平面与平面平行的判定说课稿
平面与平面平行--说课稿

学法:主要是通过教师的引导使学生学 会参与探究,学生借助实物,通过类比、交 流等,得出性质及基本应用。
四、说教过程
教学活动流程图
活动1:面面平行性质的探究与证明
活动2:典例分析
求证: 夹在两个平行平面间的两条平行线段相等.
已知:α∥β,AB∥CD,A∈α,D∈α,B∈β,C∈β.
求证:AB=CD.
A
D
BC
设计意图:通过例题,巩固所学知识,培养学生书写 表达能力和分析问题解决问题的能力。
活动3:随堂练习
1.平面α与圆台的上、下底面分别相交于直线m,n,则m,n 的位置关系是( )
问题2. 在长方体中,平面ABCD内哪些直线与B,D, 平行?如何找到它们?
问题3.如图,已知平面 , , ,满足 //
且 I a, I b, 求证:a // b .
设计意图:通过复习旧知,借助长方体 模型引导出面面平行的性质,问题3中先 证明了面面平行的性质,然后根据证明题 写出命题,说明这个命题就是面面平行的 性质。
本节课练习设置有点少,导致提前几分钟课堂活 动结束了,在教学过程中,板书有点乱,几何绘图能 力有待提高。
借助长方体模型引导出面 面平行的性质。
活动2:典例分析 活动3:随堂练习
通过例题,巩固所学知识, 培养学生书写表达能力和分 析问题解决问题的能力
通过练习,加深对面面平行 性质的理解。
活动4:小结布置作业
提高自我整合知识能力.
活动1:面面平行性质的探究与证明
问题1.若两个平面平行,则一个平面内的直线a与 另一个平面内的直线有什么位置关系.
平面与平面平行的判定 说课稿 教案 教学设计

平面与平面平行的判定一、内容及解析:本节课是《普通高中课程标准实验教科书·数学2》(人教A版)第二章空间点、直线、平面位置关系的第二节直线、平面平行的判定及其性质的第二课时平面平面与平面平行的判定。
空间中的面面平行关系是高考考查的重点之一。
前面已经以长方体为载体,直观的认识和用几何符号描述空间中点线面的位置关系。
后面有线面,面面垂直的内容。
通过对有关概念和定理的概括及应用,使学生体会“转化”的观点,提高学生的空间想象能力和逻辑推理能力。
本节使学生进一步了解平行的概念,并使学生提高数学语言的逻辑表述,也为后面研究垂直提供了学习的模式。
二、目标及目标解析:通过借助长方体模型发现平面与平面平行的判定定理,让学生理解这个定理,并会用这个定理证明两个平面的平行。
三、教学重点、难点重点、难点:直线与平面平行的判定定理、平面与平面平行的判定定理及应用。
四、教学过程一、复习提问直线与平面的平行如何判定?观察一下有无平面与平面平行的例子。
二、新课1、新课引入教室的天花板与地面给人平行的感觉,前后两块黑板也是平行的。
一块三角板,当它的一条边所在直线与地面平行时,这个三角板所在平面与地面平行吗?当三角板的两条边所在直线分别与地面平行时,情况又如何?2、判定两平面平行的思路判定平面与平面平行的关键就是判定它们没有公共点,若一个平面内的所有直线都与另一个平面平行,那么这两个平面一定平行。
否则,这两个平面就会有公共点,这样在一个平面内通过这个公共点的直线就不平行于另一个平面了。
两个平面平行的问题可转化为一个平面内的直线与另一个平面平行的问题。
实际上,判定两个平面平行不需要判定一个平面内的所在直线都平行于另一个平面。
3、两个平面平行的探究探究两个问题:(1)平面β内有一条直线与平面α平行,α,β平行吗?(2)平面β内有两条直线与平面α平行,α,β平行吗?探究(1)中的平面α,β不一定平行。
如图,借助长方体模型,平面ABCD中直线AD平行平面BCC’B’,但平面ABCD与平面BCC’B’不平行。
平面与平面平行的判定(说课课件)

发探究式教学为主来完成教学。通过引导学
生自主思考、探索,让学生发现平面与平面 平行的判定方法,加深对判定定理的理解。
学法指导
倡议学生以自主探究为主,学会主动观 察、积极思考。在学习中体会将面面问题转
化为线面问题的思维方法。
教学程序设计
为实现既定教学目标并突破本节课的重难点, 制定以下教学流程: 复习回顾,导入新课
是立体几何中重要定理之一,它揭示了线线平行、 线面平行、面面平行的内在联系,体现了转化的思 想。通过本节的学习,还能使学生把这些认知迁移 到后继的知识学习中去,为以后学习面面垂直、多 面体打下基础。
教材分析
(二)目标分析:
知识与技能 过程与方法 情感态度价值观
1.知识与技能目标:
理解并掌握两平面平行的判定定理,能够应用判定 定理解决问题。
用数学符号表示判定定理
Pa b
a ,b a b p // a // , b //
培养学生用 数学符号来 表示文字内 容的意识。
教学程序设计
三.即时训练,深化新知 判断对错
1、平面 内有两条直线a、b,直线a、b都平 行平面 ,所以平面 与平面 平行。
教学程序设计
二.启发诱导,探求新知
1、面面平行定义的推论:
设计意图
Байду номын сангаас
如果两个平面平行,那么在其中一个平面内的 所有直线一定都和另一个平面平行;
2、反过来,如果一个平面内的所有直线都和 另一个平面平行,那么这两个平面平行. 3、两个平面平行的问题可以转化为线面平 行的问题来解决,那么最少需要几条线与面 平行呢?
教学目标
2.过程与方法目标:
让学生通过观察、探究、思考,得出两平面平行 的判定定理,体验如何用数学符号去描述语言文字。
《两个平面平行的判定及应用》说课稿

《两个平面平行的判定及应用》说课稿1教材分析我选用的教材是天津科学技术出版社出版的中职数学第四册,本节课是第十三章《立体几何》第五节《平面和平面平行》的第一课时,此前,学生学习了平面的基本性质,空间中的线线关系,线面关系。
本节主要学习两个平面的位置关系、两个平面平行的判定定理,其中两个平面平行的判定定理是本章中的一个重要定理,它揭示了线线平行、线面平行、面面平行的内在联系,体现了转化的思想,也为以后学习面面垂直,多面体打下基础。
所以本节既是对前面所学知识的巩固和加深,又是后面继续学习立体几何的基础。
根据上述分析,制定如下教学目标。
1.1教学目标:●教学要求理解平面和平面的位置关系,能正确运用符号和画出图形表示这些关系;理解两个平面平行的判定定理,并能用它进行推理和计算。
●能力训练要求培养锻炼学生观察、分析、总结的能力;通过解决问题,提高空间想象能力。
●德育渗透目标培养学生用转化思想解决问题;通过问题的解决,寻求事物的统一性。
根据教学大纲的要求及本节课在本章中所处的地位,确立了如下重点与难点。
1.2教学重点和难点重点:两个平面的位置关系,两个平面平行的判定定理。
难点:两个平面平行的判定定理的证明及其应用。
那么如何突出重点,突破难点呢?主要从以下两个方面:(1)利用多媒体课件展示直观的立体图形,并联系生活实际,帮助学生理解图形,锻炼学生的空间想象能力,更好的理解两个平面的位置关系。
(2)结合线线、线面位置关系,在教师启发、引导下,结合设计的问题,通过学生自己的观察、分析、总结,探究出新知,得到两个平面平行的判定定理,并能够在教师启发、引导下完成定理的证明,在例题、练习中加强巩固,同时注意转化思想在立体几何中的应用。
学情分析教学活动是师生双方共同来完成的,我所任教的年级为计算机应用专业二年级,本班学生的数学基础相对其他班级学生较好,主动参与意识,自主探求意识较强,而且对立体图形有一定的认知能力,因此教学活动多采用以学生探求、发现为主,教师启发、引导为辅的教学模式。
平面与平面平行的判定定理的教案北师大版

平面与平面平行的判定定理的教案北师大版教案名称:平面与平面平行的判定定理教学目标:1.了解什么是平面与平面平行。
2.掌握判定平面与平面平行的方法。
3.能运用平面与平面平行的判定定理解决教学题目。
教学重点:学生能掌握平面与平面平行的判定定理和应用。
教学难点:学生能够运用平面与平面平行的判定定理解决实际问题。
教学方法:课堂讲授,实例演示,讨论。
教学时间:1课时教学步骤:一、导入教师可以通过提问的方式,让学生回顾一下平面和平行的概念,激发学生的兴趣。
二、知识讲解1.什么是平面与平面平行2.判定定理通过研究平面法向量的情况来判定两个平面是否平行,判定定理有以下三条:(1)同向异面定理:若两平面不想交,其法向量n1和n2所成的角β满足0<β<π,则两平面为异面平行。
(2)垂直定理:若两平面的法向量n1和n2垂直,则两平面平行。
(3)截线法:若两平面分别与另一平面的交线平行,则这两平面平行。
三、实例演示由三条定理出发,结合适当的图示进行实际应用的演示,以便学生更好地理解和掌握这些定理。
四、课堂练习教师通过给学生发放习题,让学生运用所学知识进行练习和掌握。
教师可以抽选几位同学上台展示,加深对知识点的印象记忆。
五、课程总结教师可以通过提问的方式进行课程总结,让学生对所学内容有个总结和印象。
教学反思:该课时以理论结合实例和课堂练习的方式,既丰富了课程形式,也使学生能够在实践中更好地掌握,提高教学效果。
但作为一个单独的课时,本课时内容较为简单,需要与后续课程相结合才能更好地实现教学目标。
平面与平面平行的判定教案

一、教材内容分析:本节选自教材人教A版数学必修2第二章第一节课,本节内容在立体几何学习中起着承上启下的作用,具有重要的意义与地位。
本节课是在前面已经学习空间点、线、面位置关系的基础作为学习的出发点,类比直线与平面平行的判定定理探究过程,结合有关的实物模型,通过直观感知、操作确认(合情推理),归纳出平面与平面平行的判定定理。
本节课的学习对培养学生空间感与逻辑推理能力起到重要作用。
二、教学目标:1.知识与技能:(1)能够通过直观感知和操作确认,归纳并理解面面平行的判定定理,并能用它证明一些简单问题。
(2)能准确使用数学符号语言、文字语言、图形语言表述面面平行的判定定理,进一步培养学生观察、发现问题的能力和空间想象能力。
2.过程与方法:通过对图形的直观感知,合情推理得出两个平面平行的判定定理。
3.情感、态度与价值观:(1)培养学生观察、探究、发现问题的能力和空间想象能力、逻辑思维能力。
让学生在观察、探究、发现的过程中学习,在自主合作、交流中学习,体验学习的乐趣,增强自信心,树立积极的学习态度,提高学习的自我效能感。
让学生在发现中学习,增强学习的积极性;(2)学生体会转化思想方法的应用,提高空间想象力和逻辑思维能力。
三.教学重点与难点:1.重点:平面与平面平行的判定定理及其应用。
2.难点:平面与平面平行的判定定理的探究发现及应用。
四.教学方法:借助实物、通过观察、类比、思考、探讨、得出两平面平行的判定。
五.教学过程:(一)通过复习回顾前一节课所学的内容,结合对实物模型的探究,引入新课。
●复习回顾:➢判定直线与平面平行的方法有哪些?①根据定义,即直线与平面没有公共点。
②根据判定定理:平面外一条直线与平面内的一条直线平行,则该直线与平面平行。
a⊄αb ⊆α⇒a ⫽αa ⫽b即:若线线平行,则线面平行。
➢空间两平面有哪些位置关系?(二)判定定理的探究过程:●思考:➢如何检验平面与平面平行呢?观察探究➢三角板的一条边所在直线与地面平行,这个三角板所在平面与地面平行吗?三角板的两条边分别与地面平行,情况又如何呢?(三)讲解新课内容:●面面平行的判定定理➢如果一个平面内有两条相交直线分别平行于另一个平面,那么这两个平面平行。
平面与平面平行的判定 说课稿 教案 教学设计

平面与平面平行的判定【教学目标】1、识记两平面平行的判定定理并会应用证明简单的几何问题。
2、让学生通过观察实物及模型,得出两平面平行的判定。
3、进一步培养学生空间问题平面化的思想。
【教学重难点】重点:两个平面平行的判定。
难点:判定定理、例题的证明。
【教学过程】(一)创设情景、引入课题引导学生观察、思考教材观察题,导入本节课所学主题。
(二)研探新知上节课我们研究了两个平面的位置关系,具有什么条件的两个平面是平行的呢?1、问题:(1)平面β内有一条直线与平面α平行,α、β平行吗? (2)平面β内有两条直线与平面α平行,α、β平行吗? 通过长方体模型,引导学生观察、思考、交流,得出结论。
(3)平面α内有无数条直线与平面β平行,则α∥β,对吗?(4)、如下图,平面β内有两条相交直线与平面α平行,情况如何?两个平面平行的判定定理:一个平面内的两条交直线与另一个平面平行,则这两个平面平行。
符号表示:a βb βa ∩b = P β∥α a ∥α b ∥α类比平面中线线平行得出判断两平面平行的方法有三种: (1)用定义; (2)判定定理;(3)垂直于同一条直线的两个平面平行。
2、典例例1 课本P57:已知正方体ABCD-1111A B C D ,求证:平面11AB D //平面1C BD 。
分析:要证面面平行需转化为线面平行11//D A C BD 平面,同理111//D B C BD 平面 证明:因为ABCD-1111A B C D 为正方体, 所以11,AB A B = 1111//DC A B 1111DC A B =, 又11//AB A B ,11,AB A B = 所以11//D C AB ,11D C AB =, 所以11DC BA 为平行四边形。
所以11//D A C B 。
又11D A C BD ⊄平面,11C B C BD ⊂平面, 由直线与平面的判定定理得11//D A C BD 平面,同理111//D B C BD 平面, 又1111D A D B D ⋂=,所以平面111//AB D C BD 平面。
人教版高一数学必修二《平面与平面平行的判定》说课稿

人教版高一数学必修二《平面与平面平行的判定》说课稿一、教材背景分析1.1 教材简介人教版高一数学必修二是高中数学的重要教材之一,主要内容涵盖了平面与空间几何学的基本知识和定理。
其中,《平面与平面平行的判定》是该教材中的一个重要章节,主要介绍了判断平面与平面之间是否平行的方法和应用。
1.2 教学目标通过学习本章节,学生应达到以下教学目标:•掌握平面与平面平行的判定方法;•能够运用所学方法判断平面与平面是否平行;•理解平面与平面平行的概念及其重要性;•培养学生的逻辑思维和分析问题的能力。
二、教学内容分析2.1 知识点总结2.1.1 平面与平面的关系•平面:定义、特点及表示方法;•平行平面:定义、特点及表示方法;•垂直相交:定义、特点及表示方法。
2.1.2 平面与平面平行的判定方法•同法向判定法:通过比较两个平面的法向量确定其是否平行;•两线平行判定法:利用两个平面之间的直线判定平面是否平行;•平面平行的性质:利用已知的平行关系判断其他平面的平行性。
2.2 学情分析学生已经学习了平面的基本概念和性质,对向量的基本操作也有一定的掌握。
但对于平面与平面之间的关系还存在一定的困惑,以及如何判定两个平面是否平行的方法和原理尚不清晰。
三、教学设计3.1 教学方法本节课主要采用归纳演绎法和讨论引导法相结合的教学方法。
3.2 教学过程与内容安排第一步:导入通过提问的方式引出本节课的主题,与学生进行互动交流。
•引导学生回顾平面的基本概念和性质;•提出一个问题:如何判断两个平面是否平行?第二步:理论讲解通过示例演示和理论讲解,介绍平面与平面平行的判定方法。
•介绍同法向判定法的原理和步骤;•引导学生通过几个示例体会同法向判定法的应用;•介绍两线平行判定法的原理和步骤;•引导学生通过练习题巩固两线平行判定法的应用;•总结平面平行的性质,指导学生运用性质进行判定。
第三步:练习与巩固通过练习题巩固所学知识,培养学生的解决问题的能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《平面与平面平行的判定》的教学设计一、教材分析1.《课标》要求几何学是研究现实世界中物体的形状,大小和位置关系的数学学科。
本教材强调“直观感知,操作确认,思辨论证,度量计算”是探索和认识空间图形及其性质的主要方法。
高一阶段立体几何的学习更注重“直观感知,操作确认”并适度进行“思辨论证”。
本节要求通过直观感知,操作确认,归纳出平面与平面平行的判定定理。
借助长方体模型,在直观认识和理解空间点、线、面的位置关系的基础上,抽象出空间线、面位置关系的定义,并了解如下可以作为推理依据的公理和定理;直观认识和理解空间点、线、面的位置关系;能用数学语言表述有关平行的性质与判定,并对某些结论进行论证,通过直观感知、操作确认,归纳出判定定理。
2.地位和作用本课是在学生学习了平面的性质、线线关系、线面关系之后,且已具备一定数学能力和方法的基础上进行的。
两个平面平行的判定定理是立体几何中的一个重要定理。
它揭示了线线平行、线面平行、面面平行的内在联系,体现了转化的思想。
通过本课的学习,不仅能进一步培养学生的空间想象能力、逻辑推理能力、分析问题和解决问题的能力,而且能使学生把这些认识迁移到后继的知识学习中去,为以后学习面面垂直打下基础。
所以,本课既是前期知识的发展,又是后继课程有关图形研究的前驱,在教材当中起到一个承上启下的作用。
二、教学内容分析:本节教材选自人教A版数学必修②第二章第一节课,本节内容在立几学习中起着承上启下的作用,具有重要的意义与地位。
本节课是在前面已学空间点、线、面位置关系的基础作为学习的出发点,类比直线与平面平行的判定定理探究过程,结合有关的实物模型,通过直观感知、操作确认(合情推理,不要求证明)归纳出平面与平面平行的判定定理。
本节课的学习对培养学生空间感与逻辑推理能力起到重要作用。
三、学情分析:学生已有一些平面几何基础,在学习了线线、线面关系后,已具备了本节课所需的预备知识,具有一定的分析问题、解决问题的能力,并且空间想象能力,逻辑推理能力已初步形成。
也学习了直线和平面平行的判定,本节课与上一节课的研究顺序和方法基本相同,学生也有了一定的研究经验。
故在本节课的教学中可以充分利用学生已有的知识和空间构图的想象能力进行教学;但在如何发现判定两个平面平行的判定方法上存在难点,故可以借助教师事务的展示和多媒体课件的演示,使学生在一系列的设问中找到正确的结论四、设计思想本节课的设计遵循从具体到抽象的原则,适当运用多媒体辅助教学手段,借助实物模型,通过直观感知,操作确认,合情推理,归纳出平面与平面平行的判定定理,让学生在观察分析、自主探索、合作交流的过程中,揭示直线与平面平行的判定、理解数学的概念,领会数学的思想方法,养成积极主动、勇于探索、自主学习的学习方式,发展学生的空间观念和空间想象力,提高学生的数学逻辑思维能力。
五、教学目标1、知识与技能(1)能够通过直观感知和操作确认,归纳并理解面面平行的判定定理,并能用它证明一些简单问题。
(2)能准确使用数学符号语言、文字语言,图形语言表述判定定理,进一步培养学生观察、发现的能力和空间想象能力;2、过程与方法通过对图形的直观感知,合情推理得出两个平面平行的判定定理。
3、情感、态度与价值观(1)培养学生观察、探究、发现的能力和空间想象能力、逻辑思维能力。
让学生在观察、探究、发现中学习,在自主合作、交流中学习,体验学习的乐趣,增强自信心,树立积极的学习态度,提高学习的自我效能感。
让学生在发现中学习,增强学习的积极性;(2)学生体会转化思想方法的应用,提高空间想象力和逻辑思维能力。
六、教学重点,难点,疑点1、重点:平面与平面平行的判定定理及应用依据:教学重在过程,重在研究,而不是重在结论。
学生不应该死背定理内容,而是理解知识发生、发展的过程。
这样,知识就成了一个数学模式,可用来解决具体问题。
2、难点:平面与平面平行的判定定理的探究发现及应用。
依据:因为问题的产生与解决具有一定的隐蔽性,虽然学生了解两个平面平行的判定,但在问题中应用的时候就不够灵活或找不到需要的条件。
为此,本节的难点是两个平面平行的判定。
重点是判定定理的引入与理解,难点是判定定理的应用及立几空间感、空间观念的形成与逻辑思维能力的培养。
3.疑点:正确理解并应用两个平面平行的判定定理时,要注意定理中的关键词:相交.七、教法与学法分析,教学用具1、教学方法:引导发现法、问题探究、互动式教学法为了把发现创造的机会还给学生,把成功的体验让给学生;为了立足于学生思维发展,着力于知识建构,就必须让学生有观察、动手、表达、交流、表现的机会。
采用引导发现法,可激发学生学习的积极性和创造性,分享到探索知识的方法和乐趣,使数学教学成为再发现、再创造的过程。
2、学法指导:根据“倡导积极主动、勇于探索的学习方式”的基本理念,教材内容的特点以及学生的知识、能力、情感等因素从而把学法定为问题探究学习方法,借助实例,通过观察、思考、交流、讨论等,理解判定定理。
八.教学过程设计(一)创设问题情景,引入新课基于新课程的理念和本节课的教学目标,使学生体会到数学知识发生在现实背景只需按为此结合一道习题即回归了上节课直线与平面的判定也引出了本节课的内容,自然流畅,更让学生了解到本节课学习的必要性。
1.利用多媒体课件展示:教师:上节课我们学习了直线与平面的判定你能利用你所学的知识解决本题吗?实例:如图,在正方体ABCD—A1B1C1D1求证:B1D1|| 平面C1BD[知识链接:根据空间问题平面化的思想,因此把找空间平行直线问题转化为找平行四边形或三角形中位线问题,这样就自然想到了找中点。
平行问题找中点解决是个好途径好方法。
这种思想方法是解决立几论证平行问题,培养逻辑思维能力的重要思想方法]学生上黑板板演,其他同学下面做,师生共同评价点明,对旧知识复习,又有深入,同时又点出了“转化”的思想方法,为引入新课作铺垫点明证明线面平行的方法及思想(转化的思想)2.提出课题思考1:如果将上题中正方体中的AB1 , AD1连接构成了一个新的平面AB1D1如何证明:平面AB1D1∥平面C1BD[设计意图:说明面面平行证明的必要性,通过提问引入本节课题,并为探寻平面与平面平行判定定理作好准备。
] ABCDABCD(二)判定定理的探求过程1、直观感知思考1:根据同学们日常生活的观察,你们能举出平面与平面平行的具体事例吗?生1:教室的天花板与地面给人平行的感觉。
生2:,前后两块黑板也是平行的,然后教师用多媒体动画演示。
思考2:两个平面满足什么条件时,就可以说它们是平行的?下面我们来探索结论。
[学情预设:此处的预设与生成应当是很自然的,但老师要预见到可能出现的情况]2,探索思路,体验过程探索一:问题的转化生:根据定义,关键在于判断它们没有公共点。
教师:定义法判断平面与平面平行方便吗?谈谈你的看法教师:类比上一节,研究线面平行时,我们转化成线线的平行的“平面化”的思想,平面与平面平行可转化成什么?生:点动成线,线动成面,平面也是由直线组成的,因此我们可以证明其中一个平面中的所有直线都平行于另一个平面教师:也就是我们可以研究平面中的直线。
(多媒体展示)在长方体上表面内随意画出一些直线,你观察到什么?(由观察结合前面学习的公理,这些直线都与下表面平行,否则两个平面就会有公共点)只要满足什么,两个平面就平行?(上表面的所有直线都与下表面平行)问题于是转化为:说明上表面内的直线与下表面平行的问题。
教师:研究上表面的所有直线与下表面的平行问题。
一个平面内有无数条直线,逐一检验未免太麻烦了。
可否研究部分直线与平面的平行?如“人大代表”到底需要几条?探索二:需要几条直线?需要什么样的直线?思考:(1)上表面有一条直线与下表面平行,两平面平行吗?(2)上表面有两条直线与下表面平行,两平面平行吗?借助几何画板和长方体模型,很容易观察出问题(1)不能保证平行。
对于问题(2)分两种情况讨论(依据平面内两条直线的位置关系:平行和相交)当两条直线平行时,如何?(观察模型有不成立的情况)当两条直线相交时,如何?(多次操作,直观感知)[设计意图:设置这样动手实践的情境,是为了引导学生用身边的典型实例,直观感知、观察,动手操作获得①结论,然后教师演示。
在探究②时特别要注意引导学生注意两条直线是什么样的位置,培养学生考虑问题的全面性。
使学生学在情境中,思在情理中,感悟在内心中,学自己身边的数学,领悟空间观念与空间图形性质。
]3,拓展规律,得出结论教师:通过上面的探究我们知道:当上平面的两条相交直线与下平面平行时,两个平面是平行的。
两个平面平行的问题可转化为一个平面内直线和另一个平面平行的问题.实际上判定两个平面平行的条件不需要一个平面内的所有直线都平行于另一个平面,只需要在一个平面内有两条相交直线都平行于另一个平面.请给出平面与平面平行的判定定理(升华定理)生:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.简单概括:线面平行⇒面面平行思想:空间问题转化为平面问题教师:你能用符号来表示两个平面平行的判定定理吗?a⊂α,b⊂α,a∩b=A,a∥β,b∥β⇒β∥β意图:培养和发展学生的几何直觉、归纳概括能力、运用图形语言进行交流的能力,并能准确地使用数学语言表述几何对象的位置关系。
作用:判定或证明面面平行。
关键:在平面内找(或作)出两条相交直线与另一个平面平行。
总结:利用判断定理证明两个平面平行必须具备以下两个条件:(1)有两条直线平行同一个平面(2)这两条直线必须相交意图:教师引导学生找出定理中的关键词语,并概括出以上两个条件,在应用的过程中特别要注意(2)中是相交的两条直线。
(三)定理运用,问题探究(多媒体幻灯片演示)1、想一想:例1:判断下列命题是否正确,正确说明理由,错误举例说明:(1)已知平面α和β,直线a和b,若a∥ β ,b∥ β,则α∥β。
()(2)平面α内有无穷多条直线与平面β平行,则α∥β。
()(3)平面α内的任何直线都与平面β平行,则α∥β。
()(4)已知平面α和β,直线a和b,若aα,bβ且a∥β,b∥α则α∥β()学情预设:设计这组问题目的是强调定理中三个条件的重要性,为了更好的理解平面与平面平行的判定定理并能灵活的判断两个平面平行,同时提高了学生数学符号语言和文字语言之间的转换的能力。
2、体验定理,简单应用例1、已知正方体ABCD-A1B1C1D1,求证:平面AB1D1∥平面C1BD。
证明:因为ABCD-A1B1C1D1正方体,所以D1C1∥A1B1,D1C1=A1B1又AB∥A1B1,AB=A1B1,∴D1C1∥AB,D1C1=AB,∴D1C1AB是平行四边形,∴D1A∥C1B,由直线与平面平行的判定,可知D 1A∥平D1B1=D1,所以,平面AB1D1∥平面C1BD。