电压波动和闪变

合集下载

经常被混淆的电压波动与电压闪变

经常被混淆的电压波动与电压闪变

经常被混淆的电压波动与电压闪变
电压闪变与波动,两个形影不离的兄弟,经常一起出现在我们的视野中。

闪变外向,我们可以从外表觉察到它的变化,而波动则偏内向,心理活动丰富。

除此以外,它们之间还有什幺不同之处呢?
 一、电压波动的概念及计算方式
 电压波动是指电网内电压有规则的变动,或是变化幅度倍数在0.9~1间的
随机变化。

电压波动可以通过电压方均根值曲线来描述,电压变动d和电压电压变动频度r则是衡量电压波动大小和快慢的指标。

电压波动d的定义表
达式为
 二、电压闪变的概念及计算方式
 闪变是人眼对灯光亮度变化所引起刺激的不稳定感。

即,人对亮度变化的不适感。

闪变严重度则由UIE-IEC闪变测量方法定义,以参数、评估闪变烦扰强度。

 其中,短闪变是衡量短时间(目前若干分钟)内闪变强弱的一个统计量值,基本记录周期为10min;长闪变则由短时间闪变值推算出,反映长时间(若
干小时)闪变强弱的量值,其基本记录周期为2h。

 根据IEC 61000-4-5:1996制造的IEC闪变测试仪是目前国际上通用的测量闪变的仪器,其简化原理框图如图1所示。

 图1 闪变测试仪简化原理框图
 “平方一阶滤波”输出的反映了人的视觉对电压波动瞬时闪变感觉水平,进。

电压波动与闪变

电压波动与闪变

配电网闪变监测:EN50160
IEC61000-3-11:2000。
对额定电流为16A至75A的设备在低压供电系统中产生的电压波动和闪变的限制
中、低压电网(35kV以下)的闪变限制标准:EN50160:1999。 中、高压电网(35kV以上)的闪变技术报告:IEC61000-3-7。
电压源 闪变仪
EUT 被测设备
或电压幅值不超过0.9~1.1的一系列随机变化。
闪变:人眼对照度波动的一种主观感觉。
如果电压幅值变化达到0.5%,每秒钟6到8次,将引起明显的闪变。 闪变算法:由IEC61000-4-15标准定义。由统计学上的“灯-眼-脑”模 型计算,该模型反映了大多数人如何受闪烁的白炽灯影响。 波动与闪变测量的分类范围:电压有效值的变动范围在±10%之内。
起重机:配电网电压波动与闪变
基本测量:
Pst:10分钟短时闪变。1.0的读数将引起50%的人能感觉到的闪变。 Plt:2小时长时间闪变的统计描述。
F430:提供瞬时闪变(PF5)的趋势图
通过比较瞬时闪变(PF5)的趋势与电压、电流有效 值趋势的关系,可以查明导致闪变现象的电压事件。 电弧炉:配电网电压波动与闪变
● 电压波动与闪变并不会影响电气设备(如计算机及控制设备、电动机等)的正常工作。 但其引发的照明灯光闪烁现象,可能会刺激人的视感神经。
2 电气测量技术基础知识与应用 2007年9月
Company Confidential
电压波动与闪变:测量内容与限值
测量项目(IEC61000-4-15)
[电压变动] •Dc:相对的稳态电压变动 •Dmax:最大相对电压变动 •d(t):相对的电压变动 [闪变] •Pst:短时间闪变,观测时间为10分钟。 •Plt:长时间闪变值,观测时间为2小时。 由12个短时闪变值 “Pst”来计算。

电力系统中的电压波动与闪变分析

电力系统中的电压波动与闪变分析

电力系统中的电压波动与闪变分析随着社会的发展和人们对电能的需求日益增长,电力系统的稳定运行成为当代社会的关键问题之一。

在电力系统中,电压波动和闪变是影响电网质量的两个重要指标。

本文将从发生原因、影响和监测方法等方面,对电压波动和闪变进行深入分析。

一、电压波动的发生原因及其对电力系统的影响电压波动是指电网的电压值在一段时间内发生周期性变化或剧烈变化的现象。

其主要原因可以归结为负载变化、电源设备故障、电网故障以及不良的电能质量等。

其中,负载变化包括电力系统内部负载波动和连接到电网中的各种设备的负载波动。

电源设备故障主要指发电机、变压器等电力系统核心设备的故障导致的电压波动。

而电网故障则是由于输电线路、开关设备等发生故障造成的。

电压波动对电力系统的影响是多方面的。

首先,电压波动会引起设备工作的不稳定,甚至会导致设备的损坏。

其次,电压波动还会对电力系统内的其他设备产生连锁反应,从而引发更大范围的故障,严重影响电网的安全稳定运行。

此外,电压波动还会对用户的电子设备产生不利影响,如导致计算机死机、数据丢失等。

二、电压闪变的发生原因及其对电力系统的影响电压闪变是指电网的电压在短时间内发生剧烈变化的现象,其主要原因包括突然的负载变化、电源故障、电弧炉、电动机启动等。

与电压波动相比,电压闪变对系统的影响更为剧烈。

电压闪变对电力系统的影响主要体现在以下几个方面。

首先,电压闪变会导致设备的故障和损坏,尤其是对于对电压波动和闪变较为敏感的设备,如电子设备和精密仪器。

其次,电压闪变还会造成系统负荷的不稳定,从而影响到电网的供需平衡,甚至引发不对称工作,导致更大的电力系统故障。

三、电压波动和闪变的监测方法和解决方案为了确保电力系统的稳定运行,减少电压波动和闪变对设备和用户的负面影响,需要采用科学的监测方法和相应的解决方案。

1.监测方法目前,常用的电压波动和闪变监测方法包括采用数字记录仪、负载模拟法和数学建模等。

数字记录仪是一种高精度的仪器设备,能够实时记录电压的变化情况,并生成相应的波形图和统计图,以供后续分析和处理。

电能质量指标的标准

电能质量指标的标准

电能质量指标的标准电能质量是指电能供应系统在正常运行时,能够满足用户对电能的质量要求。

电能质量的好坏直接关系到电能的安全、可靠和经济使用,也直接影响到电能用户的生产、生活和环境。

因此,电能质量的评价和监测是非常重要的。

而电能质量指标的标准,则是对电能质量进行评价和监测的基础。

电能质量指标的标准主要包括以下几个方面:1. 电压波动和闪变。

电压波动是指电压在较短时间内的变化,通常由于负荷变化或故障引起。

电压波动会对电能设备的正常运行造成影响,严重时甚至会导致设备损坏。

因此,电压波动的标准是对电压波动进行限制,以保证设备的正常运行。

闪变是指电压的瞬时变化,通常由于大功率负载突然投入或退出引起。

闪变会导致光源的明暗变化,影响工作环境和生产效率。

因此,闪变的标准是对闪变进行限制,以保证光源的稳定和工作环境的舒适。

2. 频率偏差。

电能系统的频率应该是稳定的,频率偏差会导致电能设备的不稳定运行,甚至损坏。

因此,频率偏差的标准是对频率偏差进行限制,以保证电能系统的稳定运行。

3. 谐波含量。

谐波是指在电能系统中频率是基波频率整数倍的波动,谐波会导致电能设备的损坏和能效降低。

因此,谐波含量的标准是对谐波进行限制,以保证电能设备的正常运行和能效。

4. 电能质量的标准制定和实施。

电能质量指标的标准制定应该充分考虑电能用户的需求和电能供应系统的特点,同时结合国际标准和国内实际情况,制定合理的标准。

标准的实施需要相关部门和电能供应企业的配合,同时需要加强对电能质量的监测和评价,及时发现和解决问题。

总之,电能质量指标的标准是保证电能质量的重要保障,标准的制定和实施对于提高电能质量、保障电能用户的利益和推动电能行业的发展都具有重要意义。

希望各相关单位和部门能够重视电能质量指标的标准,共同努力,为提高电能质量做出更大的贡献。

如何区分电压波动与电压闪变

如何区分电压波动与电压闪变

如何区分电压波动与电压闪变电压闪变与波动,两个形影不离的兄弟,经常一起出现在我们的视野中。

闪变外向,我们可以从外表觉察到它的变化,而波动则偏内向,心理活动丰富。

除此以外,它们之间还有什么不同之处呢?一、电压波动的概念及计算方式电压波动是指电网内电压有规则的变动,或是变化幅度倍数在0.9~1间的随机变化。

电压波动可以通过电压方均根值曲线)t (U 来描述,电压变动d 和电压电压变动频度r 则是衡量电压波动大小和快慢的指标。

电压波动d 的定义表达式为%100d ⨯∆=N U U 二、电压闪变的概念及计算方式闪变是人眼对灯光亮度变化所引起刺激的不稳定感。

即,人对亮度变化的不适感。

闪变严重度则由UIE-IEC 闪变测量方法定义,以参数)(st P 、)(lt P 评估闪变烦扰强度。

其中,短闪变)(st P 是衡量短时间(目前若干分钟)内闪变强弱的一个统计量值,基本记录周期为10min ;长闪变)(lt P 则由短时间闪变值)(st P 推算出,反映长时间(若干小时)闪变强弱的量值,其基本记录周期为2h 。

根据IEC 61000-4-5:1996制造的IEC 闪变测试仪是目前国际上通用的测量闪变的仪器,其简化原理框图如图1所示。

图1 闪变测试仪简化原理框图“平方一阶滤波”输出的)(t S 反映了人的视觉对电压波动瞬时闪变感觉水平,进入“在线统计评价的)(t S 值是使用积累概率函数CPF 的方法进行分析(具体见GBT 12326-2008 电能质量电压波动和闪变),如图2所示,做出CPF 曲线。

图2 CPF 曲线由CPF 曲线获得短时间闪变值5010311.0st 08.028.00657.00525.00314.0P P P P P P ++++=,1.0P 、1P 、3P 、10P 、50P 分别为CPF 曲线上等于0.1%、1%、3%、10%、50%时间的)(t S 值。

长时间闪变严重度的观测时间为T short 的整数倍N ,N=12,观测时间为2h ,由12个短时间闪变严重度值()(st P )计算, =lt P 31i 3sti 1∑=N N P三 、动和闪变的危害表现在以下五点:● 照明灯光闪烁,引起人的视觉不适和疲劳,影响工效;●电视机画面亮度变化,垂直和水平幅度摇动;● 电动机转速不均匀,影响产品质量;● 使电子仪器、电子计算机、自动控制设备等工作不正常;● 影响对电压波动较敏感的工艺或试验结果。

电压波动与闪变

电压波动与闪变
问题提出:如何用数学方法表述闪变视感。 基本思路:用5条直线(即5个典型环节的传递函数)和渐 近线进行逼近,描述视感度频率特性。模型和系数如下:
4.4 闪变的评估方法
一、电压波动的起因和危害 起因:电弧炉、轧钢机等大功率波动性负荷引起的。 危害:工业生产、居民生活等,同时产生谐波等干扰。
二、闪变评估和干扰限值 1、短时间闪变值Pst (统计时间10min)确定方法如下:
4.5 电弧炉用电特征分析
二、电弧炉运行的电气特性 4)电弧炉负荷情况复杂,影响因素多,不同运行工况电流、
三、电压波动限值
国标规定:P93表4-1。电弧炉引起的电压波动最严重,标 准条款一般是针对电弧炉负荷制定的。
4.3 闪变
一、基本概念与定义 电压波动造成灯光闪烁的专业术语称为闪变。 因此闪变是电压波动引起的有害结果,是人对照度波动的
主观视感反映,闪变本身不属于电磁现象。 人对闪变感受与电压波动的幅值和频度有关。 闪变程度是对观察者进行视感调查、统计的结果。
第四章 电压波动与闪变
4.1 基本概念
一、有效值电压的变动
理想供电系统(PCC 点Sd 无穷大,等值 Z零)电压恒定不 变。实际电压偏离标称值的现象称电压变动。这里强调有效值
电压变动(以区别瞬时电压变动): d U1 U2 100 %
UN
几个概念:相对稳态电压变动值dc 、相对动态电压变动值 dd 、相对最大电压变动值dmax:参见图4-1所示。
1)闪变干扰的传递:高电压级向中、低电压级的传递系数 等于 0.8-1;中、低电压级向高电压级的传递系数等于 0;同电 压级相邻母线间的传递需通过计算决定。
2)闪变允许值、兼容值、规划值:允许值指负荷产生闪变 的限值;兼容值指遭受干扰设备的安全限值;规划值指对高中

电压波动和闪变

电压波动和闪变

对国家相关电能质量标准的理解与综述1 电压波动和闪变范围本标准适用于交流50Hz 电力系统正常运行方式下,由波动负荷引起的公共连接点电压的快速变动及由此可能引起人对灯光闪烁明显感觉的场合。

1.1 定义:(1)电压波动(voltage fluctuation )电压方均根值(有效值)一系列的变动或连续的改变(2)电压方均根值曲线R.M.S. voltage shapeU (t )每半个基波电压周期方均跟值(有效值)的时间函数(3)电压变动relative voltage changed电压方均根值曲线上相邻两个极值电压之差,以系统标称电压的百分数表示。

(4)电压变动频度rate of occurrence of voltage changesr单位时间内电压变动的次数(电压由大到小或由小到大各算一次变动)。

不同方向的若干次变动,如间隔时间小于30ms ,则算一次变动。

1.2电压波动的测量和估算电压波动可以通过电压方均根值曲线U (t )来描述,电压变动d 和电压变动频度r 则是衡量电压波动大小和快慢的指标。

电压变动d 的定义表达式为: %100⨯∆=NU U d 式中:△U----电压方均根值曲线上相邻两个极值电压之差。

U N ----系统标称电压。

当电压变动频度较低且具有周期性时,可通过电压方均根值曲线U (t )的测量,对电压波动进行评估。

单次电压变动可通过系统和负荷参数进行估算。

当已知三相负荷的有功功率和无功功率的变化率分别为△P i 、 △Q i 时,可用下式计算: %1002⨯∆+∆=Ni L i L U Q X P R d 式中R L 、X L 分别为电网阻抗的电阻电抗分量。

在高压电网中,一般X L >> R L 则式中:S SC ---考察点(一般为PCC )在正常较小方式下的短路容量。

在无功功率的变化量为主要成分时(例如大容量电动机启动),可采用以下两式进行粗略估算对于平衡的三相负荷:%100⨯∆≈sci S S d 式中:△S i ---三相负荷的变化量。

电压波动与闪变

电压波动与闪变

电压波动与闪变电压波动与闪变一、电压波动与闪变的定义电压波动就是电压均方根值一系列相对快速变动或连续改变的现象,其变化周期大于工频周期(20ms)。

电压波动造成灯光照度不稳定(灯光闪烁)的人眼视感反应称为闪变,换言之,闪变反映了电压波动引起的灯光闪烁对人视感产生的影响;电压闪变是电压波动引起的结果,它不属于电磁现象。

电压闪变与常见的电压波动不同。

(1)电压闪变是指电压形上一种快速的上升及下降,而波动指电压的有效值以低于工频的频率快速或连续变动。

(2)闪变的特点是超高压、瞬时态及高频次。

如果直观地从波形上理解,电压的波动可以造成波形的畸变、不对称,相邻峰值的变化等,但波形曲线是光滑连续的,而闪变更主要的是造成波形的毛刺及间断。

二、电压波动与闪变的检测方法由于电压波动是电压有效值的快速变动,它的波形是工频电压的调幅波。

因此,闪变测试首先是通过检波的方法将波动信号从工频电压中分离出来。

目前国内外电压波动的检测方法有三种,即平方检测、整流检测和有效值检测。

对三种检测方法,论文予以分析、比较,最终确定选用平方检测法的改进法,即本文采用同步电压和小波多分辨率分析检测电压闪变信号。

并对小波分解和同步检波对波动信号的检测文中加以说明。

常用的几种闪变仪中电压波动的检测方法,可归结为由上式解调出调幅波v = mcos ?t,介绍如下。

2.1 平方检波法IEC 推荐的闪变仪采用平方检测方法,即由u (t)、u (t)2和v (t)的波形图例,如图3-1 所示。

经过0.05~35Hz 的带通滤波器滤去直流分量和工频及以上的频率分量,便可以检测出调幅波即电压波动分量,其输出2.2 整流检波法英国ERA 闪变仪采用整流检测的方法。

图3-2(a)所示的电压u ( t )经过整流的波形g ( t )如图3-2(c)所示。

理论上,将g(t)可看成u(t)乘以幅值为±1、频率为工频的矩形波p(t)。

p(t)的波形图如图3-2(b)所示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电能质量电压波动和闪变Power quality—Voltage fluctuation and flickerGB12326—2000代替GB12326—1990前言本标准是电能质量系列标准之一,目前已制定颁布的电能质量系列国家标准有:《供电电压允许偏差》(GB 12325—1990);《电压允许波动和闪变》(GB 12326—1990);《公用电网谐波》(GB/T 14549—1993);《三相电压允许不平衡度》(GB/T 15543—1995)和《电力系统频率允许偏差》(GB/T 15945—1995)。

本标准参考了国际电工委员会(IEC)电磁兼容(EMC)标准IEC 61000-3-7等(见参考资料),对国标GB 12326—1990进行了全面的修订。

和GB 12326—1990相比,这次修订的主要内容有:1)将系统电压按高压(HV)、中压(MV)和低压(LV)划分,分别规定了相关的限值,以及对用户指标的分配原则。

2)将国标中闪变指标由引用日本ΔV10改为IEC的短时间闪变P st和长时间闪变P lt 指标,以和国际标准接轨,并符合中国国情。

3)将电压波(变)动限值和变动频度相关联,使标准对此指标的规定更切合实际波动负荷对电网的干扰影响。

4)将原标准中以电压波(变)动为主,改为以闪变值为主(原标准中ΔV10均为推荐值),以和国际标准相对应。

5)对于单个用户闪变允许指标按其协议容量占总供电容量的比例分配,并根据产生干扰量及系统情况分三级处理(原标准中无此内容),既使指标分配较合理,又便于实际执行。

6)引入了闪变叠加、传递等计算公式,高压系统中供电容量的确定方法以及电压变动的计算和闪变的评估等内容,并给出一些典型的实例分析。

7)对IEC 61000-4-15规定的闪变测量仪作了介绍,并作为标准的附录A,以利于测量仪器的统一。

8)整个标准按国标GB/T1.1和GB/T1.2有关规定作编写。

原标准名称的引导要素“电能质量”英译为“Power quality of electric energy supply”改为国际上通用的“Power quality”,并将本标准名称改为《电能质量电压波动和闪变》。

作为电磁兼容(EMC)标准,IEC 61000-3-7等涉及的内容相对较多,论述上不够简洁。

在国标修订中选取相关内容,基本上删去对概念和原理的解释部分,因为国内将陆续发布等同于IEC 61000的EMC系列标准,可作为执行电能质量国家标准参考。

对于国标中所需要的一些定义、符号和缩略语,以及相关闪变测量仪规范和闪变(Pst)的表达式等,主要参考了IEC 61000-3-3、IEC 61000-4-15。

须指出,在采用IEC 61000相关内容中,本标准对于下列几点作了修改:1)按IEC标准,对闪变P st、P lt指标,每次评定测量时间至少为一个星期,取99%概率大值衡量。

这样规定,在电网中实际上难以执行。

本标准中对闪变P st指标规定取1天(24h)测量,而且取95%概率大值衡量;对P lt指标,原则上规定不得超标。

2)对于电压变动,除了按变动频度r范围给出限值外,还补充了随机性不规则的电压变动的限值以及测量和取值方法。

3)在IEC标准中,除了电磁兼容值外还引入“规划值”,规划值原则上不大于兼容值,是由电力部门根据负荷和电网结构等特点自行规定的目标值,本标准不采用“兼容值”或“规划值”,一律用“限值”概念。

4)IEC 61000-3-7实际上只对中、高压波动负荷的兼容限值作了规定,对于低压,主要是控制单台设备的限值,已由IEC 61000-3-3和IEC 61000-3-5中作了规定(国内将有等同标准)。

在制定本标准时,鉴于中、低压设备兼容值相同(见IEC 61000-3-7),而国产低压电气设备大多未按IEC标准检验其电压波动和闪变指标,故将低压也作了规定,以使标准较为完整。

本标准从实施之日起,代替GB 12326—1990。

本标准的附录A、附录B都是标准的附录。

本标准的附录C、附录D都是提示的附录。

本标准由国家经贸委电力司提出。

本标准由全国电压电流等级和频率标准化技术委员会归口。

本标准起草单位:国家电力公司电力科学研究院、清华大学、北京供电局、北京钢铁设计研究总院、机械科学研究院。

本标准主要起草人:林海雪、孙树勤、赵刚、陈斌发、王敬义、李世林。

中华人民共和国国家标准电能质量电压波动和闪变GB12326—2000代替GB12326—1990Power quality—Voltage fluctuation and flicker国家质量技术监督局2000-04-03批准2000-12-01实施1 范围本标准规定了电压波动和闪变的限值及测试、计算和评估方法。

本标准适用于交流50Hz电力系统正常运行方式下,由波动负荷引起的公共连接点电压的快速变动及由此可能引起人对灯闪明显感觉的场合。

2 引用标准GB 156—1993 标准电压3 定义本标准采用以下定义。

3.1 公共连接点point of common coupling(PCC)电力系统中一个以上用户的连接处。

3.2 波动负荷fluctuating load生产(或运行)过程中从供电网中取用快速变动功率的负荷。

例如:炼钢电弧炉、轧机、电弧焊机等。

3.3 电压方均根值曲线U(t)R.M.S.voltage shape,U(t)每半个基波电压周期方均根值(r.m.s.)的时间函数。

3.4 电压变动特性d(t)relative voltage change characteristic,d(t)电压方均根值变动的时间函数,以系统标称电压的百分数表示。

3.5 电压变动d relative voltage change,d电压变动特性d(t)上,相邻两个极值电压之差。

3.6 电压变动频度r rate of occurrence of voltage changes,r单位时间内电压变动的次数(电压由大到小或由小到大各算一次变动)。

同一方向的若干次变动,如间隔时间小于30ms,则算一次变动。

3.7 闪变时间t f flicker time,t f一个有时间量纲的值,表示电压变动的闪变影响,和波形、幅值以及频度均有关。

3.8 电压波动voltage fluctuation电压方均根值一系列的变动或连续的改变。

3.9 闪变flicker灯光照度不稳定造成的视感。

3.10 闪变仪flickermeter一种测量闪变的专用仪器(见附录A)。

注:一般测量P st和P lt。

3.11 短时间闪变值P st short term severity,P st衡量短时间(若干分钟)内闪变强弱的一个统计量值(见附录A)。

P st=1为闪变引起视感刺激性的通常限值。

3.12 长时间闪变值P lt long term severity,P lt由短时间闪变值P st推算出,反映长时间(若干小时)闪变强弱的量值(见附录A)。

3.13 累积概率函数cumulative probability function(CPF)其横坐标表示被测量值(例如瞬时闪变值),纵坐标表示超过对应横坐标值的时间占整个测量时间的百分数(见图A2)。

4 电压变动和闪变的限值4.1 电力系统公共连接点,由波动负荷产生的电压变动限值和变动频度、电压等级有关,见表1。

表 1 电压变动限值4.2 电力系统公共连接点,由波动负荷引起的短时间闪变值P st和长时间闪变值P lt应满足表2所列的限值。

4.3 任何一个波动负荷用户在电力系统公共连接点单独引起的电压变动和闪变值一般应满足下列要求。

4.3.1 电压变动的限值如表1所列。

4.3.2 闪变限值根据用户负荷大小、其协议用电容量占供电容量的比例以及系统电压,分别按三级作不同的规定和处理。

4.3.2.1 第一级规定。

满足本级规定,可以不经闪变核算,允许接入电网。

a)对于LV和MV用户,第一级限值见表3。

b)对于HV用户,满足(ΔS/S sc)max<0.1%。

表 2 各级电压下的闪变限值表 3 LV和MV用户第一级限值4.3.2.2 第二级规定。

须根据用户闪变的发生值和限值作比较后确定。

每个用户按其协议用电容量S i (S i =P i /cos φi )和供电容量S 之比,考虑上一级对下一级闪变传递的影响(下一级对上一级的传递一般忽略)等因素后确定闪变限值。

不同电压等级之间闪变传递系数T 如表4所列。

表 4 不同电压等级间闪变传递系数用户闪变限值的计算如下:a )对于MV 和LV 单个用户,首先求出接于PCC 的全部负荷产生闪变的总限值G (以MV 用户为例写公式)为:G L T L MV MV HM HV =-3333(1)式中:L MV 和L HV ——分别为MV 和HV 的闪变限值(见表2);T HM ——HV 对MV 的闪变传递系数(见表4)。

单个用户闪变限值E iMV 为:E G S SF iHV MV i MV MV=⨯13(2)式中:F MV 为波动负荷的同时系数,其典型值F MV =0.2~0.3(但必须满足S i /F MV ≤S MV )。

式(1)、式(2)中,如将下标作适当替换(例如MV 换为LV ,T HM 换为T HL 或T ML 等),则可以用于LV 用户的计算。

式(1)、式(2)对于短时间闪变(P st )和长时间闪变(P lt )均适用。

b )对于HV 单个用户,闪变限值计算式为:E L S S iHV MV i tMV=3(3)式中:S tHV ——接S i 的PCC 总供电容量,确定方法见附录B 。

表 5 基本闪变值c )对于某些相对较小的用户,利用式(2)、式(3)求出的闪变限值可能过严,如用户未超过表5规定的基本闪变值,则仍允许接网。

4.3.2.3 第三级规定了超标(超过第二级限值)用户和过高背景闪变水平的处理原则。

由于PCC 上并不都是波动负荷,按第二级条件计算,某些用户若是超标的,但实际背景闪变水平比较低,或者超标的概率很低(例如每周不超过1%时间),电力企业可以酌情(包括考虑近期的发展)放宽限值。

反之,如背景水平已接近于表2规定值,则应适当减少分配的指标,研究采用补偿设备的可能性,并应分析背景水平高的原因,采取必要的降低闪变水平措施。

5 电压变动和闪变的测量条件、取值5.1 本标准电压变动值d 、短时间闪变值P st 和长时间闪变值P lt 指的是电力系统正常运行的较小方式下,波动负荷变化最大工作周期的实测值。

例如:炼钢电弧炉应在熔化期测量;轧机应在最大轧制负荷周期测量;三相负荷不平衡时应在三相测量值中取最严重的一相的值。

注1 对于三相等概率波动的负荷可以任意选取一相测量。

相关文档
最新文档