电力系统分析 第4章
电力系统暂态分析第四章

0 zs 2zm
Z S 即为电压降的对称分量和电流的对称分量之间的阻抗
矩阵。
《电力系统分析》
2023/5/1
即:
Ua(1) (zs zm)Ia(1) z I (1) a(1)
Ua(2) (zs zm)Ia(2) z(2)Ia(2)
Ua(0)
(zs
2zm)Ia(0)
z I (0) a(0)
式中 z (1) z ( 2 ) z ( 0 ) 分别称为此线路的正序、负序、零序阻抗。 由此可知:各序电压降与各序电流成线性关系;
零序阻抗: x(0)(0.1~ 50.1)x 6d
定义:机端零序电压基频分量与流入定子绕组零序电流基频分量的比值。
㈡ 输电线路的序阻抗
正序: x x 1 L
负序=正序 x x 1 2 零序=(3~4)倍正序电抗
《电力系统分析》
2023/5/1
电力元件的序阻抗
一、研究电力元件各序阻抗的意义 求取从短路点看进去电力网络的各序等值阻抗是应
《电力系统分析》
2023/5/1
解: IIaa((12))
Ia(0)
1 13a1
a a2 1
a2 a 1
IIIbac
I
1 100 10180 120 0 5.7830 a1 3
I
1 100 10180 240 0 5.7830 a2 3
I
1 100 10180 0 0 a0 3
FFFbac
(4-6)
《电力系统分析》
2023/5/1
或写为:
FS T1FP
上式说明三个不对称的相量可以唯一地分解成为三组对 称的相量(即对称分量): 正序分量、负序分量和零序分量。
电力系统分析 第2版 第四章 复杂电力系统的潮流计算方法

节点电压方程
电力系统潮流计算实质是电路计算问题。因此,用解电路问题的基本 方法,就可以建立起电力系统潮流计算所需的数学模型——潮流方程。
回路电流方程 割集电压方程 节点电压方程
?
潮流方程
节点电压方程
Ui I ij
i
Ii
yij
I ij I il
Uj
j
I ik
k l
Iij yij (Ui U j )
Yni
Y
U
1
Y1n U 2
Y2n
Ynn
U
i
U U
n
节 点 电 压 列 向 量
节点电压方程
导纳矩阵 Y
Y11 Y12 Y21 Y22 Y Yi1 Yi 2 Yn1 Yn2
Y1i Y1n
Y2i
Y2
n
Yii Yin
Yni Ynn
非对角元素 :Yij
节点 i 和 j 之间支路导纳的负
电力系统分析
第四章 复杂电力系统的潮流计算方法
复杂电力系统的潮流计算方法
问题引入:
现代电力系统规模庞大,我国主要超高压同步电网规模达数千节点,面
对这样复杂的电力网络,手算方法难以胜任计算潮流任务。
10
节
点
系
统 的
思考:如果采用手算求解,需
潮
要哪些步骤?从哪里开始计算?
流
分
布
复杂电力系统的潮流计算方法
ΔY jj
yij
PART
导纳矩阵的修改
网络结构变化时节点导纳矩阵的修改
问题引入:
电力系统运行方式常会发生某种变化,通常只是对局部区域或个别元 件作一些变化,例如投入或切除一条线路或一台变压器。这只影响了该支路两 端节点的自导纳和它们的互导纳,因此不必重新形成新的导纳矩阵,只需在原 有的导纳矩阵上做适当修改即可。
电力系统分析第4章 电力网络的数学模型

Vn
I2(1)
•
•
Y (1) n2
V2
Y (1) nn
Vn
I2(1)
式中
Y (1) ij
Yij
Yi1Yj1 Y11
; Ii(1)
I
Yi1 Y11
I1
第四章电力网络的数学模型
4.2 网络方程的解法
➢ 对方程式再作一次消元,其系数矩阵便演变为
Y11
Y (2)
Y12 Y13 Y1n
Y (1) 22
第四章电力网络的数学模型
4.1 节点导纳矩阵
➢一般地,对于有n个独立节点地网络,可以列写n个 节点方程
•
•
•
Y11 V1 Y12 V2 Y1n Vn
•
I1
•
•
•
Y21 V1 Y22 V2 Y2n Vn
•
I2
•
•
• •
Yn1 V1 Yn2 V2 Ynn Vn In
(4-3)
4.1 节点导纳矩阵
➢上述方程经过整理可以写成
•
•
Y11 V1 Y12 V2
0
•
•
•
•
Y21 V1 Y22 V2 Y23 V3 Y24 V4 0
•
•
•
Y32 V2 Y33 V3 Y34 V4 0
•
•
•
Y42 V2 Y43 V3 Y44 V4
•
I
4
(4-2)
第四章电力网络的数学模型
4.1 节点导纳矩阵
➢将电势源和阻抗的串联变 换成电流源和导纳的并联,得 到的等值网络如图所示,其中:
•
•
I 1 y10 E1
电力系统分析第4-6章课后习题参考答案

4-1.选择填空1.电力系统稳态分析中所用阻抗指的是( A )A.一相等值阻抗B.两相阻抗C.三相阻抗D.四相阻抗2.节点导纳矩阵为方阵,其阶数等于( B )A.网络中所有节点数B.网络中除参考节点以外的所有节点数C.网络中所有节点数加1 D.网络中所有节点数减23.牛顿-拉夫逊潮流计算的功率方程是由下列什么方程推导得到的(C)A.回路电流方程 B.支路电流方程C.节点电压方程D.以上都不是4.对PQ节点来说,其待求量是( A )A.电压的大小U和电压的相位角δ B. 有功功率P和无功功率QC. 有功功率P和电压的大小UD. 无功率Q和节点电压的相位角δ5.对PV节点来说,其待求量是(D)A.电压的大小U和电压的相位角δ B. 有功功率P和无功功率QC. 有功功率P和电压的大小UD. 无功率Q和节点电压的相位角δ6)PQ节点是指( B )已知的节点。
A.电压的大小U和电压的相位角δ B. 有功功率P和无功功率QC. 有功功率P和电压的大小UD. 无功率Q和节点电压的相位角δ7.以下说法不正确的是(B)A.功率方程是非线性的。
B.雅可比矩阵是对称的。
C.导纳矩阵是对称的。
D.功率方程是从节点电压方程中推导得到的。
8.潮流计算的P—Q分解法是在哪一类方法的基础上派生而来的(C)A.阻抗法B.直角坐标形式的牛顿—拉夫逊法C.极坐标形式的牛顿—拉夫逊法D.以上都不是9.如果已知某一电力网有6个独立节点,其中1个平衡节点,3个PQ节点,2个PV节点,则以下说法不正确的是( D )。
A.其导纳矩阵为6阶。
B.其B'矩阵为5阶。
C.其B''矩阵为3阶。
D.其雅可比矩阵为6阶。
10.P—Q分解法和牛顿—拉夫逊法进行潮流计算时,当收敛到同样的精度时,二者的迭代次数是(A)A.P—Q分解法多于牛顿—拉夫逊法B.牛顿—拉夫逊法多于P—Q分解法C.无法比较D.两种方法一样4-2.填空1.用牛顿-拉夫逊法进行潮流计算是指(用牛顿-拉夫逊迭代法求解电力网的非线性功率方程组)。
国网考试之电力系统分析:第四章复习题---3页

第四章复习题一、选择题1、n节点电力系统中,PQ节点的数目为m,平衡节点的数目应为()。
A.n-m-1 B.n-m-2 C.1 D.可以为02、在电力系统潮流计算中,PV节点的待求量是()A.Q、δB.P、Q C.V、δD.P、V3、计算机解潮流方程时,经常采用的方法是()A.递推法B.迭代法C.回归法D.替代法4、潮流计算中的P-Q分解法是在哪一类方法的基础上简化来的()A.阻抗法B.直角坐标形式的牛顿——拉夫逊法C.高斯——赛德尔法D.极坐标形式的牛顿——拉夫逊法5、电力系统潮流计算时某物理量的单位为Mvar,则该量是( )A.有功功率B.无功功率C.视在功率D.有功电量6、在电力系统中平衡节点的数量( )A.必有一个B.是大量的C.少量或没有D.数量最多7、一般潮流分析中将节点分为几类( )A.四类B.三类C.二类D.一类8、潮流计算时,下列节点中,哪一类节点一般只有一个,且必需有一个( )A.PQ节点B.PU节点C.平衡节点D.QU节点9、用牛顿—拉夫逊法进行潮流计算时,线性修正方程求解的是()A.线路的功率B.节点的注入功率C.节点的电压值D.节点电压的修正量10、节点导纳矩阵为方阵,其阶数等于()A.网络中所有节点数B.网络中除参考节点以外的节点数C.网络中所有节点数加1 D.网络中所有节点数加211、潮流方程是( )A.代数方程B.微分方程C.代数方程组D.微分方程组12、计算潮流时牛顿—拉夫逊法与高斯—塞德尔法相比的主要优点是()A.对初值要求低B.占用内存少C.收敛性好,计算速度快D.复杂13、解潮流方程的方法是( )A.解析法B.数值方法C.手算法D.对数法二、判断题1、用牛顿—拉夫逊法进行潮流计算时,线性修正方程求解的是节点的电压值。
()2、同样的迭代次数,牛顿-拉夫逊法比PQ分解法精度高。
()三、填空题1、在计算机算法中,若PV节点的无功功率越限,则该节点应________________________。
电力系统暂态分析(第四章习题答案)

za + zb + zc Z2 Z1
Z1 za + zb + zc
Z2
Z2 Z1 za + zb + zc
其中: Z1 = za + a2zb + azc; Z2 = za + azb + a2zc
1) 当 za = zb = zc 时 , 非 对 角 元 素 Z1 = za 1 + a2 +
a = Z2 = 0,则三序分量可以解藕。
33 13 (6 + 6 ) − j(6 + 6 )
=
33
13
6 − 6 + j(− 6 + 6 )
1 j3
②各序分量解藕单独作用分别求解序电流
正序电流:
I1
=
E1 j2
=
(−
1 12
−
3 12)
−
3 j(12
+
3 12)
负序电流:
I2
=
E2 j2
=
(−
1 12
+
3 12)
−
3 j(12
−
3 12)
零序电压标幺值:
10
U(0) = 220/
= 0.0797 3
按等值电路可求得各側电流:
0.0787 I1 = −0.12+(−0.014)//0.244) = 0.748
0.244 I2 = I1 × ( − 0.014 + 0.244) = 0.794
I3 = I1 − I2 = −0.0455 电流有名值:
障时的正序、负序、零序等效电路; 解:正序: 负序:
零序:
第四章 电力系统静态稳定分析的基本概念与方法

9
三.单负荷无穷大系统的电压静态稳定
可知, 在电机机械力矩不变时. 感应电机的小扰动稳定性问题实质上可转化为电力系统 是否能维持一定的负荷母线电压水平,从而确保感应电机运行在图 10-3 中 0 s scr 的区 域,使 K s
dTs 0 的间题。由于电力系统的高 X / R 值,使节点电压主要和无功功率分布 ds
有关, 故下面先讨论感应电机的无功电压静特性, 然后再对单负荷无穷大系统讨论系统电压 稳定性间题。和功角静稳定问题相似,电压静稳定间题也可用代数判据判别。 由图 10-2 的感应电机简化等值电路, 可作出入 Te const . 时相应的无功电压 (Q U ) 曲线如图 10-4 所示。
图 10-4 感应电机无功电压静特性
EU U2 Q cos G X X P EU sin P T ( p.u.) G L m X
由于稳态运行时 QG QL ,故在不同 QL 水平下,系统的运行工作点设为 A , A ' , A '' 。 当 QL0 时,运行点 U 。在图 10- 5 中 QL 0 水平较低时, QL0 U 曲线和 QG U 曲线有 两个交点,其中在 A 点
11
三.单负荷无穷大系统的电压静态稳定
对于图 10-5(a)中单负荷无穷大系统,
图 10-5 单负荷无穷大系统电压静稳定 (a)系统图; (b) Q U 曲线
12
三.单负荷无穷大系统的电压静态稳定
设发电机电动势为 E (设 E const . )及线路电抗为 X (忽略线路电阻及分布电 客) ,受端母线电压为 U 0 。负荷无功功率-电压关系曲线可用图 10-5( b)中对应于不 同稳态 QL 0 水平的一族 QL U 静特性曲线表示。 机械力距负荷下的 QL U 的关系曲线可由 式(10-19)而定。
电力系统分析第四章-新

试确定当总负荷分别为400MW、700MW时,发电厂间功率
的经济分配(不计网损的影响)?
4.2 电力系统有功功率的最优分配
解:(1) 按所给耗量特性可得各厂的微增耗量特性为:
dF1 λ1 = = 0.3 + 0.0014PG1 dPG1 dF2 λ2 = = 0.32 + 0.0008PG2 dPG2 dF3 λ3 = = 0.3 + 0.0009PG3 dPG3
t
活、气象等引起,三次调频)
4.1 电力系统有功功率的平衡
2、有功平衡和频率调整: 根据负荷变动的分类,有功平衡和频率调整也相应分为三类: a. 一次调频:由发电机调速器进行; b. 二次调频:由发电机调频器进行; c. 三次调频:由调度部门根据负荷预测曲线进行最优分配。 ☆ 前两种是事后的,第三种是事前的。 ☆ 一次调频时所有运行中的发电机组都可以参加,取决于发 电机组是否已经满负荷发电,这类发电厂称为负荷监视厂; 二次调频是由平衡节点来承担;
有功功率电源的最优组合 有功功率负荷的最优分配
2、主要内容
要求在保证系统安全的条件下,在所研究的周期内,以小
时为单位合理选择电力系统中哪些机组应该运行、何时运行
及运行时各机组的发电功率,其目标是在满足系统负载及其 它物理和运行约束的前提下使周期内系统消耗的燃料总量或
总费用值为最少。
4.2 电力系统有功功率的最优分配
三次调频则属于电力系统经济运行调度的范畴。
4.1 电力系统有功功率的平衡
三、有功功率平衡和备用容量
1、有功功率平衡:
P
Gi
= PLDi + ΔPLoss,Σ
即保证有功功率电源发出有功与系统发电负荷相平衡。 2、相关的一些基本概念: 有功功率电源:电力系统各类发电厂的发电机; 系统电源容量(系统装机容量):系统中所有发电厂机组
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
但在实际求解过程中,由于求解的对象是电压,因此,实
际上不需要 2 N 个功率方程,对于 M 个 PQ 节点,有 2 M 个 功率方程( M 个实部有功功率方程,M 个虚部无功功率方程); 对于 N - M -1 个 PV 节点,由于电压有效值 U 已知,因此只有 N - M -1 个有功功率方程;对于平衡节点,由于电压和相 角已 知,不 需要功率方 程。因此 总计有2 M + N - M -1= N + M -1 个功率方程。如果电压相量用极坐标表示,即 ̇ U k = U k ∠ δ k ,则 M 个 PQ 节点有 2 M 个未知数( M 个电压有效值,M 个
假如全系统有 N 个节点,其中有 M 个 PQ 节点,N - M
-1 个 PV 节点,1 个平衡节点,每个节点有四个参数:电压幅 值 U 和相位角 δ (用极坐标表示电压,如果用直角坐标表示 电压相量则是 e 和 f )、注入有功功率 P S和无功功率 Q S , 任何一个节点的四个参数中总有两个是已知的,因此 N 个 节点,有 2 N 个未知变量,N 个复数方程(即 2 N 个实数方 程,实部和虚部各 N 个),通过求解该复数方程可得到另外 2 N 个参数。这就是潮流计算的本质。
假设支路的两个节点分别为 k 和 l ,支路导纳为 y kl , 两节点的电压已知,分别为 ̇U k和 ̇U l ,如图 4-1 所示。
图 4-1 支路功率及其分布
从节点 k 流向节点 l 的复功率为(变量上面的“ - ”表示 复共扼)
从节点 l 流向节点 k 的复功率为:
.
功率损耗为
因此,潮流计算的第一步是求解节点的电压和相位,根 据电路理论,可以采用节点导纳方程求解各节点的电压。
U = [ U 1 ,U 2 ,…,U N ] T 为各个节点的电压相量,
I S = [ I S 1 ,I S 2 ,…,I SN ]T为注入到各节点的总电流。
1. 节点功率方程 计算各节点电压,需要系统参数及节点导纳矩阵以及节
点注入电流源的电流。而电力系统中节点的注入电流未知, 已知的是各节点注入功率。因此需要将节点电压方程转化为 节点功率方程。
当然,PQ 节点和 PV 节点在一定条件下还可以互相转 化,例如,当发电机节点无法维持该节点电压,运行于功率 极限时,发电机节点的有功功率和无功功率变成了已知量, 而电压幅值则未知,此时,该节点由 PV 节点转化为 PQ 节 点。再比如某负荷节点运行要求电压不能越限,当该节点的 电压幅值达到极限,或电力系统调压要求该节点的电压恒定, 此时该负荷节点就由 PQ 节点转化为 PV 节点。
本章主要介绍电力系统节点功率方程的形成,潮流计算 的数值计算方法,包括高斯迭代法、牛顿拉夫逊法以及 PQ 解耦法等。介绍单电源辐射型网络和双端电源环形网络的潮 流估算方法。
4. 1 潮流计算方程———节点功率方程
4. 1. 1 支路潮流 所谓潮流计算就是计算电力系统的功率在各支路的分布、
各支路的功率损耗以及各节点的电压和各支路的电压损耗。 由于电力系统可以用等值电路来模拟,从本质上讲,电力系 统的潮流计算首先是根据各个节点的注入功率求解电力系统 各节点的电压,当各节点的电压相量已知时,就很容易计算 出各支路的功率损耗和功率分布。
潮流计算的本质是求解节点功率方程,系统的节点功率 方程是节点电压方程乘以节点电压。要计算各支路的功率潮 流,首先根据节点的注入功率计算节点电压,即求解节点功 率方程。节点功率方程是一组高维的非线性代数方程,需要 借助迭代的计算方法来完成。简单辐射型网络和环形网络的 潮流估算是以单支路的潮流计算为基础。
第4章 电力系统潮流分析与计算
4.1 潮流计算方程——节点功率方程 4.2 高斯—赛德尔迭代法 4.3 牛顿—拉夫逊法 4.4 PQ 解耦法 4.5 潮流计算的手工计算方法
电力系统潮流计算是电力系统稳态运行分析与控制的基 础,同时也是安全性分析、稳定性分析、电磁暂态分析的基 础(稳定性分析和电磁暂态分析需要首先计算初始状态,而 初始状态需要进行潮流计算)。其根本任务是根据给定的运 行参数,例如节点的注入功率,计算电网各个节点的电压、 相角以及各支路的有功功率和无功功率的分布及损耗。
.
4. 1. 2 节点功率方程 根据电路理论,求系统各节点的电压,需要利用系统的
节点导纳方程。 如图 4-2 所示的电网络,有 N 个节点,假如已知各节点
的注入电流源的电流,以及各支路的支路导纳,根据节点导 纳方程求出电网各节点电压
.
其中
.
图 4-2 电网络示意图
为电网络的节点导纳矩阵,Y kk ( k =1 ,2 ,… N )为自 导纳,是所有与 k 节点连接支路导纳之和,Y kl (k ≠ l )为互 导纳,是所有连接 k 和 l 节点的支路导纳之和的负值。
电压相角),N - M -1 个 PV 节点有 N - M -1 个未知数(电压有效
值已知,未知数为电压相角),平衡节点没有未知数,因此未 知数的个数也是 N + M -1 个,与方程数一致。如果复电压用 直角坐标表示,̇U k =e k + jf k ,则有 2 ( N -1 )个未知数,还需 要增加 N - M -1 个电压方程,即 ̇ U 2 k = e2k + f2k 。
式(4-4 )中第 k ( k =1 ,2 ,…,N )个节点的方程可Fra bibliotek表 示为.
式( 4-5 )两端乘以 U k ,得到
如果电力系统中各节点注入的复功率已知,那么就可以 用式( 4-6 )求解各节点电压。然而实际情况并非如此,已知 的条件是:有些节点注入的复功率 S 已知,有一些节点的电 压幅值和注入有功功率已知,有些节点电压和相角已知。根 据这三种不同的情况,电力系统中各节点分为三种类型: PQ 节点、 PU 节点和 Uδ 节点。
.
所谓 PQ 节点,就是该节点注入的复功率 S 是已知的, 这样的节点一般为中间节点或者是负荷节点。
PV 节点,指该节点注入节点的有功功率 P 和电压幅值 U 已知,这样的节点通常是发电机节点。
Vδ 节点指的是该节点的电压幅值和相角是已知的,这 样的节点通常是平衡节点,在每个局部电网中只有一个这样 的节点。