基因工程抗体

合集下载

基因工程抗体名词解释

基因工程抗体名词解释

基因工程抗体名词解释基因工程抗体是利用基因工程技术对人工合成抗体进行定制和改造的一种生物工程技术。

抗体是一种由免疫系统产生的蛋白质,它可以识别和结合体内外的异物,从而协助机体进行免疫防御。

基因工程抗体通过选择性克隆和定制抗体基因序列,可以产生特异性更强、稳定性更好、生产成本更低的抗体。

基因工程抗体包括以下几种:1. 单克隆抗体(Monoclonal Antibodies):基因工程技术可以使得单个淋巴细胞克隆产生大量相同的抗体,从而获得具有高度特异性的单克隆抗体。

这种抗体广泛应用于医学诊断、疾病治疗和科学研究等领域。

2. 重链抗体(Recombinant Antibodies):重链抗体是利用基因工程技术使抗体重链蛋白的编码基因与其他蛋白的编码基因相融合,生成融合抗体。

这种重链抗体可以通过改变其结构和功能来提高其生物活性和稳定性。

3. 组合抗体(Bispecific Antibodies):基因工程技术可以将两种不同的单克隆抗体的编码基因进行融合,产生具有双特异性的组合抗体。

这种抗体可以同时结合两个不同的目标分子,从而实现更强的疗效和更多样化的应用。

4. 人源化抗体(Humanized Antibodies):由于小鼠源抗体和人类抗体在体内效价和安全性方面存在差异,基因工程技术可以通过改造抗体的基因序列,使得抗体具有更接近人类抗体的结构和功能。

这种人源化抗体更适合在治疗和预防疾病时使用。

基因工程抗体的应用广泛,其中的一些常见应用包括:1. 肿瘤治疗:通过基因工程技术,可以定制针对特定肿瘤抗原的单克隆抗体,用于治疗癌症。

2. 自身免疫性疾病治疗:基因工程抗体可以定制具有特异性和高效的抗体,用于治疗自身免疫性疾病,如类风湿性关节炎和系统性红斑狼疮等。

3. 传染病治疗:通过基因工程技术,可以改造抗体的结构和功能,用于治疗传染病,如艾滋病、流感和乙肝等。

4. 分子诊断:基因工程抗体可以用于检测和诊断疾病,如癌症标志物的检测和感染性病原体的检测等。

基因工程制备抗体方案有哪些

基因工程制备抗体方案有哪些

基因工程制备抗体方案有哪些引言抗体是一种可以识别并结合特定抗原的蛋白质,具有重要的生物学功能和临床应用价值。

传统制备抗体的方法主要是从动物(如小鼠、兔子等)中提取抗体,但该方法存在一些缺点,如周期长、成本高、质量不稳定等。

因此,基因工程技术的发展使得制备抗体的方法得到了革命性的改变,可以通过基因工程技术在体外合成抗体,提高了抗体的质量和稳定性。

本文将介绍基因工程制备抗体的方法和流程,包括抗体的选择和克隆、表达、纯化和鉴定等环节。

通过基因工程方法获得的抗体,可以应用于药物研发、医学诊断、生物学研究等领域,具有广阔的应用前景。

1. 抗体的选择和克隆(1)抗原的选择制备抗体的第一步是选择合适的抗原。

抗原是引发免疫反应的物质,可以是蛋白质、多肽、多糖、药物等。

根据需要制备的抗体类型,可以选择相应的抗原。

例如,如果需要制备单克隆抗体,可选择单个抗原蛋白作为抗原进行制备。

(2)抗体基因的克隆在选择了合适的抗原后,下一步是将抗体基因克隆到表达载体中。

通常可以利用PCR方法从免疫细胞中扩增出抗体基因,并将其插入表达载体中。

选择合适的表达载体是非常重要的,通常选择在哺乳动物细胞或大肠杆菌中表达。

2. 抗体的表达(1)表达载体的构建在决定抗体表达载体后,接下来是进行表达载体的构建。

通常表达载体包括启动子、终止子、选择标记基因等,通过合成或限制性内切酶切割等方法将抗体基因插入表达载体中。

(2)转染和筛选将构建好的表达载体导入宿主细胞中,可以通过转染等方法实现。

转染后,需要进行筛选,筛选出表达抗体的稳定细胞株。

通常可以利用克隆技术选取高表达的细胞株。

3. 抗体的纯化(1)细胞培养和收获经过筛选的稳定细胞株可以进行大规模培养,收获细胞培养上清液。

(2)亲和层析纯化常用的抗体纯化方法包括亲和层析纯化。

可以利用蛋白A/G或其他具有特异性结合抗体的配体进行纯化。

通过这种方法可以高效地将目标抗体从细胞培养上清液中纯化出来。

4. 抗体的鉴定(1)免疫印迹(Western blot)通过Western blot方法,可以验证纯化得到的抗体是否具有结构完整,是否与目标抗原结合。

基因工程抗体的例子

基因工程抗体的例子

基因工程抗体的例子
基因工程抗体是通过基因重组技术将特定抗体基因导入至其他生物细胞中,使其具备产生抗体的能力,从而实现大规模生产高效、高纯度的抗体。

以下是一些基因工程抗体的例子:
1. 重组抗体药物:例如,重组人源单克隆抗体药物,如阿达木单抗(Adalimumab)和帕尼单抗(Panitumumab),用于治疗自身免疫疾病和某些癌症。

2. 基因工程抗体治疗疫苗:例如,COVID-19疫苗中使用的mRNA 疫苗,通过基因工程技术将病毒的抗原编码序列导入到人体细胞中,诱导免疫系统产生抗体来抵抗病毒感染。

3. 重组抗体诊断试剂:例如,基因工程技术可用于生产特定病原体抗体,如新冠病毒SARS-CoV-2抗体,用于开发快速诊断试剂盒,帮助早期检测和诊断疾病。

4. 基因工程抗体治疗:例如,CAR-T细胞疗法,通过基因工程技术将患者自身T细胞中的受体基因改造,使其能够识别和杀死癌细胞,用于治疗某些血液恶性肿瘤。

5. 基因工程抗体生产:基因工程技术可用于大规模生产特定抗体,如重组人源单克隆抗体,用于研究和治疗领域。

这些基因工程抗体的例子说明了基因工程技术在抗体研究、生产和
应用中的重要性和广泛应用性。

克隆抗体与基因工程抗体

克隆抗体与基因工程抗体
克隆抗体与基因工程抗体
• 克隆抗体的概念与历史 • 基因工程抗体的概念与历史 • 克隆抗体与基因工程抗体的比较
• 克隆抗体与基因工程抗体的应用 • 克隆抗体与基因工程抗体的未来发

01
克隆抗体的概念与历史
克隆抗体的定义
• 克隆抗体是指通过克隆技术获得的一组具有相同遗传特性的 单克隆抗体,这些抗体由单一的B细胞克隆产生,具有高度 均一性和特异性。
基因工程抗体的定义
基因工程抗体是指利用基因工程技术 ,在体外对抗体基因进行克隆、表达 和筛选,获得具有特定结构和功能的 抗体分子。
基因工程抗体可以通过重组DNA技术 ,将鼠源抗体的基因片段与人源抗体 基因片段进行拼接,形成嵌合抗体、 人源化抗体或完全人源抗体。
基因工程抗体的历史与发展
1
1986年,第一个鼠单克隆抗体被成功导入人体, 引发了单克隆抗体药物的研发热潮。
克隆抗体可用于诊断疾病,如免疫组化、酶联免疫吸 附试验等。
靶向治疗
克隆抗体可与特定抗原结合,用于癌症、自身免疫性 疾病等的靶向治疗。
免疫疗法
克隆抗体可用于免疫疗法,如阻断免疫反应或激活免 疫系统。
基因工程抗体在医疗领域的应用
人源化抗体
通过基因工程技术将鼠源抗体的可变区与人抗体的恒定区结合,形 成人源化抗体,降低免疫排斥反应。
免疫原性。
完全人源抗体
利用人类免疫系统产生的抗体基因, 通过基因工程技术构建的抗体分子,
具有最低的免疫原性。
人源化抗体
将鼠源单克隆抗体的可变区与人源抗 体可变区进行拼接,进一步降低了免 疫原性。
抗体药物
将单克隆抗体与药物结合,形成具有 治疗作用的抗体药物,如免疫毒素、 放射性核素等。
03

单克隆抗体和基因工程抗体

单克隆抗体和基因工程抗体

疾病诊断和治疗
基因工程抗体可以用于疾病的 诊断和治疗,如肿瘤免疫治疗 、自身免疫性疾病治疗等。
药物研发
基因工程抗体可以作为药物研 发中的靶点筛选、药物设计和 优化等环节的重要工具。
基因工程抗体的优缺点
优点
基因工程抗体具有高度的特异性和亲和力,能够针对特定抗原进行高灵敏度检测和靶向治疗;同时, 基因工程抗体可以通过基因工程技术进行改造和优化,提高其稳定性和功能。
抗体的分类和发展历程
天然抗体
由免疫系统自然产生的抗体,类型多样,特异性各 异。
单克隆抗体
通过杂交瘤技术制备的单一抗体,具有高度特异性 ,可用于治疗和诊断。
基因工程抗体
利用基因工程技术改造的抗体,如人源化抗体、小 分子抗体等,具有更好的治疗潜力和应用前景。
抗体的分类和发展历程
单克隆抗体技术最初诞生于20世纪70年代,由两位科学家Kohler 和Milstein发明。该技术通过将具有特定抗体的B淋巴细胞与骨髓 瘤细胞融合,形成杂交瘤细胞,进而筛选出能够持续稳定产生单 一抗体的细胞系。单克隆抗体在临床治疗和诊断领域发挥了重要 作用,如治疗癌症、自身免疫性疾病等。
100%
生物治疗
用于治疗肿瘤、自身免疫病、感 染性疾病等,通过与药物结合或 直接作用于靶点发挥作用。
80%
免疫学研究
用于研究免疫应答机制、细胞信 号转导等。
单克隆抗体的优缺点
优点
高度特异性、易于制备和纯化、 可大量生产、稳定性好等。
缺点
制备过程复杂、成本高、可能引 发免疫反应等。
03
基因工程抗体
挑战
机遇
单克隆抗体和基因工程抗体的研发和生产成 本较高,同时存在免疫原性和副作用等问题, 需要进一步研究和改进。

基因工程抗体检测原理及方法

基因工程抗体检测原理及方法

基因工程抗体检测原理及方法基因工程抗体检测原理及方法,说起来很高大上,实际上它就是通过一种“魔法”般的方式,帮助我们在看不见的细微世界里找到病原、毒素,甚至是我们身体里面的某些小小的异常。

可能你会想:“这和咱平常看电视或者做菜有什么关系?”别急,先听我慢慢给你解释清楚。

基因工程抗体呢,就像是一个超级侦探,它们被设计得既聪明又灵敏,能专门识别特定的“罪犯”——那些坏东西,比如病菌或者病毒。

咱们身体里有好多的细菌、病毒,有时候它们偷偷摸摸地潜伏在你身体的某个角落,咱不小心就被它们坑了。

但这个侦探不一样,经过基因工程的“训练”后,它们就变得无比精准,可以在你根本没有感觉到的情况下,找到这些潜在的“坏蛋”。

神奇吧?基因工程抗体的工作原理并不复杂。

大家都知道,抗体就像是我们体内的防卫队员,它们专门打击入侵者。

现在,科学家通过基因工程技术,把这些抗体“升级”了,赋予它们更多的能力,使它们变得更加专一,能精准地识别和结合某一种特定的物质。

就像你找一个人帮你做事,他只做你交代的任务,不做其他的,那效率多高!这时候,这些改造过的抗体就变成了超级特工,能在检测过程中迅速锁定目标,准确地告诉我们有没有问题。

有了这群聪明的侦探,咱们在做抗体检测时,效率自然提升了。

举个简单的例子,就像是你把一堆资料扔到桌子上,随便翻翻就能找到你要的那个文件。

原来那些复杂的检验流程,现在通过基因工程抗体的辅助,变得更加简便高效。

咱们通常会用抗体检测来检测体内是否有病原,比如艾滋病、乙肝、结核等,甚至是一些新型病毒,比如新冠病毒。

也就是说,通过这种技术,你基本上能迅速判断你的身体状况,这比盲目去医院检查好多了。

没错,这就是它的魔力——通过高科技手段,快速找出问题,不让坏东西趁虚而入。

方法上呢,通常咱们会用到几种手段来实现抗体检测。

常见的比如免疫层析法、酶联免疫吸附法等等。

听上去可能有点拗口,但实际上就是通过把特制的抗体和样本结合,看看会不会发生反应。

基因工程抗体制备原理

基因工程抗体制备原理

基因工程抗体制备原理
1. 靶抗原选择:根据需要制备的抗体的特定功能和应用领域,选择合适的靶抗原。

靶抗原可以是纯化的蛋白质,细胞表面分子等。

2. 基因克隆:将靶抗原的基因序列克隆到适当的表达载体中,例如质粒或病毒载体。

这个过程通常涉及使用限制性内切酶切割目标基因和载体,并通过DNA连接酶将它们连接起来。

3. 转染宿主细胞:将重组载体导入宿主细胞,使其表达靶抗原基因。

可以使用多种方法进行转染,包括电穿孔、高压转染或病毒介导的转染。

4. 细胞培养与表达:培养被转染的宿主细胞,在适当的培养基中表达靶抗原。

这些细胞通常是哺乳动物细胞,如CHO细胞。

5. 抗体纯化:通过多种分离技术将抗体从培养物中纯化出来。

常用的纯化方法包括亲和层析、离子交换层析、凝胶过滤层析等。

6. 抗体测试和鉴定:通过各种实验方法,如ELISA、Western blot等,验证所制备的抗体的特异性和相关功能。

基因工程抗体制备利用了基因重组技术和细胞工程技术,能够高效、精确地制备特定的抗体,具有广泛的应用前景。

基因工程抗体名词解释

基因工程抗体名词解释

基因工程抗体名词解释
基因工程抗体是由人工合成或修改的基因来产生的抗体,也称为重组抗体。

与传统的抗体不同,基因工程抗体不受限于动物来源,可以通过人工合成的方式来获得。

基因工程抗体的制备过程包括选择目标抗原、构建重组抗体基因、转染宿主细胞、高效表达和纯化等步骤。

因为基因工程抗体可以定制化地设计和制备,具有高度特异性和亲和力,因此在生物医学研究、临床诊断和治疗等方面具有广泛的应用前景。

常见的基因工程抗体包括单克隆抗体、人源化抗体、嵌合抗体和重组抗体等。

其中,单克隆抗体是指由单一克隆细胞产生的抗体,具有高度特异性和一致性;人源化抗体是将动物源的抗体人源化,避免了人体免疫系统对异种抗体的攻击;嵌合抗体是将两种或以上不同来源的抗体结合起来产生的新型抗体,具有更广泛的抗原覆盖范围和高亲和力;重组抗体则是根据目标抗原的结构和性质,设计并合成新的抗体基因来产生新型抗体,具有更高的特异性和亲和力。

基因工程抗体的发展将会在生物医学领域带来更多的应用和发展机会,同时也将推动基础研究和药物研发的进步。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

四.超变区多肽
抗体抗原结合是经过补体决定区(CDR)来 实现。因此,CDR是构成抗原抗体结合的最小 结构单位。根据这一特点,可以设计出那些 在抗原识别及亲和力方面有重要意义的CDR多 肽,直接用于诊断或治疗,可望获得理想的 结果。这种只含有一个CDR多肽的抗体,称为 超变区多肽,亦称为最小识别单位(minimal recognition unit, MRU)。
如:免疫分子检测; 免疫导向药物治疗恶性肿瘤 --- McAb抗癌药物(毒素或 放射核素偶联)。
多克隆抗体与单克隆抗体的比较
多克隆抗体
单克隆抗体
来源 动物免疫血清、恢复期病人血 多为鼠源性 清或免疫接种人群
特点 来源广泛、制备容易
纯度高、特异性强、效价高、少 或无血清交叉反应
组成 针对不同抗原表位的抗体的混 针对单一表位,结构和组成高度
HV sequences contact the antigen.
epitope
Ig胚系基因结构特点
在Ig分子多肽 链中,κ型、λ 型轻链和Ig的 重链分别写作 Igκ、Igλ和IgH ,基因依次写 作IGK、IGL和 IGH,其分别 位于第2、22 和14号染色体 上。
13
重链: 位于14号染色体,可分为4组
甚少 3.生产成本高,难于普及应用
人杂交瘤技术未获真正突破原因:融合率低、 建株难、不稳定、产量低、人体不能随意 免疫
新思路:尽量减少抗体中的鼠源成分,但又 尽量保留原有的抗体特异性。
基因工程抗体:根据研究者的意图,采用基 因工程方法,在基因水平,对免疫球蛋白 基因进行切割、拼接或修饰后导入受体细 胞进行表达,产生新型抗体,主要包括嵌 合抗体、人源化抗体、小分子抗体、抗体 融合蛋白和双特异性抗体。
ScFv应用: 用于肿瘤的导向治疗 肿瘤的影像分布 基因治疗 研究基因结构与功能的关系
小分子抗体
2 1
3
I Fab antibody molecule
Pr VH CH1
Pr
VL CL
免疫球蛋白 基因载体的构建
H链表达载体
L链表达载体
共转染细胞
Fab 抗体分子的制备
抗体分泌细胞
VH
VL
CH1 -S-S- CL
提高抗体效应功能
双特异性抗体
抗体融合蛋白
提高抗体 效应功能
细胞内抗体
偶连细胞毒物质
双特异性抗体
抗原A
VH
抗原B
VL
Fab
VH
VL
CH1 -S-S-
-S-S- CH1
Fv
VH
VL
抗原A
VH CH1
-S-S-
抗原B
VL -S-S- CH1
TUMOR CELL
CTL
CD3
制备双特异性抗体的方法主要有3种:
合物
均一,抗原特异性及同种型一致
应用 缺点
疾病的被动免疫治疗
疾病诊断、特异性抗原或蛋白的 检测和鉴定、疾病的被动免疫治 疗和生物导向药物制备
特异性不高、易发生交叉反应, 人体应用后可导致人鼠抗体反应 不易大量制备
单抗体内应用和疗效受限原因:
1.鼠源性单抗对人体有较强的免疫原性 2.注入人体的单抗在肿瘤部位的摄取量
C区编码基因: C (1); C(4)
15
二、细胞工程抗体和基因工程抗体
抗体技术的发展经历了三个阶段
第一代:多克隆抗血清 第二代:细胞工程抗体 第三代:基因工程抗体
1890年Behring和北里柴三郎等人发现白喉抗毒素, 并建立了血清疗法,开抗体制药之先河。
1937年Tiselius等人用电泳法将血清分为白蛋白、 甲种(α)球蛋白、乙种( β )球蛋白、丙种( γ ) 球蛋白,并证明抗体活性主要存在于丙种球蛋白 组分。
特点:具有高度均一性。
杂交瘤细胞:
骨髓瘤细胞 --- 无限增殖; 免疫B细胞 --- 合成、分泌特异性抗体。 杂交瘤技术 --- HAT培养基:次黄嘌呤(H), 氨 基蝶呤(A)和胸腺嘧啶核苷(T)。
单抗制备的流程图
实际意义:
(1)抗原的纯化和结构分析; (2)细胞发生、分化及功能的阐明; (3)临床疾病的诊断和治疗,
基因工程抗体
医学院免疫学研究所 王嘉宁
Emil von Behring, 1901, antitoxins
Paul Ehrlich , 1908, production of antibody
Georeges Kohler and Cesar Milstein, 1984, monoclonal antibody
在这些杂化抗体分子中,只有LH-GK配对的才 是所需的双功能抗体分子。
(2)化学交联法:Nisonoff和Rivers最早 从事这方面的研究。化学交联的方法无需 经过细胞融合,所以比较简便易行。
通常利用重链与轻链这间的二硫链经还 原和再氧化,将两种不同特异性抗体的半 分子结合在一起。或用双功能交联剂,如 邻苯酸酯等,把两个抗体半分子交联在一 起。
(1)预防、治疗感染性疾病, 如:破伤风抗毒素血清 抗破伤风, 胎盘球蛋白 抗病毒感染等, 副作用: 超敏反应。
(2)临床诊断, 如:肥达氏反应 --- 伤寒、副伤寒, 缺点:特异性差。
2、单克隆抗体(monoclonal antibody, McAb)
由单一克隆B细胞杂交瘤产生的,只识别抗 原分子某一特定抗原决定簇的特异性抗体。
CDR序列
CDR序列
鼠单克隆抗体
人抗体
人源化抗体
鼠单克隆V区人源化(CDR移植)
小分子抗体
人源化抗体属完全的抗体分子。通过 基因重组技术,可以在保持原有抗原结合 活性的基础上,把完整的抗体分子改造成 较小的分子,称为小分子抗体。
根据其价数的不同可分为单价小分子 抗体及多价小分子抗体。
单价小分子抗体
用于制备双功能抗体的Mab可以是完整 分子,也可是经胃酶水解获得F(abˊ)2 片段。后者在减少鼠源免疫原性方面,效 果较好。
(3)利用基因工程技术将两套重轻链基因 导入骨髓瘤细胞或传染瘤细胞中。
这种方法制备的双功能抗体可选择合 适的稳定区和合适的类及亚类,而得到较 好的产量较高的双功能抗体。由于只有较 少的嵌合导入并整合到宿主基因组,故传 染瘤细胞更为稳定,染色体不易丢失
在嵌合抗体的基础上进一步将鼠 MAb 可 变 区 中 相 对 保 守 的 FR(framework region) 替 换 成 人 的 FR,保留与抗原结合部位决定簇互 补 区 ( complement determinant region)部位 (即CDR移植)
早期的改型抗体:
简单的CDR移植,通过点突变进行 微调即更换某个位点上的氨基酸。
(1)杂化杂交瘤技术:将具有某种特异性 (如抗瘤细胞)的Mab细胞株与具有抗第二 抗原(如蓖麻毒蛋白)的小鼠脾细胞进行 融合,即产生出杂化杂交瘤细胞株的二价 瘤体。
它们分泌的是重链、轻链被杂化的抗体分子,有 10种形式: 重链、轻链都无改变,保持原特异性的配对抗 体分子: LH-HL,KG-GK 重链特异性相同的配对抗体分子: LH-HK,KH-HK KG-GL,LG-GL 重链、轻链特异性不同的配对抗体分子: LH-GK,LH-GL KH-GL,KH-GK
1975年Köhler and Milstein等首次利用B淋巴细胞 杂交瘤技术制备出单克隆抗体 (monoclonal antibody, MAb)。
1994年基因工程抗体。
1、多克隆抗体(polyclonal antibody; PcAb)
多价抗原
多个克隆 (致敏的B细胞)
多克隆抗体
实际意义
免疫粘附素(immunoadhension) :将人抗体
恒定区(主要是Fc段)N-端连接于人细胞表面的受体 分子或细胞粘附分子上,在真核细胞中表达出正确 折叠的融合抗体蛋白分子,这种分子可同时发挥抗 体的效应功能及其它相应的效应功能,这种分子又 被称为新效能抗体。
Fab 抗体分子的制备
II Fv antibody molecule
(1) ds-Fv
Pr VH
Pr VL
分别构建载体
L链表达载体
H链表达载体
共转染细胞 Fv [二硫键稳定的Fv (disulfide-stabilized Fv,ds-Fv)]小分子抗体的制备
抗体分泌细胞
VH
VL
-S-S-
Fv小分子抗体的制备
V区编码基因: VH (可变区) ----- 48 DH (多样性区) ----- 23 JH (连接区) ----- 6
C区编码基因: CH (恒定区): Cμ, Cδ, Cγ等10个片段

14
轻链(--2号染色体, --22染色体)
V区编码基因: ---- V, J --- 40, 5 ---- V, J --- 30, 4
1986
ReoPro
心绞痛
1994
Rituxan
B细胞非霍奇金淋巴瘤
1997
Zenapax
移植排斥
1997
Simulect
移植排斥
1998
Synagis
婴儿呼吸道合胞病毒
1998
Remicade 类风湿关节炎
1998
Herceptin 乳腺癌
1998
Mylotarg 急性复发性髓性白血病
2000
Campath-1H 难治性慢性淋巴细胞白血病 2001
formation of the Ag binding site
antibody
antigen antigen-antibody complex:
purple : HV CDR ( in both the ribbon and ball and stick views)
相关文档
最新文档