选项错误;②(2a3)2=4a6,故此选项错误;③(ab2)3=a3b6,故此选项错误;④2﹣5=,正确;⑤(a+b)2=a2+2ab+b2,故此选项错误;则错误的一共有4道.故选:C.6.【解答】解:98出现的次数最多,∴这组数据的众数是98,A说法正确;=(80+98+98+83+91)=90,B说法正确;这组数据的中位数是91,C说法正确;S2=[(80﹣90)2+(98﹣90)2+(98﹣90)2+(83﹣90)2+(91﹣90)2]=×278=55.6,D说法错误;故选:D.7.【解答】解:由题意可知:△=4﹣4m>0,∴m<1,故选:D.8.【解答】解:连接ED,如图,由作法得F A=FD,∵AC是矩形ABCD的一条对角线,E是AC中点,∴B、E、D共线,EA=ED,∴EF垂直平分AD,∴AG=DG=AD=BC=×4=2,∵G为AD的中,E为BD的中点,∴GE为△ABD的中位线,∴GE=AB=,在Rt△ABC中,AC==5,∴BE=,∴四边形ABEG的周长=3+++2=9.故选:C.9.【解答】解:画树状图为:共有20种等可能的结果数,其中点P(m,n)在平面直角坐标系中第四象限内的结果数为4,所以点P(m,n)在平面直角坐标系中第四象限内的概率为=,故选:B.10.【解答】解:由题意可得出:P点在第二象限的角平分线上,∵点P的坐标为(2x,y+1),∴2x=﹣(y+1),∴y=﹣2x﹣1.故选:B.11.【解答】解:∵△ABC沿BC边平移到△DEF的位置,∴AB∥DE,∴△ABC∽△HEC,∴=()2=,∴EC:BC=1:,∵BC=,∴EC=,∴BE=BC﹣EC=﹣.故选:D.12.【解答】解:∵点A(﹣3,0)、B(0,4),∴AB==5,由图可知,每三个三角形为一个循环组依次循环,一个循环组前进的长度为:4+5+3=12,∵2019÷3=673,∴△2019的直角顶点是第673个循环组的最后一个三角形的直角顶点,∵673×12=8076,∴△2019的直角顶点的坐标为(8076,0).故选:A.二、填空题(每小题4分,共24分)13.【解答】解:a3b+2a2b2+ab3=ab(a2+2ab+b2)=ab(a+b)2.故答案为:ab(a+b)2.14.【解答】解:∵四边形ABCD是平行四边形,∴AB=CD,AD∥BC,AB∥CD,∴∠ADE=∠CED,∠B+∠BCD=180°,∵ED平分∠CDA,∴∠ADE=∠CDE,∴∠CED=∠CDE,∴CD=EC,∴AB=EC,∵BE:EC=1:2,∴BE:AB=1:2,即BE=AB,∵AE⊥BC,∴∠AEB=90°,∴∠BAE=30°,∴∠B=60°,∴∠BCD=120°;故答案为:120°.15.【解答】解:连接OD、DE、OE,∵△ABC为等边三角形,∴∠B=∠C=60°,∴∠BOD=60°,∠COE=60°,∴∠DOE=60°,即△DOE为等边三角形,∵∠A=∠ODB=60°,∴OD∥AE,同理,OE∥OD,∴四边形ADOE为菱形,∴阴影部分的面积=2×﹣=2,故答案为:2,16.【解答】解:根据关联数”[2,m+1]的一次函数是正比例函数,得到m+1=0,即m=﹣1,则方程为﹣1=1,即x﹣1=,解得:x=,经检验是分式方程的解.故答案为:17.【解答】解:∵函数y=与y=x+2图象的一个交点坐标为(a,b),∴b=,b=a+2,∴ab=3,b﹣a=2,∴﹣==.故答案为:.18.【解答】解:如图,连接PD.∵B、D关于AC对称,∴PB=PD,∴PB+PE=PD+PE,∴当D、P、E共线时,PE+PB的值最小,观察图象可知,当点P与A重合时,PE+PB=9,∴AE=EB=3,AD=AB=6,在Rt△AED中,DE==3,∴PB+PE的最小值为3,∴点H的纵坐标为3,∵AE∥CD,∴==2,∵AC=6,∴PC=×=4,∴点H的横坐标为4,∴H(4,3).故答案为(4,3).三、解答题(7小题,共78分)19.【解答】解:原式=•=•=,解方程x2+2x=0得:x1=﹣2,x2=0,由题意得:x≠﹣2,所以x=0.把x=0代入=,原式==﹣1.20.【解答】解:(1)样本容量为:12÷0.1=120,m=60÷120=0.5,n=120×0.15=18;(2)如图所示:;(3)学校喜欢球类人有:3000×0.5×=75(人).答:估计该校最喜欢足球的人数为75.21.【解答】解:(1)如图,连接OC,交BF于点H,∵ED切⊙O于点C,∴OC⊥DE,∵AB为⊙O的直径,∴BF⊥AD,∵BF∥CD,∴ED⊥AD,∴OC∥AD,∴∠OCA=∠CAD,∵OC=OA,∴∠OCA=∠OAC,∴∠OAC=∠CAD,∴AC平分∠BAD;(2)∵⊙O的半径为,AF=2,∠AFB=90°,∴BF=,由(1)知,∠D=∠HFD=∠OCD=90°,∴四边形HFDC为矩形,∴OC⊥BF,∴CD=HF=BF=4.22.【解答】(1)证明:∵EF∥AB,∴∠E=∠CAB,∠EF A=∠F AB,∵∠E=∠EF A,∴∠F AB=∠CAB,在△ABC和△ABF中,,∴△ABC≌△ABF;(2)当∠CAB=60°时,四边形ADFE为菱形.证明:∵∠CAB=60°,∴∠F AB=∠CAB=∠CAB=60°,∴EF=AD=AE,∴四边形ADFE是菱形.故答案为60.(3)解:∵四边形AEFD是菱形,设边长为a,∠AEF=∠CAB=60°,∴△AEF、△AFD都是等边三角形,由题意:2×a2=6,∴a2=12,∵a>0,∴a=2,∴AC=AE=2,在RT△ACB中,∠ACB=90°,AC=2,∠CAB=60°,∴∠ABC=30°,∴AB=2AC=4,BC==6.故答案为6.23.【解答】接:(1)y=30+3(70﹣x)=﹣3x+240;(2)w=(x﹣40)(﹣3x+240)=﹣3x2+360﹣9600;(3)当w=900时,(x﹣40)(﹣3x+240)=900整理得:x2﹣120x+3500=0∴x1=50,x2=70,∵要使顾客得到实惠,∴x=70舍去∴每箱价格定为50元;(4)由w=(x﹣40)(﹣3x+240)=﹣3x2+360﹣9600得w=﹣3(x﹣60)2+1200w最大=1200(元)∴赢利900元不是销售的最大利润.24.【解答】解:(1)由图1知,AB=,BC=2,∠ABC=90°,AC=5,∵四边形ABCD是以AC为“相似对角线”的四边形,①当∠ACD=90°时,△ACD∽△ABC或△ACD∽△CBA,∴=或=2,∴CD=10或CD=2.5同理:当∠CAD=90°时,AD=2.5或AD=10,(2)证明:∵∠ABC=80°,BD平分∠ABC,∴∠ABD=∠DBC=40°,∴∠A+∠ADB=140°∵∠ADC=140°,∴∠BDC+∠ADB=140°,∴∠A=∠BDC,∴△ABD∽△DBC,∴BD是四边形ABCD的“相似对角线”;(3)如图3,∵FH是四边形EFGH的“相似对角线”,∴△EFH与△HFG相似,∵∠EFH=∠HFG,∴△FEH∽△FHG,∴,∴FH2=FE•FG,过点E作EQ⊥FG于Q,∴EQ=FE•sin60°=FE,∵FG×EQ=2,∴FG×FE=2,∴FG•FE=8,∴FH2=FE•FG=8,∴FH=2.25.【解答】解:(1)∵B(1,0),∴OB=1,∵OC=2OB=2,∴C(﹣2,0),Rt△ABC中,tan∠ABC=2,∴,∴,∴AC=6,∴A(﹣2,6),把A(﹣2,6)和B(1,0)代入y=﹣x2+bx+c得:,解得:,∴抛物线的解析式为:y=﹣x2﹣3x+4;(2)①∵A(﹣2,6),B(1,0),易得AB的解析式为:y=﹣2x+2,设P(x,﹣x2﹣3x+4),则E(x,﹣2x+2),∵PE=DE,∴﹣x2﹣3x+4﹣(﹣2x+2)=(﹣2x+2),x=1(舍)或﹣1,∴P(﹣1,6);②∵M在直线PD上,且P(﹣1,6),设M(﹣1,y),∴AM2=(﹣1+2)2+(y﹣6)2=1+(y﹣6)2,BM2=(1+1)2+y2=4+y2,AB2=(1+2)2+62=45,分三种情况:i)当∠AMB=90°时,有AM2+BM2=AB2,∴1+(y﹣6)2+4+y2=45,解得:y=3,∴M(﹣1,3+)或(﹣1,3﹣);ii)当∠ABM=90°时,有AB2+BM2=AM2,∴45+4+y2=1+(y﹣6)2,y=﹣1,∴M(﹣1,﹣1),iii)当∠BAM=90°时,有AM2+AB2=BM2,∴1+(y﹣6)2+45=4+y2,y=,∴M(﹣1,);综上所述,点M的坐标为:∴M(﹣1,3+)或(﹣1,3﹣)或(﹣1,﹣1)或(﹣1,).。

2019年初三数学二模测试(含答案)

2019年九年级数学二模测试卷2019年5月本试卷分试题和答题卡两部分,所有答案一律写在答题卡上.考试时间为120分钟.试卷满分130分.一、选择题(本大题共10小题,每题3分,共计30分.)1.-3的相反是………………………………………………………………………………( )A .-13B .13C .-3D . 32.下列运算正确的是…………………………………………………………………………( ) A .(a 3)2=a 6 B .a 2·a 4=a 8 ;C .a 6÷a 2=a 3 D . 3a 2-a 2=3 3.函数y=中自变量x 的取值范是……………………………………………………( )A .x >2B .x ≥2C .x ≤2D .x ≠24.下列图形中,既是中心对称图形又是轴对称图形是………………………………………( )A .B .C .D .5. 在一次信息技术考试中,某兴趣小组8名同学的成绩(单位:分)分别是:7、10、9、8、7、9、9、8,则这组数据的众数和中位数是…………………………………………………( ) A .9、8.5 B .7、9 C .8、9 D .9、9 6.圆柱的底面半径为1,高为2,则该圆柱体的表面积为…………………………………( )A .πB .2πC .4πD .6π 7.美是一种感觉,当人体下半身身长与身高的比值越接近0.618)时,越给人一种美感.如图,某女士身高165cm ,下半身身长x 与身高l 的比值是0.60,为尽可能达到好的效果,她应穿的高跟鞋的高度大约为( )cm .(精确到1) A . 3 B . 5 C . 8 D . 108.如图,点A 、B 、C 、D 都在⊙O 上,且四边形OABC 是平行四边形,则∠D 的度数 为……………………………………………………………………………………( )A. 9.A .-10 A 1311= .12.保护水资源,人人有责.我国是缺水国家,目前可利用淡水资源总量仅约为899000亿m 3, 数据899000用科学记数法表示为 .13.若一次函数y =kx +b 的图像经过点P (-2,3),则2k -b 的值为 . 14.正八边形的每一个内角都等于 .15.如图,△ABC 的三个顶点都在正方形网格的格点上,则tan ∠A = . 16.如图,DE 是△ABC 的中位线,若S △ADE =2,则S 四边形BDEC = .17.如图,点P 是等边△ABC 内一点, P A =3,PB =4,PC =5,则∠APB = . 18.如图,矩形ABCD 中,AB =4,AD =3,M 是边CD 上一点,将△ADM 沿直线AM 对折,得到△ANM .当射线BN 交线段CD 于点F 时, DF 的最大值为____________.第16题图第17题图第18题图ABC第15题图三、解答题(本大题共10小题,共计84分.解答需写出必要的文字说明或演算步骤.)19.(8分)(1()03122⎛⎫+- ⎪⎝⎭; (2)化简:)2)(2()(22y x y x y x -+-+.20.(8分)(1)解方程: 13132=-+--x x x (2)解不等式组: 2(2)43251x x x x -≤-⎧⎨--⎩<21.(8分)如图,E ,F 是四边形ABCD 的对角线AC 上两点,AF =CE ,DF =BE , DF ∥BE . 求证:(1)△AFD ≌△CEB ;(2)四边形ABCD 是平行四边形. 22.(8分)“校园手机”现象越来越受到社会的关注.某校小记者随机调查了某地区若干名学生和家长对学生带手机现象的看法,统计整理并制作了如下的统计图:(1)求这次调查的家长人数,并补全图①;(2)求图②中表示家长“赞成”的圆心角的度数;(3)已知某地区共8000名家长,估计其中反对中学生带手机的家长大约有多少名?23.( 8分)在歌唱比赛中,一位歌手分别转动如下的两个转盘(每个转盘都被分成3等份)一次,根据指针指向的歌曲名演唱两首曲目.(1)转动转盘①时,该转盘指针指向歌曲“3”的概率是 ;(2)若允许该歌手替换他最不擅长的歌曲“3”,即指针指向歌曲“3”时,该歌手就选择自己最擅长的歌曲“1”, 请用树形图或列表法中的一种,求他演唱歌曲“1”和“4”的概率.图①图②24.( 8分)已知,如图,线段AB ,利用无刻度的直尺和圆规,作一个满足条件的△ABC : (注:不要求写作法,但需保留作图痕迹)(1)① ∠ABC 为直角 ②∠A=60°. (2)① ∠ABC 为直角 ②sin ∠A=10.25.( 8分)图1是由五个边长都是1的正方形纸片拼接而成的,过点A 1的直线分别与BC 1、BE交于点M 、N ,且图1被直线MN 分成面积相等的上、下两部分.(1)求CN +B 1M 的值;(2)将图1沿虚线折成一个无盖的正方体纸盒(图2)后,求点M 、N 间的距离.26.( 8分)某水果商店以12.5元/千克的价格购进一批水果进行销售,运输过程中质量损耗5%,运输费用是0.8元/千克(运输费用按照进货质量计算),假设不计其他费用。

2019年高三第二次模拟考试理科数学含解析

2019年高三第二次模拟考试理科数学含解析本试卷共4页,150分。

考试时间长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将答题卡交回。

一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.若﹁p∨q是假命题,则A. p∧q是假命题B. p∨q是假命题C. p是假命题D. ﹁q是假命题【答案】A若﹁p∨q是假命题,则,都为为假命题,所以为真命题,为为假命题,所以p∧q 是假命题,选A.2.下列四个函数中,既是奇函数又在定义域上单调递增的是A. B. C. D.【答案】CA,为非奇非偶函数.B在定义域上不单调。

D为非奇非偶函数。

所以选C.3.如图,是⊙O上的四个点,过点B的切线与的延长线交于点E.若,则A. B. C. D.【答案】B因为A,B,C,D是⊙O上的四个点,所以∠A+∠BCD=180°,因为∠BCD=110°,所以∠A=70°.因为BE 与⊙O相切于点B,所以∠DBE=∠A=70°.故选B.4.设平面向量,若//,则等于A. B. C. D.【答案】D因为//,所以,解得。

所以,即。

所以222441245a b a -==+=,选D.5.已知是不等式组1,1,10,6x y x y x y ≥⎧⎪≥⎪⎨-+≥⎪⎪+≤⎩所表示的平面区域内的两个不同的点,则的最大值是A. B. C. D.【答案】 B作出不等式组表示的平面区域,得到如图的四边形ABCD ,其中A (1,1),B (5,1),,D (1,2),因为M 、N 是区域内的两个不同的点,所以运动点M 、N ,可得当M 、N 分别与对角线BD 的两个端点重合时,距离最远,因此|MN|的最大值是22(51)(12)17BD =-+-=|,选B.6.已知数列的前项和为,,,则A. B. C. D.【答案】C由得,所以,即。

所以数列是以为首项,公比的等比数列,所以,选C.7.一个几何体的三视图如图所示,则这个几何体的表面积为336俯视图侧(左)视图A . B. C. D. 【答案】A视图复原的几何体是长方体的一个角,如图:直角顶点处的三条棱长分别为,其中斜侧面的高为。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018-2019学年度第二学期第二次模拟测试
数学试卷
一、选择题(本大题10小题,每小题3分,共30分),在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑。

1. 3
1
-
的倒数是( ) A .3
1
- B .3 C .-3 D .-0.3
2.如图1,所示的几何体是由六个小正方体组合而成的,它的俯视图是( )
A .
B .
C .
D . (图1)
3.生活中,有时也用“千千万”来形容数量多,“千千万”就是100亿,“千千万”用科学记数法可表示为( )
A .0.1×1011
B .10×109
C .1×1010
D .1×1011 4.下列各式运算正确的是( )
A .235
a a a +=
B .235
a a a ⋅=
C .236()ab ab =
D .1025
a a a ÷=
5.如图2,已知直线 ∥ ,一块含30º角的直角三角板如图放置, ∠1=25º,则∠2=( )
A .30º
B .35º
C .40º
D .45º
6.一元二次方程x 2﹣4x+2=0的根的情况是( ) (图2) A .有两个不相等的实数根
B .有两个相等的实数根
C .只有一个实数根
D .没有实数根
7.如图3,AB 是⊙O 的直径,∠AOC =130°,则∠D 的度数是( ) A .15° B .25° C .35° D .65°
8.下列所述图形中,是中心对称图形的是( )
A .直角三角形
B .正三角形
C .平行四边形
D .正五边形
9.东莞市某一周的PM2.5(大气中直径小于等于2.5微米的颗粒物,也称可入肺颗粒物)指数如下表,则该周PM2.5指数的众数和中位数分别是( )
A .150, 150
B .150, 152.5
C .150, 155
D .155, 150
10.如图4,正方形ABCD 的边长为3cm ,动点M 从点B 出发以3cm/s 的速度沿着边BC ﹣CD ﹣DA 运动,到达点A 停止运动,另一动点N 同时从点B 出发,以1cm/s 的速度沿着边BA 向点A 运动,到达点A 停止运动,设点M 运动时间为x (s ), △AMN 的面积为y (cm 2),则y 关于x 的函数图象是( )
(图4)
A .
B . C.
D .
二、填空题(本大题6小题,每小题4分,共24分),请将下列各题的正确答案填写在答题卡相应的
位置上。

11.分解因式: __________
12.若 ,则 的值是__________
13.若等腰三角形的两边长为3和7,则该等腰三角形的周长为__________
14.方程 的解是__________
15.一个正n 边形的每个内角都为144°,则n=__________ 16.如图5,在Rt △ABC 中,∠ACB=90°,BC=1,将Rt △ABC
绕点C 顺时针旋转60°,此时点B 恰好在DE 上,其中点A 经过的路径为弧AD ,则图中阴影部分的面积是__________
(图5)
三、解答题(一)(本大题3小题,每小题6分,共18分) 17.计算:201901)1(3)33()2
1(-+-+---- 18.先化简,再求值:
2
12
(1)211
x x x x +÷+-+- ,其中3=x
19.如图,△ABC 中,∠C=90°,∠A=30°.
PM2.5指数
150 155 160 165 天 数
3 2 1 1 (图3) x
x 4
13=-33=+b a b a 236+-=-2732
x 1l 2l
(1)用尺规作图法,作AB边上的垂直平分线DE,交AC于点D,交AB于点E.(保留作图痕迹,不要求写作法和证明)(2)在(1)的条件下,连接BD,求证:DE=CD
四、解答题(二)(本大题3小题,每小题7分,共21分)
20.某校举行全体学生“汉字听写”比赛,每位学生听写汉字39个,随机抽取了部分学生的听写结果,绘制成如下的图表:
根据以上信息完成下列问题:
(1)统计表中的m=,n=,并补全条形统计图;
(2)扇形统计图中“C组”所对应的圆心角的度数是;
(3)已知该校共有900名学生,如果听写正确的字的个数少于24个定为不合格,请你估计该校本次听写比赛不合格的学生人数.
21.如图,四边形ABCD中,AC,BD相交于点O,O是AC的中点,AD//BC,AC=8, BD=6.
(1)求证:四边形ABCD是平行四边形;
(2)若AC⊥BD,求□ABCD的面积.
22.某种商品的标价为400元/件,经过两次降价后的价格为324元/件,并且两次降价的百分率相同。

(1)求该种商品每次降价的百分率;
(2)若该种商品进价为300元/件,两次降价共售出此种商品100件,为使两次降价销售的总利润不少于3120元,问第一次降价后至少要售出该种商品多少件?五、解答题(三)(本大题3小题,每小题9分,共27分)
23.如图,A(4,3)是反比例函数y=在第一象限图象上一点,连接OA,过A作AB∥x轴,截取AB=OA (B在A右侧),连接OB,交反比例函数y=的图象于点P .
(1)求反比例函数y=的表达式;
(2)求点B的坐标;
(3)求△OAP的面积.
24.如图,AB是⊙O的直径,点C为⊙O上一点,OF⊥BC于点F,交⊙O于点E,AE与BC交于点H,点D为OE的延长线上一点,且∠ODB=∠AEC
(1)求证:BD是⊙O的切线;
(2)求证:CE2=EH•EA ;
(3)若⊙O的半径为5,且sinA=,求BH的长.
25.如图,已知矩形ABCD的一条边AD=8cm,点P在CD边上,AP=AB,PC=4cm,连结PB.点M 从点P出发,沿PA方向匀速运动(点M与点P、A不重合);点N同时从点B出发,沿线段AB 的延长线匀速运动,连结MN交PB于点F.
(1)求AB的长;
(2)若点M的运动速度为1cm/s,点N的运动速度为2cm/s,
△AMN的面积为S,点M和点N的运动时间为t,
求S与t的函数关系式,并求S的最大值;
(3)若点M和点N的运动速度相等,作ME⊥BP于点E.
试问当点M、N在运动过程中,线段EF的长度是否发生变化?
若变化,说明理由;若不变,求出线段EF的长度.。

相关文档
最新文档