2020版高考数学一轮复习专题训练:微专题4 高考中的立体几何问题 (含最新模拟题) Word版含答案.docx
2020版高考数学北师大版(理)一轮复习高考大题专项四高考中的立体几何含解析

高考大题专项四高考中的立体几何1.如图,在三棱锥A-BCD中,E,F分别为BC,CD上的点,且BD∥平面AEF.(1)求证:EF∥平面ABD;(2)若AE⊥平面BCD,BD⊥CD,求证:平面AEF⊥平面ACD.2.在直三棱柱ABC-A1B1C1中,∠ABC=90°,BC=2,CC1=4,点E在线段BB1上,且EB1=1,D,F,G分别为CC1,C1B1,C1A1的中点.求证:(1)B1D⊥平面ABD;(2)平面EGF∥平面ABD.3.如图,几何体是圆柱的一部分,它是由矩形ABCD(及其内部)以AB边所在直线为旋转轴旋转120°得到的,G是的中点.(1)设P是上的一点,且AP⊥BE,求∠CBP的大小;(2)当AB=3,AD=2时,求二面角E-AG-C的大小.4.(2018山西晋中调研,18)如图,已知四棱锥P-ABCD,PA⊥平面ABCD,底面ABCD中,BC∥AD,AB⊥AD,且PA=AD=AB=2BC=2,M为AD的中点.(1)求证:平面PCM⊥平面PAD;(2)问在棱PD上是否存在点Q,使PD⊥平面CMQ,若存在,请求出二面角P-CM-Q的余弦值;若不存在,请说明理由.5.(2018河南郑州外国语学校调研,19)如图,在底面为等边三角形的斜三棱柱ABC-A1B1C1中,AA1=AB,四边形B1C1CB为矩形,过A1C作与直线BC1平行的平面A1CD交AB于点D.(1)证明:CD⊥AB;(2)若直线AA1与底面A1B1C1所成的角为60°,求二面角B-A1C-C1的余弦值.6.如图,在四棱锥P-ABCD中,底面ABCD为正方形,平面PAD⊥平面ABCD,点M在线段PB上,PD∥平面MAC,PA=PD=,AB=4.(1)求证:M为PB的中点;(2)求二面角B-PD-A的大小;(3)求直线MC与平面BDP所成角的正弦值.7.(2018河北衡水中学适应性考试,18)如图,在三棱柱ABC-A1B1C1中,四边形A1C1CA为菱形,∠B1A1A=∠C1A1A=60°,AC=4,AB=2,平面ACC1A1⊥平面ABB1A1,Q在线段AC上移动,P为棱AA1的中点. (1)若Q为线段AC的中点,H为BQ中点,延长AH交BC于D,求证:AD∥平面B1PQ;(2)若二面角B1-PQ-C1的平面角的余弦值为,求点P到平面BQB1的距离.8.(2018山西大同一模,18)如图,在四棱锥P-ABCD中,AD∥BC,∠ABC=∠PAD=90°,PA=AB=BC=2,AD=1,M是棱PB中点且AM=(1)求证:AM∥平面PCD;(2)设点N是线段CD上一动点,且DN=λDC,当直线MN与平面PAB所成的角最大时,求λ的值.9.(2018山西晋城一模,20)如图,在四棱锥P-ABCD中,PA=PD=AD=2CD=2BC=2,且∠ADC=∠BCD=90°.(1)当PB=2时,证明:平面PAD⊥平面ABCD;(2)当四棱锥P-ABCD的体积为,且二面角P-AD-B为钝角时,求直线PA与平面PCD所成角的正弦值.参考答案高考大题专项四高考中的立体几何1.证明 (1)∵BD∥平面AEF,BD⫋平面BCD,平面BCD∩平面AEF=EF,∴BD∥EF.又BD⫋平面ABD,EF⊈平面ABD,∴EF∥平面ABD.(2)∵AE⊥平面BCD,CD⫋平面BCD,∴AE⊥CD.由(1)可知BD∥EF,又BD⊥CD,∴EF⊥CD.又AE∩EF=E,AE⫋平面AEF,EF⫋平面AEF,∴CD⊥平面AEF,又CD⫋平面ACD,∴平面AEF⊥平面ACD.2.证明 (1)以B为坐标原点,BA,BC,BB1所在的直线分别为x轴、y轴、z轴建立空间直角坐标系,如图所示,则B(0,0,0),D(0,2,2),B1(0,0,4),C1(0,2,4),设BA=a,则A(a,0,0),所以=(a,0,0),=(0,2,2),=(0,2,-2),·=0,·=0+4-4=0,即B1D⊥BA,B1D⊥BD.又BA∩BD=B,BA⫋平面ABD,BD⫋平面ABD,所以B1D⊥平面ABD.(2)由(1)知,E(0,0,3),G,F(0,1,4),则=,=(0,1,1),·=0+2-2=0,·=0+2-2=0,即B1D⊥EG,B1D⊥EF.又EG∩EF=E,EG⫋平面EGF,EF⫋平面EGF,所以B1D⊥平面EGF.结合(1)可知平面EGF∥平面ABD.3.解 (1)因为AP⊥BE,AB⊥BE,AB,AP⫋平面ABP,AB∩AP=A,所以BE⊥平面ABP,又BP⫋平面ABP,所(2)(方法一)取的中点H,连接EH,GH,CH.因为∠EBC=120°,所以四边形BEHC为菱形,所以AE=GE=AC=GC==.取AG中点M,连接EM,CM,EC,则EM⊥AG,CM⊥AG,所以∠EMC为所求二面角的平面角.又AM=1,所以EM=CM==2.在△BEC中,由于∠EBC=120°,由余弦定理得EC2=22+22-2×2×2×cos 120°=12,所以EC=2,因此△EMC为等边三角形,故所求的角为60°.(方法二)以B为坐标原点,分别以BE,BP,BA所在的直线为x,y,z轴,建立如图所示的空间直角坐标系.由题意得A(0,0,3),E(2,0,0),G(1,,3),C(-1,,0),故=(2,0,-3),=(1,,0),=(2,0,3),设m=(x1,y1,z1)是平面AEG的一个法向量.由可得取z1=2,可得平面AEG的一个法向量m=(3,-,2).设n=(x2,y2,z2)是平面ACG的一个法向量.由可得取z2=-2,可得平面ACG的一个法向量n=(3,-,-2).所以cos<m,n>==.因此所求的角为60°.4.解以A为原点,射线AB,AD,AP分别为x,y,z轴的正半轴,建立空间直角坐标系如图.PA=AD=AB=2BC=2,A(0,0,0),B(2,0,0),C(2,1,0),D(0,2,0),P(0,0,2),=(0,2,0),=(0,0,2), ∵M为AD的中点,∴M(0,1,0),=(2,0,0).∴CM⊥PA,CM⊥AD.PA⫋平面PAD,AD⫋平面PAD,且PA∩AD=A,∴CM⊥平面PAD.∵CM⫋平面PCM,∴平面PCM⊥平面PAD.(2)存在点Q使PD⊥平面CMQ,在△PAD内,过M作MQ⊥PD,垂足为Q,由(1)知CM⊥平面PAD,PD⫋平面PAD,∴CM⊥PD,MQ∩CM=M,∴PD⊥平面CMQ.设平面PCM的一个法向量为n=(x,y,z),则n·=2x=0⇒x=0,n·=(x,y,z)·(0,1,-2)=y-2z=0⇒y=2z,取n=(0,2,1).∵PD⊥平面CMQ,∴=(0,2,-2)是平面CMQ的一个法向量.由图形知二面角P-CM-Q的平面角θ是锐角,故cos θ===,所以二面角余弦值为.5.(1)证明如图,连接AC1交A1C于点E,连接DE.因为BC1∥平面A1CD,BC1⫋平面ABC1,平面ABC1∩平面A1CD=DE,所以BC1∥DE.又四边形ACC1A1为平行四边形,所以E为AC1的中点,所以ED为△AC1B的中位线,所以D为AB的中点.又△ABC为等边三角形,所以CD⊥AB.(2)解过A作AO⊥平面A1B1C1,垂足为O,连接A1O,设AB=2,则AA1=2.因为直线AA1与底面A1B1C1所成的角为60°,所以∠AA1O=60°.在Rt△AA1O中,因为AA1=2,所以A1O=,AO=3.因为AO⊥平面A1B1C1,B1C1⫋平面A1B1C1,所以AO⊥B1C1,因为四边形B1C1CB为矩形,所以BB1⊥B1C1,因为BB1∥AA1,所以B1C1⊥AA1.因为AA1∩AO=A,AA1⫋平面AA1O,AO⫋平面AA1O,所以B1C1⊥平面AA1O.因为A1O⫋平面AA1O,所以B1C1⊥A1O.△A1B1C1为等边三角形,边B1C1上的高为,又A1O=,所以O为B1C1的中点.以O为坐标原点,分别以,,的方向为x轴,y轴,z轴的正方向建立空间直则A1(,0,0),C1(0,-1,0),A(0,0,3),B1(0,1,0).因为==(-,1,0),所以B(-,1,3),D-,,3,因为==(-,-1,0),所以C(-,-1,3),=(-2,1,3),==(0,-2,0),=(-2,-1,3).设平面BA1C的法向量为n=(x,y,z).由得令x=,得z=2,所以平面BA1C的一个法向量为n=(,0,2).设平面A1CC1的法向量为m=(a,b,c),由得令a=,得b=-3,c=1,所以平面A1CC1的一个法向量为m=(,-3,1).所以|cos<n,m>|==.因为所求二面角为钝角,所以二面角B-A1C-C1的余弦值为-.6.(1)证明设AC,BD交点为E,连接ME.因为PD∥平面MAC,平面MAC∩平面PDB=ME,所以PD∥ME.因为ABCD是正方形,所以E为BD的中点.所以M为PB的中点.(2)解取AD的中点O,连接OP,OE.又因为平面PAD⊥平面ABCD,且OP⫋平面PAD,所以OP⊥平面ABCD.因为OE⫋平面ABCD,所以OP⊥OE.因为ABCD是正方形,所以OE⊥AD.如图建立空间直角坐标系O-xyz,则P(0,0,),D(2,0,0),B(-2,4,0),=(4,-4,0),=(2,0,-).设平面BDP的法向量为n=(x,y,z),则即令x=1,则y=1,z=.于是n=(1,1,),平面PAD的法向量为p=(0,1,0).所以cos<n,p>==.由题知二面角B-PD-A为锐角,所以它的大小为.(3)解由题意知M,C(2,4,0),=.设直线MC与平面BDP所成角为α,则sin α=|cos<n,>|==.所以直线MC与平面BDP所成角的正弦值为.7.(1)证明如图,取BB1中点E,连接AE,EH.∵H为BQ中点,∴EH∥B1Q.在平行四边形AA1B1B中,P,E分别为AA1,BB1的中点,∴AE∥PB1.又EH∩AE=E,PB1∩B1Q=B1,∴平面EHA∥平面B1QP.∵AD⫋平面EHA,∴AD∥平面B1PQ.(2)解连接PC1,AC1,∵四边形A1C1CA为菱形,∴AA1=AC=A1C1=4.又∠C1A1A=60°,∴△AC1A1为正三角形.∵平面ACC1A1⊥平面ABB1A1,平面ACC1A1∩平面ABB1A1=AA1,PC1⫋平面ACC1A1,∴PC1⊥平面ABB1A1,在平面ABB1A1内过点P作PR⊥AA1交BB1于点R.建立如图所示的空间直角坐标系P-xyz,则P(0,0,0),A1(0,2,0),A(0,-2,0),C1(0,0,2),C(0,-4,2),设=λ=λ(0,-2,2),λ∈[0,1],∴Q(0,-2(λ+1),2λ),∴=(0,-2(λ+1),2λ).∵A1B1=AB=2,∠B1A1A=60°,∴B1(,1,0),∴=(,1,0).设平面PQB1的法向量为m=(x,y,z),则得令x=1,则y=-,z=-,∴平面PQB1的一个法向量为m=1,-,-,设平面AA1C1C的法向量为n=(1,0,0),二面角B1-PQ-C1的平面角为θ,则cosθ===.∴λ=或λ=-(舍),∴=,∴Q(0,-3,).又B(,-3,0),∴=(,0,-),∴||==.连接BP,设点P到平面BQB1的距离为h,则××4××=××4××h,∴h=,即点P到平面BQB1的距离为.8.(1)证明如图,取PC中点K,连接MK,KD,因为M为PB的中点,所以MK∥BC且MK=BC=AD,所以四边形AMKD为平行四边形,所以AM∥DK,又DK⫋平面PDC,AM⊈平面PDC,所以AM∥平面PCD.(2)解因为M为PB的中点,设PM=MB=x,在△PAB中,∠PMA+∠AMB=π,设∠PMA=θ,则∠AMB=π-θ,所以cos∠PMA+cos∠AMB=0,由余弦定理得+=0,即+=0,解得x=,则PB=2,所以PA2+AB2=PB2,所以PA⊥AB.又PA⊥AD,且AB∩AD=A,所以PA⊥平面ABCD,且∠BAD=∠ABC=90°.以点A为坐标原点,建立如图所示的空间直角坐标系A-xyz,则A(0,0,0),D(1,0,0),B(0,2,0),C(2,2,0),P(0,0,2),M(0,1,1),因为点N是线段CD上一点,可设=λ=λ(1,2,0),故=+=(1,0,0)+λ(1,2,0)=(1+λ,2λ,0), 所以=-=(1+λ,2λ,0)-(0,1,1)=(1+λ,2λ-1,-1).又面PAB的法向量为(1,0,0),设MN与平面PAB所成角为θ,则sin θ=====,所以当=时,即λ=时,sin θ取得最大值.9.(1)证明取AD的中点O,连接PO,BO,∵△PAD为正三角形,∴OP⊥AD,∵∠ADC=∠BCD=90°,∴BC∥AD,∵BC=AD=1,∴BC=OD,∴四边形BCDO为矩形,∴OB=CD=1,在△POB中,PO=,OB=1,PB=2,∴∠POB=90°,∴PO⊥OB,∵AD∩OB=O,∴PO⊥平面ABCD,∵PO⫋平面PAD,∴平面PAD⊥平面ABCD.(2)解∵AD⊥PO,AD⊥OB,PO∩BO=O,PO,BO⫋平面POB,∴AD⊥平面POB,∵AD⫋平面ABCD,∴平面POB⊥平面ABCD,∴过点P作PE⊥平面ABCD,垂足E一定落在平面POB与平面ABCD的交线BO上.∵四棱锥P-ABCD的体积为,∴V P-ABCD=×PE××(AD+BC)×CD=×PE××(2+1)×1=PE=,∴PE=,∵PO=,∴OE===.如图,以O为坐标原点,以OA,OB为x轴,y轴.在平面POB内过点O作垂直于平面AOB的直线为z轴,建立空间直角坐标系O-xyz,由题意可知A(1,0,0),P0,-,,D(-1,0,0),C(-1,1,0),=1,-,,=(0,1,0),设平面PCD的一个法向量为n=(x,y,z),则得令x=1,则z=-,∴n=1,0,-,=1,,-,设直线PA与平面PCD所成的角为θ,则sin θ=|cos<,n>|===.则直线PA与平面PCD所成角的正弦值为.。
2020高考数学一轮复习大题规范解读全辑高考大题规范解答系列4立体几何课件理

︵ 因为 M 为CD 上异于 C,D 的两点,
且 DC 为直径,所以 DM⊥CM.
3 分 得分点②
又 BC∩CM=C,所以 DM⊥平面 BMC. 4 分 得分点③
而 DM⊂平面 AMD,故平面 AMD⊥平面 BMC. 5 分 得分点④
(2)以 D 为坐标原点,D→A的方向为 x 轴正方向,建立如图所示的空间直角坐标 系 D-xyz.
∵O 为 BD 中点,∴FO⊥BD,
又 AC⊥FO,AC∩BD=O,∴FO⊥平面 ABCD.
∵OA,OB,OF 两两垂直, ∴可建立空间直角坐标系 O-xyz,如图所示,
设 AB=2,∵四边形 ABCD 为菱形,∠DAB=60°, ∴BD=2,AC=2 3. ∵△DBF 为等边三角形,∴OF= 3. ∴A( 3,0,0),B(0,1,0),D(0,-1,0),F(0,0, 3),
︵ 当三棱锥 M-ABC 体积最大时,M 为CD 的中点. 由题设得 D(0,0,0),A(2,0,0),B(2,2,0),C(0,2,0),M(0,1,1), A→M=(-2,1,1),A→B=(0,2,0),D→A=(2,0,0).
7 分 得分点⑤
设 n=(x,y,z)是平面 MAB 的法向量,
∴MG∥平面 CDEF.
2 分 得分点①
由于 G,N 分别为 AD,BC 的中点, 由棱柱的性质可得 GN∥DC, ∵CD⊂平面 CDEF,GN⊄平面 CDEF,
∴GN∥平面 CDEF.
3 分 得分点③
又 GM⊂平面 GMN,GN⊂平面 GMN,MG∩NG=G,
∴平面 GMN∥平面 CDEF,
∴A→D=(- 3,-1,0),A→F=(- 3,0, 3),A→B=(- 3,1,0). 设平面 ABF 的法向量为 n=(x,y,z),
高考数学专题四立体几何 微专题29 立体几何中的动态问题

√C.若点N到直线BB1与直线DC的距离相等,则点N的轨迹为抛物线 √D.若D1N与AB所成的角为 π3,则点N的轨迹为双曲线
如图所示,对于A, 根据正方体的性质可知,MD⊥平面ABCD, 所以∠MND为MN与平面ABCD所成的角, 所以∠MND=4π,所以 DN=DM=12DD1=12×4=2, 所以点N的轨迹是以D为圆心,2为半径的圆,故A正确;
思维导图
内容索引
典型例题
热点突破
PART ONE
典型例题
考点一 动点的轨迹
典例1 (1)(多选)已知正方体ABCD-A1B1C1D1 的棱长为4,M为DD1的中点,N为四边形ABCD 所在平面上一动点,则下列命题正确的是
√A.若MN与平面ABCD所成的角为 π4,则点N的
轨迹为圆
B.若MN=4,则MN的中点P的轨迹所围成图
当 B 是 AC 的中点时,AB=BC= 6,
此时△SAB为等腰三角形,△ABC为等腰直角三角形,
将△SAB,△ABC沿AB展开至同一个平面,得到如
图2所示的平面图形,
取AB的中点D,连接SC,SD,CD,
则 SD=
22-
262=
210,
所以 sin ∠ABS=SSDB= 410, 所以 cos∠CBS=cos(90°+∠ABS)=-sin∠ABS=- 410,
此时点B与点Q重合,点P与点O1重合,故C正确;
对于D,当点P与点B1,点Q与点A重合时,
AP+PQ+QB1 的值为 3AP=3 12+22=3 5>2 3+ 5,故 D 错误.
考点二 折叠、展开问题
典例2 (多选)如图,在矩形ABCD中,M为BC的中点,将△ABM沿直线 AM翻折成△AB1M,连接B1D,N为B1D的中点,则在翻折过程中,下列 说法正确的是 A.存在某个位置,使得CN⊥AB1
2020年高考理科数学一轮复习大题篇---立体几何

2020年高考理科数学一轮复习大题篇---立体几何【归类解析】题型一平行、垂直关系的证明【解题指导】(1)平行问题的转化利用线线平行、线面平行、面面平行的相互转化解决平行关系的判定问题时,一般遵循从“低维”到“高维”的转化,即从“线线平行”到“线面平行”,再到“面面平行”;而应用性质定理时,其顺序正好相反.在实际的解题过程中,判定定理和性质定理一般要相互结合,灵活运用. (2)垂直问题的转化在空间垂直关系中,线面垂直是核心,已知线面垂直,既可为证明线线垂直提供依据,又可为利用判定定理证明面面垂直作好铺垫.应用面面垂直的性质定理时,一般需作辅助线,基本作法是过其中一个平面内一点作交线的垂线,从而把面面垂直问题转化为线面垂直问题,进而可转化为线线垂直问题.【例】如图,在三棱柱ABC-A1B1C1中,侧棱垂直于底面,AB⊥BC,AA1=AC=2,BC=1,E,F分别是A1C1,BC的中点.(1)求证:平面ABE⊥平面B1BCC1;(2)求证:C1F∥平面ABE;(3)求三棱锥E-ABC的体积.(1)证明在三棱柱ABC-A1B1C1中,BB1⊥底面ABC.因为AB⊂平面ABC,所以BB1⊥AB.又因为AB⊥BC,BC∩BB1=B,所以AB⊥平面B1BCC1.又AB⊂平面ABE,所以平面ABE ⊥平面B 1BCC 1.(2)证明 方法一 如图1,取AB 中点G ,连接EG ,FG . 因为E ,F 分别是A 1C 1,BC 的中点, 所以FG ∥AC ,且FG =12AC .因为AC ∥A 1C 1,且AC =A 1C 1, 所以FG ∥EC 1,且FG =EC 1, 所以四边形FGEC 1为平行四边形, 所以C 1F ∥EG .又因为EG ⊂平面ABE ,C 1F ⊄平面ABE , 所以C 1F ∥平面ABE .方法二 如图2,取AC 的中点H ,连接C 1H ,FH . 因为H ,F 分别是AC ,BC 的中点,所以HF ∥AB , 又因为E ,H 分别是A 1C 1,AC 的中点, 所以EC 1∥AH ,且EC 1=AH , 所以四边形EAHC 1为平行四边形, 所以C 1H ∥AE ,又C 1H ∩HF =H ,AE ∩AB =A , 所以平面ABE ∥平面C 1HF , 又C 1F ⊂平面C 1HF , 所以C 1F ∥平面ABE .(3)解 因为AA 1=AC =2,BC =1,AB ⊥BC , 所以AB =AC 2-BC 2= 3. 所以三棱锥E -ABC 的体积 V =13S △ABC ·AA 1=13×12×3×1×2=33.【训练】如图,在底面是矩形的四棱锥P —ABCD 中,P A ⊥底面ABCD ,点E ,F 分别是PC ,PD 的中点,P A =AB =1,BC =2.(1)求证:EF ∥平面P AB ; (2)求证:平面P AD ⊥平面PDC .【证明】 (1)以A 为坐标原点,AB 所在直线为x 轴,AD 所在直线为y 轴,AP 所在直线为z 轴,建立如图所示的空间直角坐标系Axyz ,则A (0,0,0),B (1,0,0),C (1,2,0),D (0,2,0),P (0,0,1).∵点E ,F 分别是PC ,PD 的中点, ∴E ⎝⎛⎭⎫12,1,12,F ⎝⎛⎭⎫0,1,12, EF →=⎝⎛⎭⎫-12,0,0,AB →=(1,0,0). ∵EF →=-12AB →,∴EF →∥AB →, 即EF ∥AB ,又AB ⊂平面P AB ,EF ⊄平面P AB , ∴EF ∥平面P AB . (2)由(1)可知,AP →=(0,0,1),AD →=(0,2,0),DC →=(1,0,0), ∵AP →·DC →=(0,0,1)·(1,0,0)=0, AD →·DC →=(0,2,0)·(1,0,0)=0, ∴AP →⊥DC →,AD →⊥DC →, 即AP ⊥DC ,AD ⊥DC .又AP ∩AD =A ,AP ,AD ⊂平面P AD , ∴DC ⊥平面P AD . ∵DC ⊂平面PDC , ∴平面P AD ⊥平面PDC . 题型二 立体几何中的计算问题1求线面角【解题指导】(1)利用向量求直线与平面所成的角有两个思路:①分别求出斜线和它在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角);②通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角,取其余角就是斜线和平面所成的角.(2)若直线l与平面α的夹角为θ,直线l的方向向量l与平面α的法向量n的夹角为β,则θ=π2-β或θ=β-π2,故有sin θ=|cos β|=|l·n||l||n|.【例】如图,已知多面体ABCA1B1C1,A1A,B1B,C1C均垂直于平面ABC,∠ABC=120°,A1A=4,C1C=1,AB=BC=B1B=2.(1)证明:AB1⊥平面A1B1C1;(2)求直线AC1与平面ABB1所成的角的正弦值.方法一(1)证明由AB=2,AA1=4,BB1=2,AA1⊥AB,BB1⊥AB,得AB1=A1B1=22,所以A1B21+AB21=AA21,故AB1⊥A1B1.由BC=2,BB1=2,CC1=1,BB1⊥BC,CC1⊥BC,得B1C1= 5.由AB=BC=2,∠ABC=120°,得AC=2 3.由CC1⊥AC,得AC1=13,所以AB21+B1C21=AC21,故AB1⊥B1C1.又因为A1B1∩B1C1=B1,A1B1,B1C1⊂平面A1B1C1,所以AB1⊥平面A1B1C1.(2)解如图,过点C1作C1D⊥A1B1,交直线A1B1于点D,连接AD.由AB 1⊥平面A 1B 1C 1, 得平面A 1B 1C 1⊥平面ABB 1.由C 1D ⊥A 1B 1,平面A 1B 1C 1∩平面ABB 1=A 1B 1,C 1D ⊂平面A 1B 1C 1,得C 1D ⊥平面ABB 1. 所以∠C 1AD 即为AC 1与平面ABB 1所成的角. 由B 1C 1=5,A 1B 1=22,A 1C 1=21, 得cos ∠C 1A 1B 1=427,sin ∠C 1A 1B 1=77, 所以C 1D =3,故sin ∠C 1AD =C 1D AC 1=3913.因此直线AC 1与平面ABB 1所成的角的正弦值是3913. 方法二 (1)证明 如图,以AC 的中点O 为原点,分别以射线OB ,OC 为x ,y 轴的正半轴,建立空间直角坐标系Oxyz .由题意知各点坐标如下:A (0,-3,0),B (1,0,0),A 1(0,-3,4),B 1(1,0,2),C 1(0,3,1). 因此AB 1→=(1,3,2),A 1B 1→=(1,3,-2),A 1C 1—→=(0,23,-3). 由AB 1→·A 1B 1—→=0,得AB 1⊥A 1B 1. 由AB 1→·A 1C 1—→=0,得AB 1⊥A 1C 1.又A 1B 1∩A 1C 1=A 1,A 1B 1,A 1C 1⊂平面A 1B 1C 1, 所以AB 1⊥平面A 1B 1C 1.(2)解 设直线AC 1与平面ABB 1所成的角为θ. 由(1)可知AC 1→=(0,23,1),AB →=(1,3,0),BB 1→=(0,0,2). 设平面ABB 1的一个法向量为n =(x ,y ,z ). 由⎩⎪⎨⎪⎧n ·AB →=0,n ·BB 1→=0,得⎩⎨⎧x +3y =0,2z =0,可取n =(-3,1,0).所以sin θ=|cos 〈AC 1→,n 〉|=|AC 1→·n ||AC 1→||n |=3913.因此直线AC 1与平面ABB 1所成的角的正弦值是3913. 【训练】 在直三棱柱ABC -A 1B 1C 1中,△ABC 为正三角形,点D 在棱BC 上,且CD =3BD ,点E ,F 分别为棱AB ,BB 1的中点.(1)证明:A 1C ∥平面DEF ;(2)若A 1C ⊥EF ,求直线A 1C 1与平面DEF 所成的角的正弦值. 【解】 (1)如图,连接AB 1,A 1B 交于点H ,设A 1B 交EF 于点K ,连接DK , 因为四边形ABB 1A 1为矩形, 所以H 为线段A 1B 的中点.因为点E ,F 分别为棱AB ,BB 1的中点, 所以点K 为线段BH 的中点, 所以A 1K =3BK .又CD =3BD ,所以A 1C ∥DK . 又A 1C ⊄平面DEF ,DK ⊂平面DEF , 所以A 1C ∥平面DEF .(2)连接CE ,EH ,由(1)知,EH ∥AA 1, 因为AA 1⊥平面ABC , 所以EH ⊥平面ABC .因为△ABC 为正三角形,且点E 为棱AB 的中点, 所以CE ⊥AB .故以点E 为坐标原点,分别以EA →,EH →,EC →的方向为x 轴、y 轴、z 轴的正方向建立如图所示的空间直角坐标系Exyz . 设AB =4,AA 1=t (t >0),则E (0,0,0),A 1(2,t ,0),A (2,0,0),C (0,0,23), F ⎝⎛⎭⎫-2,t 2,0,D ⎝⎛⎭⎫-32,0,32, 所以A 1C →=(-2,-t ,23),EF →=⎝⎛⎭⎫-2,t 2,0. 因为A 1C ⊥EF ,所以A 1C →·EF →=0, 所以(-2)×(-2)-t ×t 2+23×0=0,所以t =22,所以EF →=(-2,2,0),ED →=⎝⎛⎭⎫-32,0,32.设平面DEF 的一个法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧EF →·n =0,ED →·n =0,所以⎩⎪⎨⎪⎧-2x +2y =0,-32x +32z =0. 取x =1,则n =(1,2,3). 又A 1C 1—→=AC →=(-2,0,23),设直线A 1C 1与平面DEF 所成的角为θ,则sin θ=|cos 〈n ,A 1C 1→〉|=|n ·A 1C 1—→||n ||A 1C 1—→|=46×4=66,所以直线A 1C 1与平面DEF 所成的角的正弦值为66. 2 求二面角【解题指导】 (1)求二面角最常用的方法就是分别求出二面角的两个半平面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角是锐角还是钝角.(2)利用向量法求二面角的大小的关键是确定平面的法向量,求法向量的方法主要有两种:①求平面的垂线的方向向量;②利用法向量与平面内两个不共线向量的数量积为零,列方程组求解.【例】如图,在四棱锥A -BCDE 中,平面BCDE ⊥平面ABC ,BE ⊥EC ,BC =2,AB =4,∠ABC =60°.(1)求证:BE ⊥平面ACE ;(2)若直线CE 与平面ABC 所成的角为45°,求二面角E -AB -C 的余弦值. (1)证明 在△ACB 中,由余弦定理得cos ∠ABC =AB 2+BC 2-AC 22AB ·BC =12,解得AC =23,所以AC 2+BC 2=AB 2,所以AC ⊥BC .又因为平面BCDE ⊥平面ABC ,平面BCDE ∩平面ABC =BC ,AC ⊂平面ABC , 所以AC ⊥平面BCDE .又BE ⊂平面BCDE ,所以AC ⊥BE .又BE ⊥EC ,AC ,CE ⊂平面ACE ,且AC ∩CE =C , 所以BE ⊥平面ACE .(2)解 方法一 因为直线CE 与平面ABC 所成的角为45°,平面BCDE ⊥平面ABC ,平面BCDE ∩平面ABC =BC ,所以∠BCE =45°,所以△EBC 为等腰直角三角形.取BC 的中点F ,连接EF ,过点F 作FG ⊥AB 于点G ,连接EG , 则∠EGF 为二面角E -AB -C 的平面角. 易得EF =BF =1,FG =32. 在Rt △EFG 中,由勾股定理,得EG =EF 2+FG 2=72, 所以cos ∠EGF =FG EG =217,所以二面角E -AB -C 的余弦值为217. 方法二 因为直线CE 与平面ABC 所成的角为45°,平面BCDE ⊥平面ABC ,平面BCDE ∩平面ABC =BC ,所以∠BCE =45°,所以△EBC 为等腰直角三角形. 记BC 的中点为O ,连接OE ,则OE ⊥平面ABC ,以O 为坐标原点,分别以OB ,OE 所在直线为x 轴、z 轴,建立如图所示的空间直角坐标系, 则A (-1,23,0),B (1,0,0),E (0,0,1), 所以BA →=(-2,23,0),BE →=(-1,0,1). 设平面ABE 的法向量m =(x ,y ,z ), 则⎩⎪⎨⎪⎧BA →·m =0,BE →·m =0,即⎩⎨⎧-2x +23y =0,-x +z =0,令x =3,则m =(3,1,3)为平面ABE 的一个法向量. 易知平面ABC 的一个法向量为OE →=(0,0,1), 所以cos 〈m ,OE →〉=m ·OE →|m |·|OE →|=37=217,易知二面角E -AB -C 为锐角, 所以二面角E -AB -C 的余弦值为217. 【训练】 如图,四棱柱ABCD -A 1B 1C 1D 1的底面ABCD 是菱形,AC ∩BD =O ,A 1O ⊥底面ABCD ,AB =2,AA 1=3.(1)证明:平面A 1CO ⊥平面BB 1D 1D ;(2)若∠BAD =60°,求二面角B -OB 1-C 的余弦值. (1)证明 ∵A 1O ⊥平面ABCD ,BD ⊂平面ABCD , ∴A 1O ⊥BD .∵四边形ABCD 是菱形,∴CO ⊥BD . ∵A 1O ∩CO =O ,A 1O ,CO ⊂平面A 1CO , ∴BD ⊥平面A 1CO . ∵BD ⊂平面BB 1D 1D , ∴平面A 1CO ⊥平面BB 1D 1D .(2)解 ∵A 1O ⊥平面ABCD ,CO ⊥BD , ∴OB ,OC ,OA 1两两垂直,以O 为坐标原点,OB →,OC →,OA 1→的方向为x ,y ,z 轴的正方向建立如图所示的空间直角坐标系.∵AB =2,AA 1=3,∠BAD =60°,∴OB =OD =1,OA =OC =3,OA 1=AA 21-OA 2= 6.则O (0,0,0),B (1,0,0),C (0,3,0),A (0,-3,0),A 1(0,0,6), ∴OB →=(1,0,0),BB 1→=AA 1→=(0,3,6),OB 1→=OB →+BB 1→=(1,3,6). 设平面OBB 1的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧OB →·n =0,OB 1→·n =0,即⎩⎨⎧x =0,x +3y +6z =0.令y =2,得n =(0,2,-1),是平面OBB 1的一个法向量. 同理可求得平面OCB 1的一个法向量m =(6,0,-1), ∴cos 〈n ,m 〉=n ·m |n |·|m |=13×7=2121.由图可知二面角B -OB 1-C 是锐二面角, ∴二面角B -OB 1-C 的余弦值为2121. 题型三 立体几何中的探索性问题【解题指导】 (1)对于线面关系中的存在性问题,首先假设存在,然后在该假设条件下,利用线面关系的相关定理、性质进行推理论证,寻找假设满足的条件,若满足则肯定假设,若得出矛盾的结论则否定假设.(2)平面图形的翻折问题,关键是搞清翻折前后图形中线面位置关系和度量关系的变化情况.一般地,翻折后还在同一个平面上的性质不发生变化,不在同一个平面上的性质发生变化. 【例】如图,在四棱锥P -ABCD 中,P A ⊥平面ABCD ,AD ∥BC ,AD ⊥CD ,且AD =CD =22,BC =42,P A =2.(1)求证:AB ⊥PC ;(2)在线段PD 上,是否存在一点M ,使得二面角M -AC -D 的大小为45°,如果存在,求BM 与平面MAC 所成角的正弦值,如果不存在,请说明理由.(1)证明 如图,由已知得四边形ABCD 是直角梯形,由AD =CD =22,BC =42,可得△ABC 是等腰直角三角形,即AB ⊥AC , 因为P A ⊥平面ABCD ,所以P A ⊥AB , 又P A ∩AC =A ,P A ,AC ⊂平面P AC , 所以AB ⊥平面P AC , 所以AB ⊥PC .(2)解 方法一 (几何法)过点M 作MN ⊥AD 交AD 于点N ,则MN ∥P A ,因为P A ⊥平面ABCD ,所以MN ⊥平面ABCD . 过点M 作MG ⊥AC 交AC 于点G ,连接NG , 则∠MGN 是二面角M -AC -D 的平面角. 若∠MGN =45°,则NG =MN , 又AN =2NG =2MN ,所以MN =1,所以MN =12P A ,MN ∥P A ,所以M 是PD 的中点.在三棱锥M -ABC 中,可得V M -ABC =13S △ABC ·MN ,设点B 到平面MAC 的距离是h , 则V B -MAC =13S △MAC ·h ,所以S △ABC ·MN =S △MAC ·h ,解得h =2 2. 在Rt △BMN 中,可得BM =3 3. 设BM 与平面MAC 所成的角为θ, 则sin θ=h BM =269.方法二 (向量法)以A 为坐标原点,以过点A 平行于CD 的直线为x 轴,AD ,AP 所在直线分别为y 轴、z 轴,建立如图所示的空间直角坐标系,则 A (0,0,0),C (22,22,0),D (0,22,0),P (0,0,2),B (22,-22,0),PD →=(0,22,-2),AC →=(22,22,0). 易知当点M 与P 点或D 点重合时不满足题意, 设PM →=t PD →(0<t <1),则点M 的坐标为(0,22t,2-2t ), 所以AM →=(0,22t,2-2t ).设平面MAC 的法向量为n =(x ,y ,z ),则 ⎩⎪⎨⎪⎧n ·AC →=0,n ·AM →=0,得⎩⎨⎧22x +22y =0,22ty +2-2t z =0,则可取n =⎝⎛⎭⎪⎫1,-1,2t 1-t .又m =(0,0,1)是平面ACD 的一个法向量, 所以|cos 〈m ,n 〉|=|m ·n ||m ||n |=cos 45°=22, 解得t =12,即点M 是线段PD 的中点.此时平面MAC 的一个法向量可取n 0=(1,-1,2), BM →=(-22,32,1).设BM 与平面MAC 所成的角为θ, 则sin θ=|cos 〈n 0,BM →〉|=269.【训练】如图,在四棱锥P -ABCD 中,底面ABCD 是平行四边形,AB =AC =2,AD =22,PB =2,PB ⊥AC .(1)求证:平面P AB ⊥平面P AC ;(2)若∠PBA =45°,试判断棱P A 上是否存在与点P ,A 不重合的点E ,使得直线CE 与平面PBC 所成角的正弦值为69?若存在,求出AEAP的值;若不存在,请说明理由.(1)证明 因为四边形ABCD 是平行四边形,AD =22, 所以BC =AD =22, 又AB =AC =2,所以AB 2+AC 2=BC 2,所以AC ⊥AB , 又PB ⊥AC ,AB ∩PB =B ,AB ,PB ⊂平面P AB , 所以AC ⊥平面P AB . 又因为AC ⊂平面P AC , 所以平面P AB ⊥平面P AC .(2)解 由(1)知AC ⊥AB ,AC ⊥平面P AB , 分别以AB ,AC 所在直线为x 轴,y 轴,平面P AB 内过点A 且与直线AB 垂直的直线为z 轴,建立空间直角坐标系Axyz ,则A (0,0,0),B (2,0,0),C (0,2,0), AC →=(0,2,0),BC →=(-2,2,0),由∠PBA =45°,PB =2,可得P (1,0,1), 所以AP →=(1,0,1),BP →=(-1,0,1), 假设棱P A 上存在点E ,使得直线CE 与平面PBC 所成角的正弦值为69, 设AEAP=λ(0<λ<1), 则AE →=λAP →=(λ,0,λ),CE →=AE →-AC →=(λ,-2,λ), 设平面PBC 的法向量n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·BC →=0,n ·BP →=0,即⎩⎪⎨⎪⎧-2x +2y =0,-x +z =0,令z =1,可得x =y =1,所以平面PBC 的一个法向量n =(1,1,1), 设直线CE 与平面PBC 所成的角为θ,则 sin θ= |cos 〈n ,CE →〉| =|λ-2+λ|3·λ2+-22+λ2=|2λ-2|3·2λ2+4=69,解得λ=12或λ=74(舍).所以在棱P A 上存在点E ,且AE AP =12, 使得直线CE 与平面PBC 所成角的正弦值为69.专题突破训练1.在四棱锥P -ABCD 中,底面ABCD 为菱形,∠BAD =60°,P A =PD .(1)证明:BC ⊥PB ;(2)若P A ⊥PD ,PB =AB ,求二面角A -PB -C 的余弦值. (1)证明 取AD 中点为E ,连接PE ,BE ,BD ,∵P A =PD ,∴PE ⊥AD , ∵底面ABCD 为菱形, 且∠BAD =60°,∴△ABD 为等边三角形,∴BE ⊥AD , ∵PE ∩BE =E ,PE ,BE ⊂平面PBE , ∴AD ⊥平面PBE , 又PB ⊂平面PBE , ∴AD ⊥PB ,∵AD ∥BC ,∴BC ⊥PB . (2)解 设AB =2, ∴AD =PB =2,BE =3, ∵P A ⊥PD ,E 为AD 中点, ∴PE =1,∵PE 2+BE 2=PB 2, ∴PE ⊥BE .以E 为坐标原点,分别以EA ,EB ,EP 所在直线为x ,y ,z 轴建立如图所示的空间直角坐标系,则A (1,0,0),B (0,3,0),P (0,0,1),C (-2,3,0),∴AB →=(-1,3,0),AP →=(-1,0,1),BP →=(0,-3,1),BC →=(-2,0,0). 设平面P AB 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·AB →=0,n ·AP →=0,即⎩⎨⎧-x +3y =0,-x +z =0,令y =3,则n =(3,3,3).同理可得平面PBC 的一个法向量m =(0,3,3). cos 〈m ,n 〉=m ·n |m ||n |=277.设二面角A -PB -C 的平面角为θ,由图易知θ为钝角, 则cos θ=-cos 〈m ,n 〉=-277.∴二面角A -PB -C 的余弦值为-277.2.如图,在三棱柱ABC -A 1B 1C 1中,△ABC 和△AA 1C 均是边长为2的等边三角形,点O 为AC 中点,平面AA 1C 1C ⊥平面ABC .(1)证明:A 1O ⊥平面ABC ;(2)求直线AB 与平面A 1BC 1所成角的正弦值. (1)证明 ∵AA 1=A 1C ,且O 为AC 的中点, ∴A 1O ⊥AC ,又∵平面AA 1C 1C ⊥平面ABC ,平面AA 1C 1C ∩平面ABC =AC ,A 1O ⊂平面AA 1C 1C , ∴A 1O ⊥平面ABC .(2)解 如图,以O 为原点,OB ,OC ,OA 1所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系.由已知可得O (0,0,0),A (0,-1,0),B (3,0,0),A 1(0,0,3),C 1(0,2,3), ∴AB →=(3,1,0),A 1B →=(3,0,-3),A 1C 1—→=(0,2,0), 设平面A 1BC 1的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·A 1C 1→=0,n ·A 1B →=0,即⎩⎨⎧2y =0,3x -3z =0,∴平面A 1BC 1的一个法向量为n =(1,0,1), 设直线AB 与平面A 1BC 1所成的角为α, 则sin α=|cos 〈AB →,n 〉|,又∵cos 〈AB →,n 〉=AB →·n |AB →||n |=322=64,∴AB 与平面A 1BC 1所成角的正弦值为64. 3.如图1,在边长为5的菱形ABCD 中,AC =6,现沿对角线AC 把△ADC 翻折到△APC 的位置得到四面体P -ABC ,如图2所示.已知PB =4 2.(1)求证:平面P AC ⊥平面ABC ;(2)若Q 是线段AP 上的点,且AQ →=13AP →,求二面角Q -BC -A 的余弦值.(1)证明 取AC 的中点O ,连接PO ,BO 得到△PBO .∵四边形ABCD 是菱形,∴P A =PC ,PO ⊥AC . ∵DC =5,AC =6,∴OC =3,PO =OB =4, ∵PB =42,∴PO 2+OB 2=PB 2,∴PO ⊥OB .∵OB ∩AC =O ,OB ,AC ⊂平面ABC ,∴PO ⊥平面ABC . ∵PO ⊂平面P AC ,∴平面P AC ⊥平面ABC . (2)解 ∵AB =BC ,∴BO ⊥AC . 易知OB ,OC ,OP 两两垂直.以O 为坐标原点,OB ,OC ,OP 所在直线分别为x 轴、y 轴、z 轴建立如图所示的空间直角坐标系Oxyz .则B (4,0,0),C (0,3,0),P (0,0,4),A (0,-3,0). 设点Q (x ,y ,z ).由AQ →=13AP →,得Q ⎝⎛⎭⎫0,-2,43. ∴BC →=(-4,3,0),BQ →=⎝⎛⎭⎫-4,-2,43. 设n 1=(x 1,y 1,z 1)为平面BCQ 的法向量. 由⎩⎪⎨⎪⎧ n 1·BC →=0,n 1·BQ →=0,得⎩⎪⎨⎪⎧-4x 1+3y 1=0,-4x 1-2y 1+43z 1=0, 解得⎩⎨⎧x 1=34y 1,y 1=415z 1,取z 1=15,则n 1=(3,4,15).取平面ABC 的一个法向量n 2=(0,0,1).∵cos 〈n 1,n 2〉=n 1·n 2|n 1||n 2|=1532+42+152=31010,由图可知二面角Q -BC -A 为锐角, ∴二面角Q -BC -A 的余弦值为31010.4.如图,多面体ABCDEF 中,ABCD 为正方形,AB =2,AE =3,DE =5,二面角E -AD -C 的余弦值为55,且EF ∥BD .(1)证明:平面ABCD ⊥平面EDC ;(2)求平面AEF 与平面EDC 所成锐二面角的余弦值. (1)证明 ∵AB =AD =2,AE =3,DE =5,∴AD 2+DE 2=AE 2, ∴AD ⊥DE ,又正方形ABCD 中,AD ⊥DC ,且DE ∩DC =D ,DE ,DC ⊂平面EDC , ∴AD ⊥平面EDC , 又∵AD ⊂平面ABCD , ∴平面ABCD ⊥平面EDC .(2)解 由(1)知,∠EDC 是二面角E -AD -C 的平面角, 作OE ⊥CD 于O ,则OD =DE ·cos ∠EDC =1,OE =2,又∵平面ABCD ⊥平面EDC ,平面ABCD ∩平面EDC =CD ,OE ⊂平面EDC , ∴OE ⊥平面ABCD .取AB 中点M ,连接OM ,则OM ⊥CD ,如图,以O 为原点,分别以OM ,OC ,OE 所在直线为x 轴、y 轴、z 轴,建立空间直角坐标系,则A (2,-1,0),B (2,1,0), D (0,-1,0),E (0,0,2), ∴AE →=(-2,1,2), BD →=(-2,-2,0),又EF ∥BD ,知EF 的一个方向向量为(2,2,0), 设平面AEF 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·AE →=-2x +y +2z =0,n ·DB →=2x +2y =0,取x =-2,得n =(-2,2,-3), 又平面EDC 的一个法向量为m =(1,0,0), ∴cos 〈n ,m 〉=n ·m |n |·|m |=-21717,设平面AEF 与平面EDC 所成的锐二面角为θ, 则cos θ=|cos 〈n ,m 〉|=21717. 5.等边三角形ABC 的边长为3,点D ,E 分别是边AB ,AC 上的点,且满足AD DB =CE EA =12,如图1.将△ADE 沿DE 折起到△A 1DE 的位置,使二面角A 1—DE —B 为直二面角,连接A 1B ,A 1C ,如图2.(1)求证:A 1D ⊥平面BCED ;(2)在线段BC 上是否存在点P ,使直线P A 1与平面A 1BD 所成的角为60°?若存在,求出PB 的长;若不存在,请说明理由.(1)证明 因为等边三角形ABC 的边长为3, 且AD DB =CE EA =12,所以AD =1,AE =2. 在△ADE 中,∠DAE =60°,由余弦定理得 DE =12+22-2×1×2×cos 60°= 3. 从而AD 2+DE 2=AE 2,所以AD ⊥DE .折起后有A 1D ⊥DE ,因为二面角A 1—DE —B 是直二面角, 所以平面A 1DE ⊥平面BCED ,又平面A 1DE ∩平面BCED =DE ,A 1D ⊥DE ,A 1D ⊂平面A 1DE , 所以A 1D ⊥平面BCED .(2)解 存在.理由:由(1)可知ED ⊥DB ,A 1D ⊥平面BCED .以D 为坐标原点,分别以DB ,DE ,DA 1所在直线为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系Dxyz .设PB =2a (0≤2a ≤3),作PH ⊥BD 于点H , 连接A 1H ,A 1P ,则BH =a ,PH =3a ,DH =2-a .所以A 1(0,0,1),P (2-a ,3a ,0),E (0,3,0). 所以P A 1→=(a -2,-3a ,1). 因为ED ⊥平面A 1BD ,所以平面A 1BD 的一个法向量为DE →=(0,3,0). 要使直线P A 1与平面A 1BD 所成的角为60°,则sin 60°=|P A 1→·DE →||P A 1→||DE →|=3a 4a 2-4a +5×3=32, 解得a =54.此时2a =52,满足0≤2a ≤3,符合题意.所以在线段BC 上存在点P ,使直线P A 1与平面A 1BD 所成的角为60°,此时PB =52.6.如图,在四棱锥E -ABCD 中,底面ABCD 是圆内接四边形,CB =CD =CE =1,AB =AD =AE =3,EC ⊥BD .(1)求证:平面BED ⊥平面ABCD ;(2)若点P 在侧面ABE 内运动,且DP ∥平面BEC ,求直线DP 与平面ABE 所成角的正弦值的最大值.(1)证明 如图,连接AC ,交BD 于点O ,连接EO ,∵AD =AB ,CD =CB ,AC =AC , ∴△ADC ≌△ABC , 易得△ADO ≌△ABO , ∴∠AOD =∠AOB =90°, ∴AC ⊥BD .又EC ⊥BD ,EC ∩AC =C ,EC ,AC ⊂平面AEC , ∴BD ⊥平面AEC ,又OE ⊂平面AEC ,∴OE ⊥BD . 又底面ABCD 是圆内接四边形, ∴∠ADC =∠ABC =90°,在Rt △ADC 中,由AD =3,CD =1, 可得AC =2,AO =32,∴∠AEC =90°,AE AC =AO AE =32, 易得△AEO ∽△ACE ,∴∠AOE =∠AEC =90°,即EO ⊥AC .又AC ,BD ⊂平面ABCD ,AC ∩BD =O ,∴EO ⊥平面ABCD ,又EO ⊂平面BED ,∴平面BED ⊥平面ABCD .(2)解 如图,取AE 的中点M ,AB 的中点N ,连接MN ,ND ,DM ,则MN ∥BE ,由(1)知,∠DAC =∠BAC =30°,即∠DAB =60°,∴△ABD 为正三角形,∴DN ⊥AB ,又BC ⊥AB ,DN ,CB ⊂平面ABCD ,∴DN ∥CB ,又MN ∩DN =N ,BE ∩BC =B ,MN ,DN ⊂平面DMN ,BE ,BC ⊂平面EBC ,∴平面DMN ∥平面EBC ,∴点P 在线段MN 上.以O 为坐标原点,OA ,OB ,OE 所在直线分别为x 轴、y 轴、z 轴,建立空间直角坐标系,则A ⎝⎛⎭⎫32,0,0,B ⎝⎛⎭⎫0,32,0,E ⎝⎛⎭⎫0,0,32, M ⎝⎛⎭⎫34,0,34,D ⎝⎛⎭⎫0,-32,0,N ⎝⎛⎭⎫34,34,0, ∴AB →=⎝⎛⎭⎫-32,32,0,AE →=⎝⎛⎭⎫-32,0,32, DM →=⎝⎛⎭⎫34,32,34,MN →=⎝⎛⎭⎫0,34,-34, 设平面ABE 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧ AB →·n =0,AE →·n =0,即⎩⎨⎧-3x +y =0,-3x +z =0,令x =1,则n =(1,3,3),设MP →=λMN →(0≤λ≤1),可得DP →=DM →+MP →=⎝⎛⎭⎫34,32+34λ,34-34λ, 设直线DP 与平面ABE 所成的角为θ,则sin θ=|cos 〈n ,DP →〉|=|n ·DP →||n |·|DP →|=1242×λ2+λ+4, ∵0≤λ≤1,∴当λ=0时,sin θ取得最大值427. 故直线DP 与平面ABE 所成角的正弦值的最大值为427.。
三年 (2020-2022 ) 新高考数学真题汇编 专题04立体几何

新高考专题04立体几何【2022年新高考1卷】1.南水北调工程缓解了北方一些地区水资源短缺问题,其中一部分水蓄入某水库.已知该水库水位为海拔1485m .时,相应水面的面积为21400km .;水位为海拔1575m .时,相应水面的面积为21800km .,将该水库在这两个水位间的形状看作一个棱台,则该水库水位从海拔1485m .上升到1575m . 2.65)( )A .931.010m ⨯B .931.210m ⨯C .931.410m ⨯D .931.610m ⨯【答案】C 【解析】 【分析】根据题意只要求出棱台的高,即可利用棱台的体积公式求出. 【详解】依题意可知棱台的高为157.5148.59MN =-=(m),所以增加的水量即为棱台的体积V . 棱台上底面积262140.014010S ==⨯km m ,下底面积262180.018010S '==⨯km m ,∴((66119140101801033V h S S =+=⨯⨯⨯+⨯+'(()679933320109618 2.6510 1.43710 1.410(m )=⨯+⨯≈+⨯⨯=⨯≈⨯.故选:C .【2022年新高考1卷】2.已知正四棱锥的侧棱长为l ,其各顶点都在同一球面上.若该球的体积为36π,且3l ≤≤则该正四棱锥体积的取值范围是( )A .8118,4⎡⎤⎢⎥⎣⎦B .2781,44⎡⎤⎢⎥⎣⎦C .2764,43⎡⎤⎢⎥⎣⎦D .[18,27]【答案】C 【解析】 【分析】设正四棱锥的高为h ,由球的截面性质列方程求出正四棱锥的底面边长与高的关系,由此确定正四棱锥体积的取值范围. 【详解】∴ 球的体积为36π,所以球的半径3R =,设正四棱锥的底面边长为2a ,高为h , 则2222l a h =+,22232(3)a h =+-,所以26h l =,2222a l h =-所以正四棱锥的体积42622411214()=333366936l l l V Sh a h l l ⎛⎫==⨯⨯=⨯-⨯- ⎪⎝⎭,所以5233112449696l l V l l ⎛⎫⎛⎫-'=-= ⎪ ⎪⎝⎭⎝⎭,当3l ≤≤0V '>,当l ≤0V '<,所以当l =时,正四棱锥的体积V 取最大值,最大值为643,又3l =时,274V =,l =814V =,所以正四棱锥的体积V 的最小值为274,所以该正四棱锥体积的取值范围是276443⎡⎤⎢⎥⎣⎦,.故选:C.【2022年新高考2卷】3.已知正三棱台的高为1,上、下底面边长分别为则该球的表面积为( ) A .100π B .128π C .144π D .192π【答案】A 【解析】 【分析】根据题意可求出正三棱台上下底面所在圆面的半径12,r r ,再根据球心距,圆面半径,以及球的半径之间的关系,即可解出球的半径,从而得出球的表面积. 【详解】设正三棱台上下底面所在圆面的半径12,r r ,所以123432,260sin 60r r ==,即123,4r r ==,设球心到上下底面的距离分别为12,d d ,球的半径为R ,所以1d 2d =故121d d -=或121d d +=,1=1=,解得225R =符合题意,所以球的表面积为24π100πS R ==. 故选:A .【2021年新高考1卷】4)A .2B .C .4D .【答案】B 【解析】 【分析】设圆锥的母线长为l ,根据圆锥底面圆的周长等于扇形的弧长可求得l 的值,即为所求. 【详解】设圆锥的母线长为l ,由于圆锥底面圆的周长等于扇形的弧长,则2l ππ=解得l = 故选:B.【2021年新高考2卷】5.正四棱台的上、下底面的边长分别为2,4,侧棱长为2,则其体积为( )A.20+B .C .563D 【答案】D 【解析】 【分析】由四棱台的几何特征算出该几何体的高及上下底面面积,再由棱台的体积公式即可得解. 【详解】作出图形,连接该正四棱台上下底面的中心,如图,因为该四棱台上下底面边长分别为2,4,侧棱长为2,所以该棱台的高h下底面面积116S =,上底面面积24S =,所以该棱台的体积((121116433V h S S =+=+ 故选:D.【2020年新高考1卷(山东卷)】6.日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O ),地球上一点A 的纬度是指OA 与地球赤道所在平面所成角,点A 处的水平面是指过点A 且与OA 垂直的平面.在点A 处放置一个日晷,若晷面与赤道所在平面平行,点A 处的纬度为北纬40°,则晷针与点A 处的水平面所成角为( )A .20°B .40°C .50°D .90°【答案】B【分析】画出过球心和晷针所确定的平面截地球和晷面的截面图,根据面面平行的性质定理和线面垂直的定义判定有关截线的关系,根据点A 处的纬度,计算出晷针与点A 处的水平面所成角. 【详解】画出截面图如下图所示,其中CD 是赤道所在平面的截线;l 是点A 处的水平面的截线,依题意可知OA l ⊥;AB 是晷针所在直线.m 是晷面的截线,依题意依题意,晷面和赤道平面平行,晷针与晷面垂直,根据平面平行的性质定理可得可知//m CD 、根据线面垂直的定义可得AB m ⊥.. 由于40,//AOC m CD ∠=︒,所以40OAG AOC ∠=∠=︒, 由于90OAG GAE BAE GAE ∠+∠=∠+∠=︒,所以40BAE OAG ∠=∠=︒,也即晷针与点A 处的水平面所成角为40BAE ∠=︒. 故选:B【点睛】本小题主要考查中国古代数学文化,考查球体有关计算,涉及平面平行,线面垂直的性质,属于中档题.【2022年新高考1卷】7.已知正方体1111ABCD A B C D -,则( ) A .直线1BC 与1DA 所成的角为90︒ B .直线1BC 与1CA 所成的角为90︒ C .直线1BC 与平面11BB D D 所成的角为45︒ D .直线1BC 与平面ABCD 所成的角为45︒【答案】ABD【分析】数形结合,依次对所给选项进行判断即可. 【详解】如图,连接1B C 、1BC ,因为11//DA B C ,所以直线1BC 与1B C 所成的角即为直线1BC 与1DA 所成的角,因为四边形11BB C C 为正方形,则1B C ⊥1BC ,故直线1BC 与1DA 所成的角为90︒,A 正确;连接1A C ,因为11A B ⊥平面11BB C C ,1BC ⊂平面11BB C C ,则111A B BC ⊥, 因为1B C ⊥1BC ,1111A B B C B =,所以1BC ⊥平面11A B C ,又1AC ⊂平面11A B C ,所以11BC CA ⊥,故B 正确; 连接11A C ,设1111AC B D O =,连接BO ,因为1BB ⊥平面1111D C B A ,1C O ⊂平面1111D C B A ,则11C O B B ⊥, 因为111C O B D ⊥,1111B D B B B ⋂=,所以1C O ⊥平面11BB D D , 所以1C BO ∠为直线1BC 与平面11BB D D 所成的角,设正方体棱长为1,则1C O =1BC 1111sin 2C O C BO BC ∠==, 所以,直线1BC 与平面11BB D D 所成的角为30,故C 错误;因为1C C ⊥平面ABCD ,所以1C BC ∠为直线1BC 与平面ABCD 所成的角,易得145C BC ∠=,故D 正确. 故选:ABD【2022年新高考2卷】8.如图,四边形ABCD 为正方形,ED ⊥平面ABCD ,,2FB ED AB ED FB ==∥,记三棱锥E ACD -,F ABC -,F ACE -的体积分别为123,,V V V ,则( )A .322V V =B .31V V =C .312V V V =+D .3123V V =【答案】CD 【解析】 【分析】直接由体积公式计算12,V V ,连接BD 交AC 于点M ,连接,EM FM ,由3A EFM C EFM V V V --=+计算出3V ,依次判断选项即可. 【详解】设22AB ED FB a ===,因为ED ⊥平面ABCD ,FB ED ,则()2311114223323ACDV ED Sa a a =⋅⋅=⋅⋅⋅=, ()232111223323ABCV FB Sa a a =⋅⋅=⋅⋅⋅=,连接BD 交AC 于点M ,连接,EM FM ,易得BD AC ⊥,又ED ⊥平面ABCD ,AC ⊂平面ABCD ,则ED AC ⊥,又ED BD D =,,ED BD ⊂平面BDEF ,则AC ⊥平面BDEF ,又12BM DM BD ==,过F 作FG DE ⊥于G ,易得四边形BDGF 为矩形,则,FG BD EG a ===,则,EM FM ==,3EF a =,222EM FM EF +=,则EM FM ⊥,212EFMS EM FM =⋅=,AC =, 则33123A EFM C EFM EFMV V V AC S a --=+=⋅=,则3123V V =,323V V =,312V V V =+,故A 、B 错误;C 、D 正确. 故选:CD.【2021年新高考1卷】9.在正三棱柱111ABC A B C -中,11AB AA ==,点P 满足1BP BC BB λμ=+,其中[]0,1λ∈,[]0,1μ∈,则( )A .当1λ=时,1AB P △的周长为定值B .当1μ=时,三棱锥1P A BC -的体积为定值 C .当12λ=时,有且仅有一个点P ,使得1A P BP ⊥ D .当12μ=时,有且仅有一个点P ,使得1A B ⊥平面1AB P 【答案】BD 【解析】 【分析】对于A ,由于等价向量关系,联系到一个三角形内,进而确定点的坐标;对于B ,将P 点的运动轨迹考虑到一个三角形内,确定路线,进而考虑体积是否为定值; 对于C ,考虑借助向量的平移将P 点轨迹确定,进而考虑建立合适的直角坐标系来求解P 点的个数;对于D ,考虑借助向量的平移将P 点轨迹确定,进而考虑建立合适的直角坐标系来求解P 点的个数.【详解】易知,点P 在矩形11BCC B 内部(含边界).对于A ,当1λ=时,11=BP BC BB BC CC μμ=++,即此时P ∈线段1CC ,1AB P △周长不是定值,故A 错误;对于B ,当1μ=时,1111=BP BC BB BB BC λλ=++,故此时P 点轨迹为线段11B C ,而11//B C BC ,11//B C 平面1A BC ,则有P 到平面1A BC 的距离为定值,所以其体积为定值,故B 正确.对于C ,当12λ=时,112BP BC BB μ=+,取BC ,11B C 中点分别为Q ,H ,则BP BQ QH μ=+,所以P 点轨迹为线段QH ,不妨建系解决,建立空间直角坐标系如图,1A ⎫⎪⎪⎝⎭,()0,0P μ,,10,,02B ⎛⎫⎪⎝⎭,则112A P μ⎛⎫=-- ⎪ ⎪⎝⎭,10,,2BP μ⎛⎫=- ⎪⎝⎭,()110A P BP μμ⋅=-=,所以0μ=或1μ=.故,H Q 均满足,故C 错误; 对于D ,当12μ=时,112BP BC BB λ=+,取1BB ,1CC 中点为,M N .BP BM MN λ=+,所以P 点轨迹为线段MN .设010,,2P y ⎛⎫ ⎪⎝⎭,因为0,0A ⎫⎪⎪⎝⎭,所以01,2AP y ⎛⎫=- ⎪ ⎪⎝⎭,11,12A B ⎛⎫=-- ⎪ ⎪⎝⎭,所以00311104222y y +-=⇒=-,此时P 与N 重合,故D 正确. 故选:BD .【点睛】本题主要考查向量的等价替换,关键之处在于所求点的坐标放在三角形内.【2021年新高考2卷】10.如图,在正方体中,O 为底面的中心,P 为所在棱的中点,M ,N 为正方体的顶点.则满足MN OP ⊥的是( )A .B .C .D .【答案】BC 【解析】 【分析】根据线面垂直的判定定理可得BC 的正误,平移直线MN 构造所考虑的线线角后可判断AD 的正误. 【详解】设正方体的棱长为2,对于A ,如图(1)所示,连接AC ,则//MN AC , 故POC ∠(或其补角)为异面直线,OP MN 所成的角,在直角三角形OPC ,OC =1CP =,故tanPOC ∠== 故MN OP ⊥不成立,故A 错误.对于B ,如图(2)所示,取NT 的中点为Q ,连接PQ ,OQ ,则OQ NT ⊥,PQ MN ⊥, 由正方体SBCM NADT -可得SN ⊥平面ANDT ,而OQ ⊂平面ANDT , 故SN OQ ⊥,而SNMN N =,故OQ ⊥平面SNTM ,又MN ⊂平面SNTM ,OQ MN ⊥,而OQ PQ Q =,所以MN ⊥平面OPQ ,而PO ⊂平面OPQ ,故MN OP ⊥,故B 正确.对于C ,如图(3),连接BD ,则//BD MN ,由B 的判断可得OP BD ⊥, 故OP MN ⊥,故C 正确.对于D ,如图(4),取AD 的中点Q ,AB 的中点K ,连接,,,,AC PQ OQ PK OK , 则//AC MN ,因为DP PC =,故//PQ AC ,故//PQ MN ,所以QPO ∠或其补角为异面直线,PO MN 所成的角,因为正方体的棱长为2,故12PQ AC ==OQ ==PO =222QO PQ OP <+,故QPO ∠不是直角,故,PO MN 不垂直,故D 错误. 故选:BC.【2020年新高考1卷(山东卷)】11.已知直四棱柱ABCD –A 1B 1C 1D 1的棱长均为2,∴BAD =60°.以1D 球面与侧面BCC 1B 1的交线长为________.. 【解析】 【分析】根据已知条件易得1D E =1D E ⊥侧面11B C CB ,可得侧面11B C CB 与球面的交线上的点到E 可得侧面11B C CB 与球面的交线是扇形EFG 的弧FG ,再根据弧长公式可求得结果. 【详解】 如图:取11B C 的中点为E ,1BB 的中点为F ,1CC 的中点为G ,因为BAD ∠=60°,直四棱柱1111ABCD A B C D -的棱长均为2,所以∴111D B C 为等边三角形,所以1D E 111D E B C ⊥,又四棱柱1111ABCD A B C D -为直四棱柱,所以1BB ⊥平面1111D C B A ,所以111BB B C ⊥, 因为1111BB B C B =,所以1D E ⊥侧面11B C CB ,设P 为侧面11B C CB 与球面的交线上的点,则1D E EP ⊥,1D E =||EP ==所以侧面11B C CB 与球面的交线上的点到E因为||||EF EG ==11B C CB 与球面的交线是扇形EFG 的弧FG , 因为114B EFC EG π∠=∠=,所以2FEG π∠=,所以根据弧长公式可得2FG π==.. 【点睛】本题考查了直棱柱的结构特征,考查了直线与平面垂直的判定,考查了立体几何中的轨迹问题,考查了扇形中的弧长公式,属于中档题. 【2020年新高考2卷(海南卷)】12.已知正方体ABCD -A 1B 1C 1D 1的棱长为2,M 、N 分别为BB 1、AB 的中点,则三棱锥A -NMD 1的体积为____________ 【答案】13【解析】 【分析】利用11A NMD D AMN V V --=计算即可. 【详解】因为正方体ABCD -A 1B 1C 1D 1的棱长为2,M 、N 分别为BB 1、AB 的中点 所以11111112323A NMD D AMN V V --==⨯⨯⨯⨯=故答案为:13【点睛】在求解三棱锥的体积时,要注意观察图形的特点,看把哪个当成顶点好计算一些. 【2022年新高考1卷】13.如图,直三棱柱111ABC A B C -的体积为4,1A BC 的面积为(1)求A 到平面1A BC 的距离;(2)设D 为1A C 的中点,1AA AB =,平面1A BC ⊥平面11ABB A ,求二面角A BD C --的正弦值.【答案】【解析】 【分析】(1)由等体积法运算即可得解;(2)由面面垂直的性质及判定可得BC ⊥平面11ABB A ,建立空间直角坐标系,利用空间向量法即可得解. (1)在直三棱柱111ABC A B C -中,设点A 到平面1A BC 的距离为h ,则111111112211433333A A BC A A ABC A ABC AB BC C C B V Sh h V S A A V ---=⋅===⋅==,解得h =所以点A 到平面1A BC (2)取1A B 的中点E ,连接AE ,如图,因为1AA AB =,所以1AE A B ⊥, 又平面1A BC ⊥平面11ABB A ,平面1A BC平面111ABB A A B =,且AE ⊂平面11ABB A ,所以AE ⊥平面1A BC , 在直三棱柱111ABC A B C -中,1BB ⊥平面ABC ,由BC ⊂平面1A BC ,BC ⊂平面ABC 可得AE BC ⊥,1BB BC ⊥, 又1,AE BB ⊂平面11ABB A 且相交,所以BC ⊥平面11ABB A ,所以1,,BC BA BB 两两垂直,以B 为原点,建立空间直角坐标系,如图,由(1)得AE 12AA AB ==,1A B =2BC =, 则()()()()10,2,0,0,2,2,0,0,0,2,0,0A A B C ,所以1A C 的中点()1,1,1D , 则()1,1,1BD =,()()0,2,0,2,0,0BA BC ==,设平面ABD 的一个法向量(),,m x y z =,则020m BD x y z m BA y ⎧⋅=++=⎨⋅==⎩,可取()1,0,1m =-,设平面BDC 的一个法向量(),,n a b c =,则020n BD a b c n BC a ⎧⋅=++=⎨⋅==⎩, 可取()0,1,1n =-, 则11cos ,22m n m n m n⋅===⨯⋅,所以二面角A BD C --.【2022年新高考2卷】14.如图,PO 是三棱锥P ABC -的高,PA PB =,AB AC ⊥,E 是PB 的中点.(1)证明://OE 平面PAC ;(2)若30ABO CBO ∠=∠=︒,3PO =,5PA =,求二面角C AE B --的正弦值. 【答案】(1)证明见解析 (2)1113【解析】 【分析】(1)连接BO 并延长交AC 于点D ,连接OA 、PD ,根据三角形全等得到OA OB =,再根据直角三角形的性质得到AO DO =,即可得到O 为BD 的中点从而得到//OE PD ,即可得证; (2)建立适当的空间直角坐标系,利用空间向量法求出二面角的余弦的绝对值,再根据同角三角函数的基本关系计算可得. (1)证明:连接BO 并延长交AC 于点D ,连接OA 、PD ,因为PO 是三棱锥P ABC -的高,所以PO ⊥平面ABC ,,AO BO ⊂平面ABC , 所以PO AO ⊥、PO BO ⊥,又PA PB =,所以POA POB ≅△△,即OA OB =,所以OAB OBA ∠=∠,又AB AC ⊥,即90BAC ∠=︒,所以90OAB OAD ∠+∠=︒,90OBA ODA ∠+∠=︒, 所以ODA OAD ∠=∠所以AO DO =,即AO DO OB ==,所以O 为BD 的中点,又E 为PB 的中点,所以//OE PD , 又OE ⊄平面PAC ,PD ⊂平面PAC , 所以//OE 平面PAC(2)解:过点A 作//Az OP ,如图建立平面直角坐标系, 因为3PO =,5AP =,所以4OA ==,又30OBA OBC ∠=∠=︒,所以28BD OA ==,则4=AD,AB = 所以12AC =,所以()O,()B,()P ,()0,12,0C ,所以32E ⎛⎫ ⎪⎝⎭,则332AE ⎛⎫= ⎪⎝⎭,()4AB =,()0,12,0AC =,设平面AEB 的法向量为(),,n x y z =,则33302430n AE y z n AB ⎧⋅=++=⎪⎨⎪⋅==⎩,令2z =,则3y =-,0x =,所以()0,3,2n =-;设平面AEC 的法向量为(),,m a b c =,则33302120m AE ab c m AC b ⎧⋅=++=⎪⎨⎪⋅==⎩,令a =6c =-,0b =,所以()3,0,6m =-;所以cos ,13n m n m n m⋅-===设二面角C AE B --的大小为θ,则43cos cos ,=13n m θ=,所以11sin 13θ==,即二面角C AE B --的正弦值为1113.【2021年新高考1卷】15.如图,在三棱锥A BCD -中,平面ABD ⊥平面BCD ,AB AD =,O 为BD 的中点.(1)证明:OA CD ⊥;(2)若OCD 是边长为1的等边三角形,点E 在棱AD 上,2DE EA =,且二面角E BC D --的大小为45︒,求三棱锥A BCD -的体积.【答案】(1)证明见解析; 【解析】【分析】(1)由题意首先证得线面垂直,然后利用线面垂直的定义证明线线垂直即可;(2)方法二:利用几何关系找到二面角的平面角,然后结合相关的几何特征计算三棱锥的体积即可. 【详解】(1)因为AB AD =,O 是BD 中点,所以OA BD ⊥, 因为OA ⊂平面ABD ,平面ABD ⊥平面BCD , 且平面ABD ⋂平面BCD BD =,所以OA ⊥平面BCD . 因为CD ⊂平面BCD ,所以OA CD ⊥. (2)[方法一]:通性通法—坐标法如图所示,以O 为坐标原点,OA 为z 轴,OD 为y 轴,垂直OD 且过O 的直线为x 轴,建立空间直角坐标系O xyz -,则1,0),(0,1,0),(0,1,0)2C D B -,设12(0,0,),(0,,)33A m E m ,所以4233(0,,),(,,0)3322EB m BC =--=,设(),,n x y z =为平面EBC 的法向量,则由00EB n EC n ⎧⋅=⎨⋅=⎩可求得平面EBC 的一个法向量为2(3,1,)n m =--.又平面BCD 的一个法向量为()0,0,OA m =,所以cos ,n OA ==1m =. 又点C 到平面ABD112132A BCD C ABD V V --==⨯⨯⨯=, 所以三棱锥A BCD -[方法二]【最优解】:作出二面角的平面角 如图所示,作EG BD ⊥,垂足为点G .作GF BC ⊥,垂足为点F ,连结EF ,则OA EG ∥.因为OA ⊥平面BCD ,所以EG ⊥平面BCD ,EFG 为二面角E BC D --的平面角.因为45EFG ∠=︒,所以EG FG =. 由已知得1OB OD ==,故1OB OC ==.又30OBC OCB ∠=∠=︒,所以BC =因为24222,,,,133333GD GB FG CD EG OA ======,111122(11)13332A BCD BCDBOCV SO S OA A -==⨯⨯=⨯⨯⨯⨯⨯=. [方法三]:三面角公式考虑三面角B EDC -,记EBD ∠为α,EBC ∠为β,30DBC ∠=︒, 记二面角E BC D --为θ.据题意,得45θ=︒. 对β使用三面角的余弦公式,可得cos cos cos30βα=⋅︒,化简可得cos βα=.∴使用三面角的正弦公式,可得sin sin sin αβθ=,化简可得sin βα.∴ 将∴∴两式平方后相加,可得223cos 2sin 14αα+=,由此得221sin cos 4αα=,从而可得1tan 2α=±.如图可知π(0,)2α∈,即有1tan 2α=,根据三角形相似知,点G 为OD 的三等分点,即可得43BG =, 结合α的正切值,可得2,13EG OA ==从而可得三棱锥A BCD -【整体点评】(2)方法一:建立空间直角坐标系是解析几何中常用的方法,是此类题的通性通法,其好处在于将几何问题代数化,适合于复杂图形的处理;方法二:找到二面角的平面角是立体几何的基本功,在找出二面角的同时可以对几何体的几何特征有更加深刻的认识,该法为本题的最优解.方法三:三面角公式是一个优美的公式,在很多题目的解析中灵活使用三面角公式可以使得问题更加简单、直观、迅速. 【2021年新高考2卷】16.在四棱锥Q ABCD -中,底面ABCD 是正方形,若2,3AD QD QA QC ====.(1)证明:平面QAD ⊥平面ABCD ; (2)求二面角B QD A --的平面角的余弦值. 【答案】(1)证明见解析;(2)23. 【解析】 【分析】(1)取AD 的中点为O ,连接,QO CO ,可证QO ⊥平面ABCD ,从而得到面QAD ⊥面ABCD . (2)在平面ABCD 内,过O 作//OT CD ,交BC 于T ,则OT AD ⊥,建如图所示的空间坐标系,求出平面QAD 、平面BQD 的法向量后可求二面角的余弦值. 【详解】(1)取AD 的中点为O ,连接,QO CO . 因为QA QD =,OA OD =,则QO ⊥AD ,而2,AD QA ==2QO ==.在正方形ABCD 中,因为2AD =,故1DO =,故CO =因为3QC =,故222QC QO OC =+,故QOC 为直角三角形且QO OC ⊥, 因为OCAD O =,故QO ⊥平面ABCD ,因为QO ⊂平面QAD ,故平面QAD ⊥平面ABCD .(2)在平面ABCD 内,过O 作//OT CD ,交BC 于T ,则OT AD ⊥, 结合(1)中的QO ⊥平面ABCD ,故可建如图所示的空间坐标系.则()()()0,1,0,0,0,2,2,1,0D Q B -,故()()2,1,2,2,2,0BQ BD =-=-.设平面QBD 的法向量(),,n x y z =,则00n BQ n BD ⎧⋅=⎨⋅=⎩即220220x y z x y -++=⎧⎨-+=⎩,取1x =,则11,2y z ==,故11,1,2n ⎛⎫= ⎪⎝⎭.而平面QAD 的法向量为()1,0,0m =,故12cos ,3312m n ==⨯.二面角B QD A --的平面角为锐角,故其余弦值为23. 【2020年新高考1卷(山东卷)】17.如图,四棱锥P -ABCD 的底面为正方形,PD ∴底面ABCD .设平面P AD 与平面PBC 的交线为l .(1)证明:l ∴平面PDC ;(2)已知PD =AD =1,Q 为l 上的点,求PB 与平面QCD 所成角的正弦值的最大值. 【答案】(1)证明见解析;(2. 【解析】 【分析】(1)利用线面垂直的判定定理证得AD ⊥平面PDC ,利用线面平行的判定定理以及性质定理,证得//AD l ,从而得到l ⊥平面PDC ;(2)方法一:根据题意,建立相应的空间直角坐标系,得到相应点的坐标,设出点(,0,1)Q m ,之后求得平面QCD 的法向量以及向量PB 的坐标,求得cos ,n PB <>的最大值,即为直线PB 与平面QCD 所成角的正弦值的最大值. 【详解】 (1)证明:在正方形ABCD 中,//AD BC ,因为AD ⊄平面PBC ,BC ⊂平面PBC , 所以//AD 平面PBC,又因为AD ⊂平面PAD ,平面PAD 平面PBC l =,所以//AD l ,因为在四棱锥P ABCD -中,底面ABCD 是正方形,所以,,AD DC l DC ⊥∴⊥且PD ⊥平面ABCD ,所以,,AD PD l PD ⊥∴⊥ 因为CD PD D =,所以l ⊥平面PDC . (2)[方法一]【最优解】:通性通法因为,,DP DA DC 两两垂直,建立空间直角坐标系D xyz -,如图所示:因为1PD AD ==,设(0,0,0),(0,1,0),(1,0,0),(0,0,1),(1,1,0)D C A P B , 设(,0,1)Q m ,则有(0,1,0),(,0,1),(1,1,1)DC DQ m PB ===-, 设平面QCD 的法向量为(,,)n x y z =,则00DC n DQ n ⎧⋅=⎨⋅=⎩,即00y mx z =⎧⎨+=⎩,令1x =,则z m =-,所以平面QCD 的一个法向量为(1,0,)n m =-,则 1cos ,3n PB n PB n PB⋅+<>==根据直线的方向向量与平面法向量所成角的余弦值的绝对值即为直线与平面所成角的正弦值,所以直线PB 与平面QCD 所成角的正弦值等于|cos ,|n PB <>==≤,当且仅当1m =时取等号,所以直线PB 与平面QCD . [方法二]:定义法如图2,因为l ⊂平面PBC ,Q l ∈,所以Q ∈平面PBC .在平面PQC 中,设PB QC E =.在平面PAD 中,过P 点作PF QD ⊥,交QD 于F ,连接EF . 因为PD ⊥平面,ABCD DC ⊂平面ABCD ,所以DC PD ⊥. 又由,,DC AD ADPD D PD ⊥=⊂平面PAD ,AD ⊂平面PAD ,所以DC ⊥平面PAD .又PF ⊂平面PAD ,所以DC PF ⊥.又由,,PF QD QDDC D QD ⊥=⊂平面,QOC DC ⊂平面QDC ,所以PF ⊥平面QDC ,从而FEP ∠即为PB 与平面QCD 所成角.设PQ a =,在PQD △中,易求PF =由PQE 与BEC △相似,得1PE PQ a EB BC ==,可得PE =所以sin FEP ∠=≤1a =时等号成立. [方法三]:等体积法如图3,延长CB 至G ,使得BG PQ =,连接GQ ,GD ,则//PB QG ,过G 点作GM ⊥平面QDC ,交平面QDC 于M ,连接QM ,则GQM ∠即为所求.设PQ x =,在三棱锥Q DCG -中,111()(1)326Q DCG V PD CD CB BG x -=⋅⋅+=+.在三棱锥G QDC -中,111323G QDC V GM CD QD GM -=⋅⋅=由Q DCG G QDC V V --=得11(1)63x GM +=解得GM ==, 当且仅当1x =时等号成立.在Rt PDB △中,易求PB QG ==,所以直线PB 与平面QCD 所成角的正弦值的最大值为sin MQG ∠== 【整体点评】(2)方法一:根据题意建立空间直角坐标系,直线PB 与平面QCD 所成角的正弦值即为平面QCD 的法向量n 与向量PB 的夹角的余弦值的绝对值,即cos ,n PB <>,再根据基本不等式即可求出,是本题的通性通法,也是最优解;方法二:利用直线与平面所成角的定义,作出直线PB 与平面QCD 所成角,再利用解三角形以及基本不等式即可求出;方法三:巧妙利用//PB QG ,将线转移,再利用等体积法求得点面距,利用直线PB 与平面QCD 所成角的正弦值即为点面距与线段长度的比值的方法,即可求出. 【2020年新高考2卷(海南卷)】18.如图,四棱锥P -ABCD 的底面为正方形,PD ⊥底面ABCD .设平面P AD 与平面PBC 的交线为l .(1)证明:l ⊥平面PDC ;(2)已知PD =AD =1,Q 为l 上的点,QB ,求PB 与平面QCD 所成角的正弦值.【答案】(1)证明见解析;(2. 【解析】 【分析】(1)利用线面平行的判定定理以及性质定理,证得//AD l ,利用线面垂直的判定定理证得AD ⊥平面PDC ,从而得到l ⊥平面PDC ;(2)根据题意,建立相应的空间直角坐标系,得到相应点的坐标,设出点(,0,1)Q m ,之后求得平面QCD 的法向量以及向量PB 的坐标,求得cos ,n PB <>,即可得到直线PB 与平面QCD 所成角的正弦值.【详解】 (1)证明:在正方形ABCD 中,//AD BC , 因为AD ⊄平面PBC ,BC ⊂平面PBC , 所以//AD 平面PBC ,又因为AD ⊂平面PAD ,平面PAD 平面PBC l =, 所以//AD l ,因为在四棱锥P ABCD -中,底面ABCD 是正方形,所以,,AD DC l DC ⊥∴⊥ 且PD ⊥平面ABCD ,所以,,AD PD l PD ⊥∴⊥ 因为CD PD D = 所以l ⊥平面PDC ;(2)如图建立空间直角坐标系D xyz -,因为1PD AD ==,则有(0,0,0),(0,1,0),(1,0,0),(0,0,1),(1,1,0)D C A P B , 设(,0,1)Q m ,则有(0,1,0),(,0,1),(1,1,1)DC DQ m PB ===-,因为QB 1m = 设平面QCD 的法向量为(,,)n x y z =,则00DC n DQ n ⎧⋅=⎨⋅=⎩,即00y x z =⎧⎨+=⎩,令1x =,则1z =-,所以平面QCD 的一个法向量为(1,0,1)n =-,则2cos ,1n PB n PB n PB⋅<>==== 根据直线的方向向量与平面法向量所成角的余弦值的绝对值即为直线与平面所成角的正弦值,所以直线与平面所成角的正弦值等于6|cos ,|3n PB <>=所以直线PB 与平面QCD 【点睛】该题考查的是有关立体几何的问题,涉及到的知识点有线面平行的判定和性质,线面垂直的判定和性质,利用空间向量求线面角,利用基本不等式求最值,属于中档题目.。
2020版高考数学北师大版(理)一轮复习课件:高考大题专项四 高考中的立体几何

∴O(0,0,0),P(0,0,1),C(1,1,0),D(1,0,0),∵PA= 2,OP⊥AB, ∴PO= ������������2 -������������2 =1, ∴OA=OD=OP,∴H 是△ADP 的外心, ∵AD=PD=AP= 2, ∴H 是△ADP 的重心,∴ ������������ = ������������ + ������������ = ������������ + 3 ������������=
高考大题专项四
高考中的立体几何
核心考点
-2-
从近五年的高考试题来看,立体几何是历年高考的重点,约占整 个试卷的15%,通常以一大两小的模式命题,以中、低档难度为主. 简单几何体的表面积与体积、点、线、面位置关系的判定与证明 以及空间角的计算是考查的重点内容,前者多以客观题的形式命题, 后者主要以解答题的形式加以考查.着重考查推理论证能力和空间 想象能力,而且对数学运算的要求有加强的趋势.转化与化归思想 贯穿整个立体几何的始终.
随堂巩固
题型一
题型二
-20-
题型三
题型四
(1)证明 连接OE,∵AB=2,O是AB中点,CD=1, ∴OB=CD,∵AB∥CD, ∴四边形BCDO是平行四边形, ∴OD=1, ∵PO⊥平面ABCD,AD⫋平面ABCD, ∴PO⊥AD,∵O在平面PAD的正投影为H,∴OH⊥平面 PAD,∴OH⊥AD, 又∵OH∩PO=O,∴AD⊥平面POE,∴AD⊥OE, 又∵AO=OD=1,∴E是AD的中点.
随堂巩固
题型一
题型二
-3-
题型三
题型四
题型一 平行与垂直关系的证明(多维探究) 类型一 适合用几何法证明 例1
(2018北京一零一中学模拟,18)如图,在三棱柱ABC-A1B1C1中,底 面ABC为正三角形,侧棱AA1⊥底面ABC.已知D是BC的中 点,AB=AA1=2. (1)求证:平面AB1D⊥平面BB1C1C; (2)求证:A1C∥平面AB1D; (3)求三棱锥A1-AB1D的体积.
专题04 2020版立体几何(解析版)
专题04 立体几何2020真题汇编1.【2020年高考全国Ⅰ卷理数】埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥.以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为A .14B .12C .14D .12【答案】C【解析】如图,设,CD a PE b ==,则PO ==由题意得212PO ab =,即22142a b ab -=,化简得24()210b b a a -⋅-=,解得14b a =(负值舍去). 故选C .【点晴】本题主要考查正四棱锥的概念及其有关计算,考查学生的数学计算能力,是一道容易题. 2.【2020年高考全国Ⅱ卷理数】如图是一个多面体的三视图,这个多面体某条棱的一个端点在正视图中对应的点为M,在俯视图中对应的点为N,则该端点在侧视图中对应的点为A.E B.F C.G D.H【答案】A【解析】根据三视图,画出多面体立体图形,14D D 上的点在正视图中都对应点M ,直线34B C 上的点在俯视图中对应的点为N,∴在正视图中对应M ,在俯视图中对应N 的点是4D ,线段34D D ,上的所有点在侧试图中都对应E ,∴点4D 在侧视图中对应的点为E .故选A.【点睛】本题主要考查了根据三视图判断点的位置,解题关键是掌握三视图的基础知识和根据三视图能还原立体图形的方法,考查了分析能力和空间想象,属于基础题.3.【2020年高考全国II 卷理数】已知△ABC O 的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为AB .32C .1D 【答案】C【解析】设球O 的半径为R ,则2416R π=π,解得:2R =. 设ABC △外接圆半径为r ,边长为a ,ABC △21224a ∴⨯=,解得:3a =,2233r ∴===,∴球心O 到平面ABC 的距离1d ===.故选:C .【点睛】本题考查球的相关问题的求解,涉及到球的表面积公式和三角形面积公式的应用;解题关键是明确球的性质,即球心和三角形外接圆圆心的连线必垂直于三角形所在平面. 4.【2020年高考全国Ⅲ卷理数】如图为某几何体的三视图,则该几何体的表面积是A.B .C.D .【答案】C【解析】根据三视图特征,在正方体中截取出符合题意的立体图形根据立体图形可得:12222ABC ADC CDB S S S ===⨯⨯=△△△根据勾股定理可得:AB AD DB ===∴ADB △是边长为根据三角形面积公式可得:211sin 6022ADB S AB AD =⋅⋅︒==△∴该几何体的表面积是:632=⨯++故选:C .【点睛】本题主要考查了根据三视图求立体图形的表面积问题,解题关键是掌握根据三视图画出立体图形,考查了分析能力和空间想象能力,属于基础题.5.【2020年高考全国Ⅰ卷理数】已知,,A B C 为球O 的球面上的三个点,⊙1O 为ABC △的外接圆,若⊙1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为 A .64π B .48πC .36πD .32π【答案】A【解析】设圆1O 半径为r ,球的半径为R ,依题意,得24,2r r π=π=∴,ABC 为等边三角形,由正弦定理可得2sin 60AB r =︒=,1OO AB ∴==1OO ⊥平面ABC ,11,4OO O A R OA ∴⊥====, ∴球O 的表面积2464S R ππ==.故选:A.【点睛】本题考查球的表面积,应用球的截面性质是解题的关键,考查计算求解能力,属于基础题.6.【2020年高考天津】若棱长为 A .12π B .24πC .36πD .144π【答案】C【解析】这个球是正方体的外接球,其半径等于正方体的体对角线的一半,即3R ==,所以,这个球的表面积为2244336S R πππ==⨯=.故选:C .【点睛】本题考查正方体的外接球的表面积的求法,求出外接球的半径是本题的解题关键,属于基础题.求多面体的外接球的面积和体积问题,常用方法有:(1)三条棱两两互相垂直时,可恢复为长方体,利用长方体的体对角线为外接球的直径,求出球的半径;(2)直棱柱的外接球可利用棱柱的上下底面平行,借助球的对称性,球心为上下底面外接圆的圆心连线的中点,再根据勾股定理求球的半径;(3)如果设计几何体有两个面相交,可过两个面的外心分别作两个面的垂线,垂线的交点为几何体的球心. 7.【2020年高考北京】某三棱柱的底面为正三角形,其三视图如图所示,该三棱柱的表面积为A .6B .6+C .12+D .12+【答案】D【解析】由题意可得,三棱柱的上下底面为边长为2的等边三角形,侧面为三个边长为2的正方形,则其表面积为:()1322222sin 60122S ⎛⎫=⨯⨯+⨯⨯⨯⨯︒=+ ⎪⎝⎭故选:D .【点睛】(1)以三视图为载体考查几何体的表面积,关键是能够对给出的三视图进行恰当的分析,从三视图中发现几何体中各元素间的位置关系及数量关系.(2)多面体表面积是各个面的面积之和;组合体的表面积应注意重合部分的处理.(3)圆柱、圆锥、圆台的侧面是曲面,计算侧面积时需要将这个曲面展为平面图形计算,而表面积是侧面积与底面圆的面积之和.8.【2020年高考浙江】某几何体的三视图(单位:cm)如图所示,则该几何体的体积(单位:cm3)是A.73B.143C.3D.6【答案】A【解析】由三视图可知,该几何体是上半部分是三棱锥,下半部分是三棱柱,且三棱锥的一个侧面垂直于底面,且棱锥的高为1,棱柱的底面为等腰直角三角形,棱柱的高为2,所以几何体的体积为11117 2112122 32233⎛⎫⎛⎫⨯⨯⨯⨯+⨯⨯⨯=+=⎪ ⎪⎝⎭⎝⎭.故选:A 的【点睛】本小题主要考查根据三视图计算几何体的体积,属于基础题.9.【2020年高考浙江】已知空间中不过同一点的三条直线l ,m ,n .“l ,m ,n 共面”是“l ,m ,n 两两相交”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】B【解析】依题意,,m n l 是空间不过同一点的三条直线,当,,m n l 在同一平面时,可能////m n l ,故不能得出,,m n l 两两相交.当,,m n l 两两相交时,设,,m n A m l B n l C ⋂=⋂=⋂=,根据公理2可知,m n 确定一个平面α,而,B m C n αα∈⊂∈⊂,根据公理1可知,直线BC 即l α⊂,所以,,m n l 在同一平面.综上所述,“,,m n l 在同一平面”是“,,m n l 两两相交”的必要不充分条件.故选:B【点睛】本小题主要考查充分、必要条件的判断,考查公理1和公理2的运用,属于中档题.10.【2020年新高考全国Ⅰ卷】日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O ),地球上一点A 的纬度是指OA 与地球赤道所在平面所成角,点A 处的水平面是指过点A 且与OA 垂直的平面.在点A 处放置一个日晷,若晷面与赤道所在平面平行,点A 处的纬度为北纬40°,则晷针与点A 处的水平面所成角为A .20°B .40°C .50°D .90°【答案】B【解析】画出截面图如下图所示,其中CD 是赤道所在平面的截线;l 是点A 处的水平面的截线,依题意可知OA l ⊥;AB 是晷针所在直线.m 是晷面的截线,依题意依题意,晷面和赤道平面平行,晷针与晷面垂直,根据平面平行的性质定理可得可知//m CD 、根据线面垂直的定义可得AB m ⊥.. 由于40,//AOC m CD ∠=︒,所以40OAG AOC ∠=∠=︒, 由于90OAG GAE BAE GAE ∠+∠=∠+∠=︒,所以40BAE OAG ∠=∠=︒,也即晷针与点A 处的水平面所成角为40BAE ∠=︒. 故选:B【点睛】本小题主要考查中国古代数学文化,考查球体有关计算,涉及平面平行,线面垂直的性质,属于中档题.11.【2020年高考全国Ⅱ卷理数】设有下列四个命题:p 1:两两相交且不过同一点的三条直线必在同一平面内. p 2:过空间中任意三点有且仅有一个平面. p 3:若空间两条直线不相交,则这两条直线平行. p 4:若直线l ⊂平面α,直线m ⊥平面α,则m ⊥l . 则下述命题中所有真命题的序号是__________. ①14p p ∧ ②12p p ∧③23p p ⌝∨④34p p ⌝∨⌝【答案】①③④【解析】对于命题1p ,可设1l 与2l 相交,这两条直线确定的平面为α;若3l 与1l 相交,则交点A 在平面α内, 同理,3l 与2l 的交点B 也在平面α内,所以,AB α⊂,即3l α⊂,命题1p 为真命题;对于命题2p ,若三点共线,则过这三个点的平面有无数个, 命题2p 为假命题;对于命题3p ,空间中两条直线相交、平行或异面, 命题3p 为假命题;对于命题4p ,若直线m ⊥平面α, 则m 垂直于平面α内所有直线, 直线l ⊂平面α,∴直线m ⊥直线l , 命题4p 为真命题.综上可知,,为真命题,,为假命题,14p p ∧为真命题,12p p ∧为假命题,23p p ⌝∨为真命题,34p p ⌝∨⌝为真命题.故答案为:①③④.【点睛】本题考查复合命题的真假,同时也考查了空间中线面关系有关命题真假的判断,考查推理能力,属于中等题.12.【2020年高考全国Ⅲ卷理数】已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为_________.【解析】易知半径最大球为圆锥的内切球,球与圆锥内切时的轴截面如图所示, 其中2,3BC AB AC ===,且点M 为BC 边上的中点, 设内切圆的圆心为O ,由于AM ==122S =⨯⨯=△ABC 设内切圆半径为r ,则:ABC AOB BOC AOC S S S S =++△△△△111222AB r BC r AC r =⨯⨯+⨯⨯+⨯⨯()13322r =⨯++⨯=解得:22r,其体积:3433V r =π=π.. 【点睛】与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.13.【2020年高考浙江】已知圆锥的侧面积(单位:cm 2)为2π,且它的侧面展开图是一个半圆,则这个圆锥的底面半径(单位:cm )是_______. 【答案】1【解析】设圆锥底面半径为r ,母线长为l ,则21222r l r l ππππ⨯⨯=⎧⎪⎨⨯⨯=⨯⨯⨯⎪⎩,解得1,2r l ==. 故答案为:1【点睛】本小题主要考查圆锥侧面展开图有关计算,属于基础题.14.【2020年高考江苏】如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.已知螺帽的底面正六边形边长为2 cm ,高为2 cm ,内孔半轻为0.5 cm ,则此六角螺帽毛坯的体积是 ▲ cm.【答案】2π【解析】正六棱柱体积为262⨯, 圆柱体积为21()222ππ⋅=,所求几何体体积为2π.故答案为:2π【点睛】本题考查正六棱柱体积、圆柱体积,考查基本分析求解能力,属基础题.15.【2020年新高考全国Ⅰ卷】已知直四棱柱ABCD –A 1B 1C 1D 1的棱长均为2,∠BAD =60°.以1D 为半径的球面与侧面BCC 1B 1的交线长为________.【答案】2. 【解析】如图:取11B C 的中点为E ,1BB 的中点为F ,1CC 的中点为G ,因为BAD ∠=60°,直四棱柱1111ABCD A B C D -的棱长均为2,所以△111D B C 为等边三角形,所以1D E=111D E B C ⊥,又四棱柱1111ABCD A B C D -为直四棱柱,所以1BB ⊥平面1111D C B A ,所以111BB B C ⊥, 因为1111BB B C B =,所以1D E ⊥侧面11B C CB ,设P 为侧面11B C CB 与球面的交线上的点,则1D E EP ⊥,1D E =,所以||EP ===所以侧面11B C CB 与球面的交线上的点到E ,因为||||EF EG ==11B C CB 与球面的交线是扇形EFG 的弧FG ,因为114B EFC EG π∠=∠=,所以2FEG π∠=,所以根据弧长公式可得22FG π==.故答案为:2. 【点睛】本题考查了直棱柱的结构特征,考查了直线与平面垂直的判定,考查了立体几何中的轨迹问题,考查了扇形中的弧长公式,属于中档题.16.【2020年高考全国Ⅰ卷理数】如图,D 为圆锥的顶点,O 是圆锥底面的圆心,AE 为底面直径,AE AD =.ABC △是底面的内接正三角形,P 为DO 上一点,PO =.(1)证明:PA ⊥平面PBC ; (2)求二面角B PC E --的余弦值.【解析】(1)设DO a =,由题设可得,,PO AO a AB a ===,PA PB PC ===. 因此222PA PB AB +=,从而PA PB ⊥. 又222PA PC AC +=,故PA PC ⊥.所以PA ⊥平面PBC .(2)以O 为坐标原点,OE 的方向为y 轴正方向,||OE 为单位长,建立如图所示的空间直角坐标系O xyz -.由题设可得1(0,1,0),(0,1,0),(,0),(0,0,22E A C P -.所以31(,,0),(0,2EC EP =--=-. 设(,,)x y z =m 是平面PCE 的法向量,则00EP EC ⎧⋅=⎪⎨⋅=⎪⎩m m ,即02102y z x y⎧-+=⎪⎪⎨⎪-=⎪⎩,可取(3=-m . 由(1)知(0,1,2AP =是平面PCB 的一个法向量,记AP =n ,则cos ,|||5⋅==n m n m n m |.所以二面角B PC E --的余弦值为5. 【点晴】本题主要考查线面垂直的证明以及利用向量求二面角的大小,考查学生空间想象能力,数学运算能力,是一道容易题.17.【2020年高考全国Ⅱ卷理数】如图,已知三棱柱ABC -A 1B 1C 1的底面是正三角形,侧面BB 1C 1C 是矩形,M ,N 分别为BC ,B 1C 1的中点,P 为AM 上一点,过B 1C 1和P 的平面交AB 于E ,交AC 于F .(1)证明:AA 1∥MN ,且平面A 1AMN ⊥平面EB 1C 1F ;(2)设O 为△A 1B 1C 1的中心,若AO ∥平面EB 1C 1F ,且AO =AB ,求直线B 1E 与平面A 1AMN 所成角的正弦值.【解析】(1)因为M ,N 分别为BC ,B 1C 1的中点,所以1MN CC ∥.又由已知得AA 1∥CC 1,故AA 1∥MN . 因为△A 1B 1C 1是正三角形,所以B 1C 1⊥A 1N .又B 1C 1⊥MN ,故B 1C 1⊥平面A 1AMN . 所以平面A 1AMN ⊥平面11EB C F .(2)由已知得AM ⊥BC .以M 为坐标原点,MA 的方向为x 轴正方向, MB 为单位长,建立如图所示的空间直角坐标系M -xyz ,则AB =2,AM连接NP ,则四边形AONP 为平行四边形,故1,0)3PM E =.由(1)知平面A 1AMN ⊥平面ABC ,作NQ ⊥AM ,垂足为Q ,则NQ ⊥平面ABC .设(,0,0)Q a,则1(NQ B a =, 故21123223210(,,4()),||33B E a a B E =-----=. 又(0,1,0)=-n 是平面A 1AMN 的法向量,故1111π10sin(,)cos ,2||B E B E B E B E⋅-===⋅n n n |n |所以直线B 1E 与平面A 1AMN .18.【2020年高考全国Ⅱ卷理数】如图,在长方体1111ABCD A B C D -中,点,E F 分别在棱11,DD BB 上,且12DE ED =,12BFFB =.(1)证明:点1C 在平面AEF 内;(2)若2AB =,1AD =,13AA =,求二面角1A EF A --的正弦值.【解析】设AB a =,AD b =,1AA c =,如图,以1C 为坐标原点,11C D 的方向为x 轴正方向,建立空间直角坐标系1C xyz -.(1)连结1C F ,则1(0,0,0)C ,(,,)A a b c ,2(,0,)3E a c ,1(0,,)3F b c ,1(0,,)3EA b c =,11(0,,)3C F b c =,得1EA C F =.因此1EA C F ∥,即1,,,A E F C 四点共面,所以点1C 在平面AEF 内. (2)由已知得(2,1,3)A ,(2,0,2)E ,(0,1,1)F ,1(2,1,0)A ,(0,1,1)AE =--,(2,0,2)AF =--,1(0,1,2)A E =-,1(2,0,1)A F =-.设1(,,)x y z =n 为平面AEF 的法向量,则110,0,AE AF ⎧⋅=⎪⎨⋅=⎪⎩n n 即0,220,y z x z --=⎧⎨--=⎩可取1(1,1,1)=--n . 设2n 为平面1A EF 的法向量,则22110,0,A E A F ⎧⋅=⎪⎨⋅=⎪⎩n n 同理可取21(,2,1)2=n .因为121212cos ,||||⋅〈〉==⋅n n n n n n ,所以二面角1A EF A --.19.【2020年高考江苏】在三棱柱ABC -A 1B 1C 1中,AB ⊥AC ,B 1C ⊥平面ABC ,E ,F 分别是AC ,B 1C的中点.(1)求证:EF ∥平面AB 1C 1; (2)求证:平面AB 1C ⊥平面ABB 1.【解析】因为,E F 分别是1,AC B C 的中点,所以1EF AB ∥.又/EF ⊂平面11AB C ,1AB ⊂平面11AB C ,所以EF ∥平面11AB C .(2)因为1B C ⊥平面ABC ,AB ⊂平面ABC ,所以1B C AB ⊥.又AB AC ⊥,1B C ⊂平面11AB C ,AC ⊂平面1AB C ,1,B CAC C =所以AB ⊥平面1AB C .又因为AB ⊂平面1ABB ,所以平面1AB C ⊥平面1ABB .【点睛】本小题主要考查线面平行的证明,考查面面垂直的证明,属于中档题.20.【2020年高考浙江】如图,在三棱台ABC —DEF 中,平面ACFD ⊥平面ABC ,∠ACB =∠ACD =45°,DC =2BC . (Ⅰ)证明:EF ⊥DB ;(Ⅱ)求直线DF 与平面DBC 所成角的正弦值.【解析】(Ⅰ)如图,过点D 作DO AC ⊥,交直线AC 于点O ,连结OB .由45ACD ∠=︒,DO AC ⊥得CD =,由平面ACFD ⊥平面ABC 得DO ⊥平面ABC ,所以DO BC ⊥.由45ACB ∠=︒,12BC CD ==得BO BC ⊥.所以BC ⊥平面BDO ,故BC ⊥DB .由三棱台ABC DEF -得BC EF ∥,所以EF DB ⊥.(Ⅱ)方法一:过点O 作OH BD ⊥,交直线BD 于点H ,连结CH .由三棱台ABC DEF -得DF CO ∥,所以直线DF 与平面DBC 所成角等于直线CO 与平面DBC 所成角. 由BC ⊥平面BDO 得OH BC ⊥,故OH ⊥平面BCD ,所以OCH ∠为直线CO 与平面DBC 所成角.设CD =.由2,DO OC BO BC ===,得BD OH =所以sin OH OCH OC ∠==,因此,直线DF 与平面DBC . 方法二:由三棱台ABC DEF -得DF CO ∥,所以直线DF 与平面DBC 所成角等于直线CO 与平面DBC 所成角,记为θ.如图,以O 为原点,分别以射线OC ,OD 为y ,z 轴的正半轴,建立空间直角坐标系O xyz -.设CD =.由题意知各点坐标如下:(0,0,0),(1,1,0),(0,2,0),(0,0,2)O B C D .因此(0,2,0),(1,1,0),(0,2,2)OC BC CD ==-=-. 设平面BCD 的法向量(,,z)x y =n .由0,0,BC CD ⎧⋅=⎪⎨⋅=⎪⎩n n 即0220x y y z -+=⎧⎨-+=⎩,可取(1,1,1)=n .所以|sin |cos ,||||OC OC OC θ⋅===⋅n |n n |.因此,直线DF 与平面DBC . 【点睛】本题主要考查空间点、线、面位置关系,线面垂直的判定定理的应用,直线与平面所成的角的求法,意在考查学生的直观想象能力和数学运算能力,属于基础题.21.【2020年高考天津】如图,在三棱柱111ABC A B C -中,1CC ⊥平面,,2ABC AC BC AC BC ⊥==,13CC =,点,D E 分别在棱1AA 和棱1CC 上,且2,1,AD CE M ==为棱11A B 的中点.(Ⅰ)求证:11CM B D ⊥;(Ⅱ)求二面角1B B E D --的正弦值;(Ⅲ)求直线AB 与平面1DB E 所成角的正弦值.【解析】依题意,以C 为原点,分别以1,,CA CB CC 的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系(如图),可得1(0,0,0),(2,0,0),(0,2,0),(0,0,3)C A B C ,11(2,0,3),(0,2,3),(2,0,1),(0,0,2)A B D E ,(1,1,3)M .(Ⅰ)证明:依题意,1(1,1,0)C M =,1(2,2,2)B D =--,从而112200C M B D ⋅=-+=,所以11C M B D ⊥.(Ⅱ)解:依题意,(2,0,0)CA =是平面1BB E 的一个法向量,1(0,2,1)EB =,(2,0,1)ED =-.设(,,)x y z =n 为平面1DB E 的法向量,则10,0,EB ED ⎧⋅=⎪⎨⋅=⎪⎩n n 即20,20.y z x z +=⎧⎨-=⎩不妨设1x =,可得(1,1,2)=-n .因此有|||cos ,6|A CA C CA⋅〈〉==n n n ,于是sin ,6CA 〈〉=n .所以,二面角1B B E D --的正弦值为6. (Ⅲ)解:依题意,(2,2,0)AB =-.由(Ⅱ)知(1,1,2)=-n 为平面1DB E 的一个法向量,于是cos,||||AB AB AB ⋅==n n n .所以,直线AB 与平面1DB E 所成角的正弦值为3.2020模拟汇编1.【2020·广东省高三一模(理)】已知直三棱柱111ABC A B C -的体积为V ,若P Q ,分别在11AA CC ,上,且111133AP AA CQ CC ==,,则四棱锥B APQC -的体积是 A .16VB .29VC .13VD .79V【答案】B【解析】在棱1BB 上取一点H ,使113BH BB =,连接PH 、QH , 由题意PHQ ABC S S =△△,BH ⊥平面PHQ ,所以111113339B PHQ PHQ ABC V S BH S BB V -=⋅=⋅=△△,11133ABC PHQ ABC ABC V S BH S BB V -=⋅=⋅=△△, 所以112399B APQC ABC PHQ B PHQ V V V V V V ---=-=-=.故选:B .【点睛】本题考查了直三棱柱的特征及几何体体积的求解,考查了空间思维能力,属于基础题. 2.【2020·全国高三(理)】在正方体1111ABCD A B C D -中,点E 是棱11B C 的中点,点F 是线段1CD 上的一个动点.有以下三个命题:①异面直线1AC 与1B F 所成的角是定值;②三棱锥1B A EF -的体积是定值;③直线1A F 与平面11B CD 所成的角是定值. 其中真命题的个数是 A .3 B .2C .1D .0【答案】B【解析】以A 点为坐标原点,AB,AD,1AA 所在直线为x 轴,y 轴,z 轴建立空间直角坐标系,设正方体棱长为1,可得B (1,0,0),C (1,1,O ),D (0,1,0),1A (0,0,1),1B (1,0,1),1C (1,1,1),1D (0,1,1),设F (t ,1,1-t ),(0≤t ≤1), 可得1AC =(1,1,1),1B F =(t -1,1,-t ),可得11AC B F =0,故异面直线1AC 与1B F 所的角是定值,故①正确;三棱锥1B A EF -的底面1A BE 面积为定值,且1CD ∥1BA ,点F 是线段1CD 上的一个动点,可得F 点到底面1A BE 的距离为定值,故三棱锥1B A EF -的体积是定值,故②正确;可得1A F =(t ,1,-t ),1B C =(0,1,-1),11B D =(-1,1,0),可得平面11B CD 的一个法向量为n =(1,1,1),可得1cos ,A F n 不为定值,故③错误;故选B .【点睛】本题主要考查空间角的求解及几何体体积的求解,建立直角坐标系,是解题的关键. 3.【2020·六盘山高级中学高三其他(理)】已知点 M N P Q ,,,在同一个球面上,34,5MN NP MP ===, ,若四面体MNPQ 体积的最大值为 10,则这个球的表面积是A .254πB .62516πC .22516πD .1254π【答案】B【解析】由34,5MN NP MP ===,,可知90PNM ∠=, 则球心O 在过PM 中点'O 与面MNP 垂直的直线上, 因为MNP 面积为定值,所以高最大时体积最大, 根据球的几何性质可得,当'O Q 过球心时体积最大, 因为四面体Q MNP -的最大体积为10,所以111'34'10332MNP S O Q O Q ⨯⨯=⨯⨯⨯⨯=△, 可得'5O Q =,在'OO P ∆中,222''OP OO O P =+,()222554R R ∴=-+,得258R =, ∴球的表面积为2256254816ππ⎛⎫⨯=⎪⎝⎭,故选B .【点睛】本题主要考查三棱锥外接球表面积的求法,属于难题.要求外接球的表面积和体积,关键是求出球的半径,求外接球半径的常见方法有:①若三条棱两垂直则用22224R a b c =++(,,a b c 为三棱的长);②可以转化为长方体的外接球; ③特殊几何体可以直接找出球心和半径;④设球心(在过底面多边形外接圆圆心与底面垂直的直线上),利用待定系数法求半径.4.【2020·六盘山高级中学高三其他(理)】对于直线m ,n 和平面α,β,αβ⊥的一个充分条件是A .m n ⊥,//m α,//n βB .m n ⊥,m αβ=,n ⊂αC .//m n ,n β⊥,m α⊂D .//m n ,m α⊥,n β⊥【答案】C【解析】A 选项中,根据m n ⊥,//m α,βn//,得到αβ⊥或αβ∥,所以A 错误;B 选项中,m n ⊥,m αβ=,n β⊂,不一定得到αβ⊥,所以B 错误;C 选项中,因为//m n ,n β⊥,所以m β⊥, 又m α⊂,从而得到αβ⊥,所以C 正确;D 选项中,根据//m n ,m α⊥,所以n α⊥,而n β⊥,所以得到αβ∥,所以D 错误. 故选:C .【点睛】本题考查空间中线面关系有关命题的判断,面面关系有关命题的判断,属于简单题.5.【2020·河南省南阳中学高三月考(理)】某简单几何体的三视图(俯视图为等边三角形)如图所示(单位:cm ),则该几何体的体积(单位:cm 3)为A .18B .C .D .【答案】C【解析】由题意可知几何体是底面为正三角形的三棱柱,底面边长为2,高为3, 所以几何体的体积为2234⨯⨯=C .【点睛】本题考查三视图求解几何体的体积,考查转化思想以及空间想象能力.6.【2020·福建省福州第一中学高三其他(理)】已知某几何体的三视图如图所示,则该几何体的体积为A .83πB .103πC .6πD .3π【答案】D【解析】该几何体是一个底面半径为1、高为4的圆柱被一个平面分割成两部分中的一个部分,故其体积为221141232V πππ=⨯⨯-⨯⨯⨯= . 本题选择D 选项.7.【2020·广西壮族自治区高三其他(理)】三个几何体组合的正视图和侧视图均为如下图所示,则下列图中能作为俯视图的个数为A .1B .2C .3D .4【答案】D【解析】对于①,由三个圆柱组合而成,其正视图和侧视图相同,符合要求;对于②,最底层是圆柱,中间是底面为正方形的直棱柱,最上面是小的圆柱,其正视图和侧视图相同,符合要求;对于③,最底层是圆柱,中间是底面为正方形的直棱柱,最上面是底面为正方形的小的直棱柱,其正视图和侧视图相同,符合要求;对于④,最底层是圆柱,中间是圆柱,最上面是底面为正方形的直棱柱,其正视图和侧视图相同,符合要求;所以四个图都可能作为俯视图. 故选:D .【点睛】考查由正视图和侧视图判断几何体的俯视图;基础题.8.【2020·辽宁省高三二模(理)】已知一个圆柱的侧面积等于表面积的一半,且其轴截面的周长是18,则该圆柱的体积是______. 【答案】27π【解析】设圆柱的底面圆的半径为r ,高为h .由题意可得()22π12π2π22218rhr rh r h ⎧=⎪+⎨⎪+=⎩,解得3r h ==,则该圆柱的体积是2π27πr h =. 故答案为:27π.【点睛】本题考查了圆柱体积的求解,考查了圆柱的侧面积.本题的关键是求出圆柱底面圆的半径和高.本题的难点在于轴截面的周长这一条件的理解.9.【2020·重庆南开中学高三期中(理)】正三棱柱111ABC A B C -中,2AB =,1AA =D 为棱11A B 的中点,则异面直线AD 与1CB 成角的大小为_______.【答案】6π 【解析】如图,1111111122AD AA A D AA A B AA AB =+=+=+,111CB CA AB BB AA AC AB =++=-+,且12,AB AC BC AA ====,侧棱和底面垂直, ∴1111()2AD CB AA AB AA AC AB ⎛⎫⋅=+⋅-+ ⎪⎝⎭2211122AA AB AC AB =-⋅+11182249222=-⨯⨯⨯+⨯=,13,AD CB ===∴1cos ,AD CB <>==[]1,0,AD CB π<>∈, ∴1,6AD CB π<>=,∴异面直线AD 与1CB 成角的大小为6π. 故答案为:6π.【点睛】解答本题时还可以建立空间直角坐标系,用坐标形式下的向量运算求解.10.【2020·四川省高三三模(理)】如图,平行六面体1111ABCD A B C D -中,5AB =,3AD =,17AA =,3BAD π∠=,114BAA DAA π∠=∠=,则1AC 的长为_____.【解析】平行六面体1111ABCD A B C D -中,5AB =,3AD =,17AA =,3BAD π∠=,114BAA DAA π∠=∠=,11AC AB BC CC =++,则()211221AC AC AB BC CC ==++2221112cos2cos2cos344AB BC CC AB BC BC CC AB CC πππ=+++⋅+⋅⋅+⋅12594925323725798222=+++⨯⨯⨯+⨯⨯⨯+⨯⨯⨯=+1198AC AC ∴==..【点睛】本题考查利用空间向量法求线段长,解答的关键就是选择合适的基底表示向量,考查计算能力,属于中等题.11.【2020·六盘山高级中学高三其他(理)】如图,在四棱锥中P ABCD -,PA ⊥平面ABCD ,AD BC ∥,AD CD ⊥,且AD CD ==BC =2PA =(1)求证:AB PC ⊥;(2)在线段PD 上,是否存在一点M ,使得二面角M AC D --的大小为45,如果存在,求BM 与平面MAC 所成的角的正弦值,如果不存在,请说明理由.【答案】(1)证明见解析;(2)存在,9. 【解析】(1)如图,由已知得四边形ABCD 是直角梯形,由已知AD CD ==,BC =可得ABC 是等腰直角三角形,即AB AC ⊥, 又PA ⊥平面ABCD ,则PA AB ⊥, 所以AB ⊥平面P AC , 所以AB PC ⊥.(2)假设存在符合条件的点M ,过点M 作MN AD ⊥于N ,则//MN PA ,MN ∴⊥平面ABCD ,MN AC ∴⊥.过点M 作MG AC ⊥于G ,连接NG ,则AC ⊥平面MNG , AC NG ∴⊥,即MGN ∠是二面角M AC D --的平面角.若45MGN ∠=︒,则NG MN =,又AN ==,1MN ∴=,即M 是线段PD 的中点.∴存在点M 使得二面角M AC D --的大小为45︒.在三棱锥M ABC -中,11184413323M ABC ABCV SMN -==⨯⨯⨯⨯=,设点B 到平面MAC 的距离是h ,则13B MAC MAC V S h -∆=,2MG =11422MACSAC MG ∴==⨯,∴1833h ⨯=,解得h =在ABN 中,4AB =,AN =135BAN ∠=︒,BN ∴=,BM ∴=BM ∴与平面MAC 所成角的正弦值为h BM =【点睛】本题考查了项目垂直的判定与性质,空间角与空间距离的计算,属于中档题.12.【2020·辽河油田第二高级中学高三月考(理)】如图,AB 是半圆O 的直径,C 是半圆O 上除A ,B 外的一个动点,DC 垂直于半圆O 所在的平面,DC ∥EB ,DC =EB =1,AB =4.(1)证明:平面ADE⊥平面ACD;(2)当C点为半圆的中点时,求二面角D﹣AE﹣B的余弦值.-【答案】(1)证明见解析(2)6【解析】(1)证明:∵AB是圆O的直径,∴AC⊥BC,∵DC⊥平面ABC,BC⊂平面ABC,∴DC⊥BC,又DC∩AC=C,∴BC⊥平面ACD,∵DC∥EB,DC=EB,∴四边形DCBE是平行四边形,∴DE∥BC,∴DE⊥平面ACD,又DE⊂平面ADE,∴平面ACD⊥平面ADE.(2)当C点为半圆的中点时,AC=BC=,以C为原点,以CA,CB,CD为坐标轴建立空间坐标系如图所示:则D(0,0,1),E(0,,1),A(,0,0),B(0,,0),∴AB=(﹣,0),BE=(0,0,1),DE=(0,,0),DA=(,0,﹣1),设平面DAE的法向量为m=(x1,y1,z1),平面ABE的法向量为n=(x2,y2,z2),则00m DA m DE ⎧⋅=⎨⋅=⎩,00n AB n BE ⎧⋅=⎨⋅=⎩,即11100z ⎧-=⎪⎨=⎪⎩,22200z ⎧-+=⎪⎨=⎪⎩,令x 1=1得m =(1,0,22),令x 2=1得n =(1,1,0).∴cos 632m n m n m n ⋅===⨯<,>.∵二面角D ﹣AE ﹣B 是钝二面角,∴二面角D ﹣AE ﹣B 的余弦值为6-.【点睛】本题考查了面面垂直的判定,空间向量与二面角的计算,属于中档题.13.【2020·湖北省高三其他(理)】如图所示,多面体是由底面为ABCD 的直四棱柱被截面AEFG 所截而得到的,该直四棱柱的底面为菱形,其中2AB =,5CF=,1BE =,60BAD ∠=.(1)求BG 的长;(2)求平面AEFG 与底面ABCD 所成锐二面角的余弦值.【答案】(1) (2)4【解析】因为多面体是由底面为ABCD 的直四棱柱被截面AEFG 所截而得到的, 所以平面ADG //平面BCFE ,又平面ADG平面AEFG AG =,平面BCFE ⋂平面AEFG EF =,所以//AG EF ,同理//AE GF ,所以四边形AEFG 是平行四边形,连结AC ,BD 交于O ,以O 为原点,,OB OC 所在直线分别为x 轴,y 轴建立如图所示的空间直角坐标系O xyz -,则(0,A ,(1,0,0)B ,(1,0,1)E ,F ,所以(4)AG EF ==-,(1,AB =,所以(2,0,4)BG AG AB =-=-,所以||(BG =-=所以BG 的长为(2)根据题意可取平面ABCD 的一个法向量为(0,0,1)m =,由(1)知(4)AG =-,(1,AE =,设平面AEFG 的法向量为(,,)n x y z =,则由00n AE n AG ⎧⋅=⎨⋅=⎩,得040x z x z ⎧++=⎪⎨-+=⎪⎩,即32y z x z ⎧=⎪⎪⎨⎪=⎪⎩,令23z =,则x =,5y =-,所以(33,5,n =-,所以cos ,4||||1m n m n mn ⋅〈〉===⋅⨯,所以平面AEFG 与底面ABCD 所成锐二面角的余弦值为4. 【点睛】本题主要考查面面平行的性质定理,线段长的求法及二面角的余弦值的求法,考查运算求解能力,属于中档题.14.【2020·广东省高三其他(理)】已知几何体ABCDEF 中,//AB CD ,//FC EA ,AD AB ⊥,AE ⊥面ABCD ,2AB AD EA ===,4CD CF ==.(1)求证:平面⊥BDF 平面BCF ;(2)求二面角E -BD-F 的余弦值.【答案】(1)证明见解析;(2)13. 【解析】(1)证明:在直角梯形ABCD 中由已知可得BD BC ==222,BD BC CD BD BC ∴+=∴⊥//FC EA ,且AE ⊥面ABCD , FC ∴⊥平面ABCD ,BC ⊂面ABCD ,BD FC ∴⊥, FCBC C =,BC ⊂面BCF ,FC ⊂面BCF∴BD ⊥面BCF且BD ⊂面BDF ,故面⊥BDF面BCF ;(2)分别以DA 、DC 所在直线为x 轴、y 轴,以D 为垂足作面DAC 的垂线DZ 为z 轴,建系如图(0,0,0),(2,2,0),(2,0,2)(0,4,4)D B E F , 则(2,2,0),(2,0,2),(0,4,4)DB DEDF ===,设面DEB 的法向量为(,,)m x y z =,则22002200x y m DB x z m DE ⎧+=⎧⋅=⇒⎨⎨+=⋅=⎩⎩,取1x =,则1y z ==-,故(1,1,1)m =--设面DBF 的法向量为(,,)n x y z =,则22004400x y n DB y z n DF ⎧+=⎧⋅=⇒⎨⎨+=⋅=⎩⎩,取1x =,则1,1y z =-=,故(1,1,1)n =-则1cos ,3||||3m n m n m n ⋅<>===⋅⨯,由图可得二面角E -BD -F 的余弦值为13. 【点睛】本题考查面面垂直的证明,考查用空间向量法求二面角,解题关键是建立空间直角坐标系,把求二面角问题化为纯粹的计算.15.【2020·福建省福州第一中学高三其他(理)】如图,组合体由半个圆锥S O -和一个三棱锥S ACD -构成,其中O 是圆锥S O -底面圆心,B 是圆弧AC 上一点,满足BOC ∠是锐角,2===AC CD DA .(1)在平面SAB 内过点B 作//BP 平面SCD 交SA 于点P ,并写出作图步骤,但不要求证明;(2)在(1)中,若P 是SA 中点,且SO =BP 与平面SAD 所成角的正弦值.【答案】(1)答案见解析;(2.【解析】(1)①延长AB 交DC 的延长线于点Q ;②连接SQ ;③过点B 作//BP QS 交SA 于点P .(2)若P 是SA 中点,则B 是AQ 中点,又因为CB AQ ⊥,所以CA CQ =,所以90QAD ∠=,从而30BAC ∠=.依题意,,,OS OC OD 两两垂直,分别以OC ,OD ,OS 为x ,y ,z 轴建立空间直角坐标系,则()()(111,0,0,,,,,22A D S P B ⎛⎛⎫-- ⎪⎝⎭⎝⎭, 从而()()1,3,0,1,0,3,AD AS BP ⎛===- ⎝⎭,设平面SAD 的法向量为(),,n x y z =,则0,0,AS n AD n ⎧⋅=⎨⋅=⎩即0,0,x x ⎧+=⎪⎨+=⎪⎩取x =)1,1=--n .则cos ,1n BP n BP n BP⋅====+, 所以直线BP 与平面SAD .16.【2020·广西壮族自治区高三其他(理)】如图,直三棱柱111ABC A B C -中,底面ABC 为等腰直角三角形,90ACB ∠=,12AA AC =,P 是侧棱1CC 上的点.。
高考数学专题四立体几何 微专题30 截面、交线问题
跟踪训练1 (1)(多选)已知正方体ABCD-A1B1C1D1,若AC1⊥平面α,则 关于平面α截此正方体所得截面的判断正确的是
√A.截面形状可能为正三角形
B.截面形状可能为正方形
√C.截面形状可能为正六边形
D.截面形状可能为五边形
如图,在正方体ABCD-A1B1C1D1中,连接A1B, A1D,BD,则AC1⊥平面A1BD, 所以平面α与平面A1BD平行或重合, 所以平面α与正方体的截面形状可能是正三角形、 正六边形,但不可能是五边形和四边形,故A,C 正确,B,D错误.
12345678
在平面A1B1C1D1内取一点G,使得A1G=1, 则AG= 5, 所以以A为球心, 5 为半径的球面与底面A1B1C1D1
的交线为以A1为圆心,1为半径的 RGQ ,
其长度为14×2π×1=π2,故选 A.
12345678
设正六棱柱ABCDEF-A1B1C1D1E1F1的底面边长为a,高为h. 若要使该正六棱柱的体积最大,正六棱柱应为球的内接正六棱柱中体
积最大者,
所以h42+a2=22,即 a2=4-h42,
又正六棱柱的底面积 S=6× 43a2, 所以该正六棱柱的体积 V=S·h=6× 43a2h=383(16-h2)h.
则 EF=
362-
332=
33=ME,
所以∠FME=45°,
圆与三角形截得的三部分,由对称性可知,圆心角都
为90°,故该球的球面与侧面PCD的交线长度为截面圆周长的 14, 即为14×2π×MF= 66π,故选 A.
总结提升
截面和交线问题在高考中一般为选择和填空题,难度较大.探究找 截面一是几何法,常用直接连接、作平行线或作延长线找交点, 找交线的方法常用线面交点法和面面交点法,二是利用空间向量法.
2020高考数学总复习——立体几何专项训练(附解析)
2020高考数学总复习——立体几何专项训练(附解析)空间几何体的结构特征、表面积与体积[基础保分练]1.给出下列4个命题:①各侧面都是全等四边形的棱柱一定是正棱柱; ②对角面是全等矩形的六面体一定是长方体;③若棱锥的侧棱长与底面多边形的边长相等,则该棱锥可能是正六棱锥; ④长方体一定是正四棱柱. 其中真命题的个数是( ) A .0B .1C .2D .32.母线长为1的圆锥的侧面展开图的圆心角等于43π,则该圆锥的体积为( )A.2281πB.881πC.4581πD.1081π 3.用平面α截球O 所得圆的半径为1,球心O 到平面α的距离为2,则此球的体积为( ) A.6π B .43π C .46πD .63π4.如图所示,已知三棱柱ABC -A 1B 1C 1的所有棱长均为1,且AA 1⊥底面ABC ,则三棱锥B 1-ABC 1的体积为( )A.312B.34C.612D.645.给出下列4个命题:①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线; ②底面为正多边形,且有相邻两个侧面与底面垂直的棱柱是正棱柱; ③直角三角形绕其任意一边所在直线旋转一周所形成的几何体都是圆锥; ④棱台的上、下底面可以不相似,但侧棱长一定相等. 其中真命题的个数是( ) A .0B .1C .2D .36.设三棱柱ABC-A1B1C1的体积为V,P,Q分别是侧棱AA1,CC1上的点,且PA=QC1,则四棱锥B-APQC的体积为( )A.16V B.14V C.13V D.12V7.在梯形ABCD中,∠ABC=π2,AD∥BC,BC=2AD=2AB=2.将梯形ABCD绕AD所在的直线旋转一周而形成的曲面所围成的几何体的体积为( )A.2π3B.4π3C.5π3D.2π8.现有橡皮泥制作的底面半径为5、高为4的圆锥和底面半径为2、高为8的圆柱各一个.若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为( )A.2B.6C.7D.39.圆柱形容器内盛有高度为8cm的水,若放入三个相同的球(球的半径与圆柱的底面半径相同)后,水恰好淹没最上面的球(如图所示),则球的半径是________cm.10.已知圆柱M的底面半径与球O的半径相同,且圆柱M与球O的表面积相等,则它们的体积之比V圆柱∶V球=________.[能力提升练]1.圆锥的轴截面是边长为2的正三角形,则圆锥的表面积为( )A.(3+1)πB.4πC.3πD.5π2.已知三棱锥P—ABC的所有顶点都在球O的球面上,△ABC满足AB=22,∠ACB=90°,PA为球O的直径且PA=4,则点P到底面ABC的距离为( )A.2B.22C.3D.2 33.(2019·珠海摸底)如图,圆锥顶点为P,底面圆心为O,过轴PO的截面△PAB,C为PA中点,PA=43,PO=6,则从点C经圆锥侧面到点B的最短距离为( )A.215 B.215-6 2C .6D .215-6 34.(2019·湛江调研)点A ,B ,C ,D 在同一个球的球面上,AB =BC =AC =3,若四面体ABCD 体积的最大值为3,则这个球的表面积为( ) A.169π16 B.289π16 C.25π16D .8π 5.已知正四面体P -ABC 的棱长为2,若M ,N 分别是PA ,BC 的中点,则三棱锥P -BMN 的体积为________.6.已知正方体ABCD -A 1B 1C 1D 1的棱长为2,线段EF ,GH 分别在AB ,CC 1上移动,且EF +GH =12,则三棱锥F -HGE 的体积最大值为________.答案精析基础保分练1.A 2.C 3.B 4.A 5.B 6.C 7.C 8.C 9.4 10.34能力提升练1.C [∵圆锥的轴截面是边长为2的正△ABC ,∴圆锥的底面半径r =1, 母线长l =2,表面积S =πr 2+12×2πr ×l =π+2π=3π.]2.B [取AB 的中点O 1,连接OO 1,如图,在△ABC 中,AB =22,∠ACB =90°,所以△ABC 所在小圆O 1是以AB 为直径的圆,所以O 1A =2,且OO 1⊥AO 1,又球O 的直径PA =4,所以OA =2,所以OO 1=OA 2-O 1A 2=2,且OO 1⊥底面ABC ,所以点P 到平面ABC 的距离为PB =2OO 1=2 2.] 3.A [先作出圆锥的侧面展开图如图所示,由题得圆锥底面圆的半径为32-62=23,所以AA 1=2π·23=43π, 所以∠APA 1=43π43=π,所以∠APB =π2,所以BC =32+32=215.]4.B [根据题意知,△ABC 是一个等边三角形,其面积为334,外接圆的半径为1,小圆的圆心为Q ,由于底面积S △ABC 不变,高最大时体积最大,所以DQ 与面ABC 垂直时体积最大,最大值为13S △ABC ×DQ =3,∴DQ =4,设球心为O ,半径为R ,则在Rt△AQO 中,OA 2=AQ 2+OQ 2,即R 2=12+(4-R )2,∴R =178,则这个球的表面积为S =4π⎝ ⎛⎭⎪⎫1782=289π16.] 5.26解析 连接AN ,作MD ⊥PN ,交PN 于D ,∵正四面体P -ABC 的棱长为2,M ,N 分别是PA ,BC 的中点, ∴AN ⊥BC ,PN ⊥BC ,MN ⊥AP ,且AN =PN =3, ∵AN ∩PN =N ,AN ,PN ⊂平面PNA , ∴BC ⊥平面PNA ,∵MD ⊂平面PNA ,∴MD ⊥BC , ∵BC ∩PN =N ,BC ,PN ⊂平面PBN , ∴MD ⊥平面PBN ,MN =PN 2-PM 2=2,∵12PN ·MD =12PM ·MN , ∴MD =PM ·MN PN =1×23=63, ∴三棱锥P -BMN 的体积V P -BMN =V M -PBN =13×S △PBN ×MD =13×12×1×3×63=26. 6.148解析 连接CE ,CF ,C 1E ,C 1F ,HE ,HF ,GE ,GF ,设EF =m ,GH =n (m >0,n >0), 则m +n =12.因为S △HGE ∶S △C 1CE =n ∶2, 所以V 三棱锥F -HGE ∶1F C CE V 三棱锥-=n ∶2.又因为1F C CE V 三棱锥-=1C CEF V 三棱锥-=13×2×12×2×m =23m , 所以V 三棱锥F -HGE =13mn .因为m +n =12,所以m ·n ≤m +n24=116, 故V 三棱锥F -HGE ≤148⎝ ⎛⎭⎪⎫当且仅当m =n =14时“=”成立.空间点、线、面的位置关系[基础保分练]1.若空间三条直线a ,b ,c 满足a ⊥b ,b ∥c ,则直线a 与c ( ) A .一定平行 B .一定相交 C .一定是异面直线D .一定垂直2.已知a ,b ,c 为三条不同的直线,且a ⊂平面α,b ⊂平面β,α∩β=c . ①若a 与b 是异面直线,则c 至少与a ,b 中的一条相交; ②若a 不垂直于c ,则a 与b 一定不垂直; ③若a ∥b ,则必有a ∥c ; ④若a ⊥b ,a ⊥c ,则必有α⊥β. 其中正确的命题的个数是( ) A .0B .1C .2D .33.已知E ,F ,G ,H 是空间内四个点,条件p :E ,F ,G ,H 四点不共面,条件q :直线EF 和GH 不相交.则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.如图,ABCD -A 1B 1C 1D 1是长方体,O 是BD 的中点,直线AC 1与平面A 1BD 相交于点M ,则下列结论正确的是( )A .A 1,M ,O 三点共线B .A ,O ,M ,A 1不共面C .A 1,M ,C 1,O 不共面D .B 1,B ,O ,M 共面5.如图所示,在空间四边形ABCD 中,点E ,H 分别是边AB ,AD 的中点,点F ,G 分别是边BC ,CD 上的点,且CF CB =CG CD =23,则下列说法正确的是( )A.EF与GH平行B.EF与GH异面C.EF与GH的交点M可能在直线AC上,也可能不在直线AC上D.EF与GH的交点M一定在直线AC上6.已知正四棱柱ABCD-A1B1C1D1中,AA1=2AB,则CD与平面BDC1所成角的正弦值等于( )A.23B.33C.23D.137.如图,在四面体ABCD中,截面PQMN是正方形,且PQ∥AC,QM∥BD,则下列命题中,错误的是( )A.AC⊥BDB.AC∥截面PQMNC.AC=BDD.异面直线PM与BD所成的角为45°8.如图所示,在正方体ABCD-A1B1C1D1中,E,F分别为BC,BB1的中点,则下列直线中与直线EF相交的是( )A.直线AA1B.直线A1B1C.直线A1D1D.直线B1C19.平行六面体ABCD-A1B1C1D1中既与AB共面又与CC1共面的棱有________条.10.给出下列四个说法:①经过三点确定一个平面;②梯形可以确定一个平面;③两两相交的三条直线最多可以确定三个平面;④若两个平面有三个公共点,则这两个平面重合.其中正确说法的是________.(填序号)[能力提升练]1.在正方体ABCD-A1B1C1D1中,E,F分别为棱AA1,CC1的中点,则在空间中与三条直线A1D1,EF,CD都相交的直线( )A.不存在B.有且只有两条C.有且只有三条D.有无数条2.在正方体ABCD-A1B1C1D1中,P,Q,R分别是AB,AD,B1C1的中点,那么过P,Q,R的平面被正方体所截得的图形是( )A.三角形B.四边形C.五边形D.六边形3.设四面体的六条棱的长分别为1,1,1,1,2和a,且长为a的棱与长为2的棱异面,则a 的取值范围是( )A.(0,2) B.(0,3) C.(1,2) D.(1,3)4.如图是正方体或四面体,P,Q,R,S分别是所在棱的中点,则这四个点不共面的一个图是( )5.如图所示,正方体的底面与正四面体的底面在同一平面α上,且AB∥CD,正方体的六个面所在的平面与直线CE,EF相交的平面个数分别记为m,n,那么m+n=________.6.如图,在三棱锥A-BCD中,AB=AC=BD=CD=3,AD=BC=2,点M,N分别为AD,BC的中点,则异面直线AN,CM所成的角的余弦值是________.答案精析基础保分练1.D 2.C 3.A 4.A 5.D 6.A 7.C8.D 9.5 10.②③能力提升练1.D [如图所示,在EF上任意取一点M,则直线A1D1与M确定一个平面,这个平面与CD有且仅有一个交点N,当M取不同的位置时就确定不同的平面,从而与CD有不同的交点N,而直线MN与这三条异面直线都有交点.] 2.D [如图所示,连接QP并延长与CB的延长线交于M,连接MR交BB1于E,连接PE,则PE,RE为截面的两条边.作RG∥PQ交C1D1于G,同理延长PQ交CD的延长线于N,连接NG交DD1于F,连接QF.故截面为六边形PQFGRE.]3.A [此题相当于一个正方形沿着对角线折成一个四面体,易知a大于0且小于 2.] 4.D [A,B,C中四点一定共面,D中四点不共面.]5.8解析观察知,直线CE与正方体的前后左右四个面所在的平面相交,所以m=4;直线EF与正方体的上下前后四个面所在的平面相交,所以n=4.所以m+n=8.6.7 8解析如图所示,连接DN,取线段DN的中点K,连接MK,CK.∵M为AD的中点,∴MK∥AN,∴∠KMC为异面直线AN,CM所成的角.∵AB=AC=BD=CD=3,AD=BC=2,N为BC的中点,由勾股定理易求得AN=DN=CM=22,∴MK= 2.在Rt△CKN中,CK=22+12= 3.在△CKM中,由余弦定理,得cos∠KMC=22+22-322×2×22=78.平行的判定与性质[基础保分练]1.若a,b表示直线,α表示平面,且b⊂α,则“a∥b”是“a∥α”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件2.在空间四边形ABCD中,E,F分别为AB,AD上的点,且AE∶EB=AF∶FD=1∶4,H,G分别为BC,CD的中点,则( )A.BD∥平面EFG,且四边形EFGH是平行四边形B.EF∥平面BCD,且四边形EFGH是梯形C.HG∥平面ABD,且四边形EFGH是平行四边形D.EH∥平面ADC,且四边形EFGH是梯形3.下列四个正方体图形中,A,B为正方体的两个顶点,M,N,P分别为其所在棱的中点,能得出AB∥平面MNP的图形的序号是( )A.①③B.②③C.①④D.②④4.如图,正方体ABCD-A1B1C1D1中,E,F分别为棱AB,CC1的中点,在平面ADD1A1内且与平面D1EF平行的直线( )A.不存在B.有1条C.有2条D.有无数条5.下列说法正确的是( )A.若直线l⊥平面α,直线l⊥平面β,则α∥βB.若直线l∥平面α,直线l∥平面β,则α∥βC.若两直线l1,l2与平面α所成的角相等,则l1∥l2D.若直线l上两个不同的点A,B到平面α的距离相等,则l∥α6.有下列命题:①若直线l平行于平面α内的无数条直线,则直线l∥α;②若直线a在平面α外,则a∥α;③若直线a∥b,b∥α,则a∥α;④若直线a∥b,b∥α,则a平行于平面α内的无数条直线.其中真命题的个数是( )A.1B.2C.3D.47.直线a∥平面α,则a平行于平面α内的( )A.一条确定直线B.所有直线C.无数条平行直线D.任意一条直线8.已知直线l∥平面α,P∈α,那么过点P且平行于直线l的直线( )A.只有一条,不在平面α内B.只有一条,且在平面α内C.有无数条,不一定在平面α内D.有无数条,一定在平面α内9.如图所示是某长方体被一平面所截得的几何体,四边形EFGH为截面,则四边形EFGH的形状为________.第9题图第10题图10.如图是一个正方体的表面展开图,B,N,Q都是所在棱的中点,则在原正方体中有以下命题:①AB与CD相交;②MN∥PQ;③AB∥PE;④MN与CD异面;⑤MN∥平面PQC.其中为真命题的是________.(填序号)[能力提升练]1.下列说法中正确的是( )①如果一条直线和一个平面平行,那么它和这个平面内的无数条直线平行;②一条直线和一个平面平行,它就和这个平面内的任何直线无公共点;③过直线外一点,有且仅有一个平面和已知直线平行.A.①②③B.①③C.②③D.①②2.如图,下列正三棱柱ABC-A1B1C1中,若M,N,P分别为其所在棱的中点,则不能得出AB∥平面MNP的是( )3.已知直线a,b异面,给出以下命题:①一定存在平行于a的平面α使b⊥α;②一定存在平行于a的平面α使b∥α;③一定存在平行于a的平面α使b⊂α;④一定存在无数个平行于a的平面α与b交于一定点.则其中正确的命题是( )A.①④B.②③C.①②③D.②③④4.在四棱锥S-ABC中,△ABC是边长为6的正三角形,SA=SB=SC=15,平面DEFH分别与AB,BC,SC,SA交于D,E,F,H,D,E分别是AB,BC的中点,如果直线SB∥平面DEFH,那么四边形DEFH的面积为( )A.452B.4532C.45D.45 35.α,β,γ是三个平面,a,b是两条直线,有下列三个条件:①a∥γ,b⊂β;②a∥γ,b∥β;③b∥β,a⊂γ.如果命题“α∩β=a,b⊂γ,且________,则a∥b”为真命题,则可以在横线处填入的条件是________.(把所有正确条件的序号都填上)6.已知平面α∥平面β,P是α,β外一点,过点P的直线m与α,β分别交于点A,C,过点P的直线n与α,β分别交于点B,D,且PA=6,AC=9,PD=8,则BD=________.答案精析基础保分练1.D 2.B 3.C 4.D 5.A 6.A 7.C 8.B 9.平行四边形 10.①②④⑤ 能力提升练1.D [由线面平行的性质定理知①正确;由直线与平面平行的定义知②正确;③错误,经过直线外一点可作一条直线与已知直线平行,而经过这条直线可作无数个平面与原直线平行.] 2.C [在A ,B 中,易知AB ∥A 1B 1∥MN ,所以AB ∥平面MNP ;在D 中,易知AB ∥PN ,所以AB ∥平面MNP ,故选C.]3.D [对于①,若存在平面α使得b ⊥α,则有b ⊥a ,而直线a ,b 未必垂直,因此①不正确;对于②,注意到过直线a ,b 外一点M 分别引直线a ,b 的平行线a 1,b 1,显然由直线a 1,b 1可确定平面α,此时平面α与直线a ,b 均平行,因此②正确;对于③,注意到过直线b上的一点B 作直线a 2与直线a 平行,显然由直线b 与a 2可确定平面α,此时平面α与直线a 平行,且b ⊂α,因此③正确;对于④,在直线b 上取一定点N ,过点N 作直线c 与直线a平行,经过直线c 的平面(除由直线a 与c 所确定的平面及直线c 与b 所确定的平面之外)均与直线a 平行,且与直线b 相交于一定点N ,因此④正确.] 4.A [如图所示,取AC 的中点G ,连接SG ,BG .易知SG ⊥AC ,BG ⊥AC , 故AC ⊥平面SGB , 所以AC ⊥SB .因为SB ∥平面DEFH ,SB ⊂平面SAB ,平面SAB ∩平面DEFH =HD , 则SB ∥HD .同理SB ∥FE .又D ,E 分别为AB ,BC 的中点,则H ,F 也为AS ,SC 的中点,从而得HF ∥AC 且HF =12AC ,DE ∥AC 且DE =12AC ,所以四边形DEFH 为平行四边形. 又AC ⊥SB ,SB ∥HD ,DE ∥AC ,所以DE ⊥HD ,所以四边形DEFH 为矩形,其面积S =HF ·HD =⎝ ⎛⎭⎪⎫12AC ·⎝ ⎛⎭⎪⎫12SB =452.]5.①③解析 ①中,由b ⊂β,b ⊂γ,得β∩γ=b ,又a ∥γ,a ⊂β,所以a ∥b (线面平行的性质定理).③中,由α∩β=a ,a ⊂γ得β∩γ=a ,又b ∥β,b ⊂γ,所以a ∥b (线面平行的性质定理). 6.24或245解析 设BD =x ,由α∥β可得AB ∥CD ,则△PAB ∽△PCD ,即PB PA =PDPC. ①当点P 在两平面之间时,如图(1)所示,则有x -86=89-6,∴x =24;②当点P 在两平面外侧时,如图(2),则有8-x 6=89+6,∴x =245.垂直的判定与性质[基础保分练]1.已知α,β是两个不同的平面,l ,m ,n 是不同的直线,下列命题不正确的是( ) A .若l ⊥m ,l ⊥n ,m ⊂α,n ⊂α,则l ⊥α B .若l ∥m ,l ⊄α,m ⊂α,则l ∥αC .若α⊥β,α∩β=l ,m ⊂α,m ⊥l ,则m ⊥βD .若α⊥β,m ⊥α,n ⊥β,则m ⊥n 2.已知两个平面垂直,下列命题:①一个平面内的任意一条直线必垂直于另一个平面内的任意一条直线; ②一个平面内的任意一条直线必垂直于另一个平面内的无数条直线; ③一个平面内的任意一条直线必垂直于另一个平面;④过一个平面内任意一点作交线的垂线,则此垂线必垂直于另一个平面. 其中正确的个数是( ) A .3B .2C .1D .03.在Rt△ABC中,∠ABC=90°,P为△ABC所在平面外一点,PA⊥平面ABC,则四面体P-ABC中共有直角三角形个数为( )A.4B.3C.2D.14.“直线l垂直于平面α”的一个必要不充分条件是( )A.直线l与平面α内的任意一条直线垂直B.过直线l的任意一个平面与平面α垂直C.存在平行于直线l的直线与平面α垂直D.经过直线l的某一个平面与平面α垂直5.已知直线l,m和平面α,则下列结论正确的是( )A.若l∥m,m⊂α,则l∥αB.若l⊥α,m⊂α,则l⊥mC.若l⊥m,l⊥α,则m⊥αD.若l∥α,m⊂α,则l∥m6.设m,n是两条不同的直线,α,β是两个不同的平面,则下列命题正确的是( )①若m⊥α,α⊥β,则m∥β;②若m⊥α,α∥β,n⊂β,则m⊥n;③若m⊂α,n⊂β,m∥n,则α∥β;④若n⊥α,n⊥β,m⊥β,则m⊥α.A.①②B.③④C.①③D.②④7.(2019·沈阳东北育才学校联考)设m,n是两条不同的直线,α,β为两个不同的平面,则下列四个命题中不正确的是( )A.m⊥α,n⊥β且α⊥β,则m⊥nB.m∥α,n⊥β且α⊥β,则m∥nC.m⊥α,n∥β且α∥β,则m⊥nD.m⊥α,n⊥β且α∥β,则m∥n8.已知在正四面体P-ABC中,D,E,F分别是AB,BC,CA的中点,则下面四个结论中不正确的是( )A.BC∥平面PDF B.DF⊥平面PAEC.平面PDF⊥平面ABC D.平面PAE⊥平面ABC9.如图,PA⊥⊙O所在平面,AB是⊙O的直径,C是⊙O上一点,AE⊥PC,AF⊥PB,给出下列结论:①AE⊥BC;②EF⊥PB;③AF⊥BC;④AE⊥平面PBC.其中真命题的序号是________.10.设a,b为不重合的两条直线,α,β为不重合的两个平面,给出下列命题:①若a∥α且b∥α,则a∥b;②若a⊥α且a⊥β,则α∥β;③若α⊥β,则一定存在平面γ,使得γ⊥α,γ⊥β;④若α⊥β,则一定存在直线l,使得l⊥α,l∥β.上面命题中,所有真命题的序号是________.[能力提升练]1.已知平面α,β,γ和直线l,m,且l⊥m,α⊥γ,α∩γ=m,β∩γ=l,给出下列四个结论:①β⊥γ;②l⊥α;③m⊥β;④α⊥β.其中正确的是( )A.①④B.②④C.②③D.③④2.如图所示,O为正方体ABCD-A1B1C1D1的底面ABCD的中心,则下列直线中与B1O垂直的是( )A.A1D B.AA1C.A1D1D.A1C13.已知在空间四边形ABCD中,AD⊥BC,AD⊥BD,且△BCD是锐角三角形,则必有( ) A.平面ABD⊥平面ADCB.平面ABD⊥平面ABCC.平面ADC⊥平面BDCD.平面ABC⊥平面BDC4.已知矩形ABCD中,AB=1,BC= 2.将△ABD沿矩形的对角线BD所在直线进行翻折,在翻折过程中( )A.存在某个位置,使得直线AC与直线BD垂直B.存在某个位置,使得直线AB与直线CD垂直C.存在某个位置,使得直线AD与直线BC垂直D.对任意位置,三对直线“AC与BD”“AB与CD”“AD与BC”均不垂直5.已知α,β是两个不同的平面,m,n是两条不同的直线,给出下列命题:①若m⊥α,m⊂β,则α⊥β;②若m⊥α,n⊂α,m∥β,n∥β,则α∥β;③如果m⊂α,n⊄α,m,n是异面直线,那么n与α相交;④若α∩β=m,n∥m,且n⊄α,n⊄β,则n∥α且n∥β. 其中的真命题是________.(填序号)6.如图,平面α⊥平面β,A∈α,B∈β,AB与两平面α,β所成的角分别为π4和π6,过A,B分别作两平面交线的垂线,垂足为A′,B′,则AB∶A′B′=________.答案精析基础保分练1.A 2.B 3.A 4.D 5.B 6.D 7.B8.C 9.①②④10.②③④能力提升练1.B 2.D3.C [∵AD⊥BC,AD⊥BD,BC∩BD=B,BC,BD⊂平面BDC,∴AD⊥平面BDC,又AD⊂平面ADC,∴平面ADC⊥平面BDC.]4.B [在矩形ABCD中,作AE⊥BD于E,连接CE.在翻折过程中,AE⊥BD,假设存在某个位置使AC⊥BD,则BD⊥平面AEC,则BD⊥CE,由条件知BD与CE不垂直,故A错误;对于C,在翻折过程中,若AD⊥BC,则AD⊥平面ABC,得AD⊥AC,从而△ACD为直角三角形,得∠CAD =90°,而CD<AD,这种情况是不可能的,故C错误;若AB⊥CD,由BC⊥CD,可得CD⊥平面ACB,则CD⊥AC,则AB=CD=1,BC=AD=2,可得AC=1,那么存在AC=1这样的位置,使得AB⊥CD成立,故B正确,D错误.]5.①④解析若m⊥α,m⊂β,由线面垂直的相关性质可得面面垂直,即α⊥β,①正确;若m⊥α,n⊂α,m∥β,n∥β,由线面垂直与线面平行的相关性质可得α⊥β,②错误;如果m⊂α,n⊄α,m,n是异面直线,也可出现n与α平行,③错误;α∩β=m,n∥m,且n⊄α,n⊄β,由线面平行的相关性质可得n∥α且n∥β,④正确.6.2∶1解析 由已知条件可知∠BAB ′=π4,∠ABA ′=π6,设AB =2a ,则BB ′=2a sin π4=2a ,A ′B =2a cos π6=3a ,∴在Rt△BB ′A ′中,得A ′B ′=a , ∴AB ∶A ′B ′=2∶1.向量求解平行和垂直问题[基础保分练]1.已知a =(λ+1,0,2),b =(6,2μ-1,2λ),若a ∥b ,则λ与μ的值可以分别是( ) A .2,12B .-13,12C .-3,2D .2,22.若平面α1,α2垂直,则下列向量可以是这两个平面的法向量的是( ) A .n 1=(1,2,1),n 2=(-3,1,1) B .n 1=(1,1,2),n 2=(-2,1,1) C .n 1=(1,1,1),n 2=(-1,2,1) D .n 1=(1,2,1),n 2=(0,-2,-2)3.如图所示,在平行六面体ABCD -A 1B 1C 1D 1中,AM =12MC ,A 1N =2ND .设AB →=a ,AD →=b ,AA 1→=c ,MN →=x a +y b +z c ,则x +y +z 等于( )A.34B.14C.23D.134.已知空间四边形ABCD 的每条边和对角线的长都等于a ,点E ,F 分别是BC ,AD 的中点,则AE →·AF →的值为( ) A .a 2B.12a 2C.14a 2D.34a 25.已知AB →=(1,5,-2),BC →=(3,1,z ),若AB →⊥BC →,BP →=(x -1,y ,-3),且BP ⊥平面ABC ,则x +y 的值为( ) A.257B.67C.187D.4076.设A ,B ,C ,D 是空间不共面的四点,且满足AB →·AC →=0,AC →·AD →=0,AB →·AD →=0,M 为BC 的中点,则△AMD 是( ) A .钝角三角形 B .锐角三角形 C .直角三角形D .不确定7.已知直线l 的方向向量为a ,平面α的法向量为n ,能使l ∥α的是( ) A .a =(1,0,0),n =(-2,0,0) B .a =(1,3,5),n =(1,0,1) C .a =(0,2,1),n =(-1,0,-1) D .a =(1,-1,3),n =(0,3,1)8.已知a =(-2,1,3),b =(-1,2,1),若a ⊥(a -λb ),则实数λ的值为( ) A .-2B .-143C.145D .29.已知空间三点A (0,2,3),B (-2,1,6),C (1,-1,5).若|a |=3,且a 分别与AB →,AC →垂直,则向量a =________.10.已知平面α和平面β的法向量分别为a =(1,1,2),b =(x ,-2,3),且α⊥β,则x =________.[能力提升练]1.空间内四点A (2,3,6),B (4,3,2),C (0,0,1),D (2,0,2)的位置关系是( ) A .共线 B .共面 C .不共面D .无法确定2.O 为空间内任意一点,若OP →=34OA →+18OB →+18OC →,则A ,B ,C ,P 四点( )A .一定不共面B .一定共面C .不一定共面D .无法判断3.已知A (1,0,0),B (0,1,0),C (0,0,1)三点,向量n =(1,1,1),则以n 为方向向量的直线l 与平面ABC 的关系是( )A .垂直B .不垂直C .平行D .以上都有可能4.设ABCD -A 1B 1C 1D 1是棱长为a 的正方体,则有( ) A.AB →·C 1A —→=a 2 B.AB →·A 1C 1—→=2a 2 C.BC →·A 1D —→=a 2D.AB →·C 1A 1—→=a 25.同时垂直于a =(2,2,1)和b =(4,5,3)的单位向量是____________________________. 6.平面α的一个法向量为n =(0,1,-1),若直线l ⊥平面α,则直线l 的单位方向向量是________.答案精析基础保分练1.A 2.A 3.D 4.C 5.A 6.C 7.D 8.D 9.(1,1,1)或(-1,-1,-1) 10.-4解析 ∵a ·b =x -2+6=0,∴x =-4. 能力提升练 1.C 2.B3.A [易知AB →=(-1,1,0), AC →=(-1,0,1),∴AB →·n =-1×1+1×1+0=0,AC →·n =-1×1+0×1+1×1=0,则AB →⊥n ,AC →⊥n ,即直线AB ⊥l ,直线AC ⊥l ,又AB 与AC 是平面ABC 内两条相交直线, ∴l ⊥平面ABC .]4.C [AB →·C 1A —→=AB →·(C 1C —→+CB →+BA →)=AB →·BA →=-a 2,AB →·A 1C 1—→=AB →·AC →=AB →·(AB →+BC →)=AB →·AB →=a 2,BC →·A 1D —→=BC →·(A 1A —→+AD →)=BC →·BC →=a 2,AB →·C 1A 1—→=-AB →·A 1C 1—→=-a 2, 故选C.]5.⎝ ⎛⎭⎪⎫13,-23,23或⎝ ⎛⎭⎪⎫-13,23,-23解析 设与a =(2,2,1)和b =(4,5,3)同时垂直的单位向量是c =(p ,q ,r ),则⎩⎪⎨⎪⎧p 2+q 2+r 2=1,2p +2q +r =0,4p +5q +3r =0,解得⎩⎪⎨⎪⎧ p =13,q =-23,r =23或⎩⎪⎨⎪⎧p =-13,q =23,r =-23,即同时垂直于a ,b 的单位向量为⎝ ⎛⎭⎪⎫13,-23,23或⎝ ⎛⎭⎪⎫-13,23,-23.6.±⎝ ⎛⎭⎪⎫0,22,-22 解析 直线l 的方向向量平行于平面α的法向量,故直线l 的单位方向向量是±⎝ ⎛⎭⎪⎫0,22,-22.向量法求解空间角和距离问题[基础保分练]1.平行六面体ABCD -A 1B 1C 1D 1中,向量AB →,AD →,AA 1→两两的夹角均为60°,且|AB →|=1,|AD →|=2,|AA 1→|=3,则|AC 1→|等于( ) A .5B .6C .4D .82.在正方体ABCD -A 1B 1C 1D 1中,E 是C 1D 1的中点,则异面直线DE 与AC 所成的角的余弦值为( )A.120B.1010C .-1010D .-1203.在空间直角坐标系O -xyz 中,平面OAB 的一个法向量为n =(2,-2,1),已知点P (-1,3,2),则点P 到平面OAB 的距离d 等于( ) A .4B .2C .3D .14.方向向量为s =(1,1,1)的直线l 经过点A (1,0,0),则坐标原点O (0,0,0)到该直线的距离是( ) A.3B.2C.62D.635.平面α的一个法向量为n =(1,-3,0),则y 轴与平面α所成的角的大小为( ) A.π6B.π3C.π4D.5π66.如图所示,在空间四边形OABC 中,OA =8,AB =6,AC =4,BC =5,∠OAC =45°,∠OAB =60°,则异面直线OA 与BC 的夹角的余弦值为( )A.3-25 B.3+25 C.3-225D.2+257.已知正方体ABCD -A 1B 1C 1D 1的棱长为a ,点M 在AC 1上,且AM →=12MC 1—→,N 为B 1B 的中点,则|MN →|为( ) A.216a B.66a C.156a D.153a 8.P 是二面角α-AB -β棱上的一点,分别在α,β平面上引射线PM ,PN ,如果∠BPM =∠BPN =45°,∠MPN =60°,那么二面角α-AB -β的大小为( ) A .60°B.70°C.80°D.90°9.三棱锥的三条侧棱两两互相垂直,长度分别为6,4,4,则其顶点到底面的距离为________. 10.如图所示,已知空间四边形OABC 中OB =OC ,且∠AOB =∠AOC =π3,则cos 〈OA →,BC →〉的值为________.[能力提升练]1.已知三棱柱ABC -A 1B 1C 1的侧棱长与底面边长都相等,A 1在底面ABC 内的射影为△ABC 的中心,则AB 1与底面ABC 所成角的正弦值等于( ) A.13B.23C.33D.232.已知正四棱锥S -ABCD 的侧棱长与底面边长都相等,E 是SB 的中点,则AE 与SD 所成的角的余弦值为( )A.13B.23C.33D.233.已知空间向量a ,b 满足|a |=|b |=1,且a ,b 的夹角为π3,O 为空间直角坐标系的原点,点A ,B 满足OA →=2a +b ,OB →=3a -b ,则△OAB 的面积为( ) A.523B.543C.743D.1144.过正方形ABCD 的顶点A ,引PA ⊥平面ABCD .若PA =BA ,则平面ABP 和平面CDP 所成二面角的大小是( )A .30°B.45°C.60°D.90°5.已知∠AOB =90°,过O 点引∠AOB 所在平面的斜线OC ,与OA ,OB 分别成45°,60°角,则以OC 为棱的二面角A -OC -B 的余弦值为________.6.如图所示,正三棱柱ABC -A 1B 1C 1的各棱长(包括底面边长)都是2,E ,F 分别是AB ,A 1C 1的中点,则EF 与侧棱C 1C 所成角的余弦值是________.答案精析基础保分练1.A 2.B 3.B 4.D 5.B 6.C7.A [以D 为坐标原点建立如图所示的空间直角坐标系D -xyz ,则A (a,0,0),C 1(0,a ,a ),N ⎝ ⎛⎭⎪⎫a ,a ,a 2.设M (x ,y ,z ),因为点M 在AC 1上,且AM →=12MC 1→,则(x -a ,y ,z )=12(-x ,a -y ,a -z ),得x =23a ,y =a 3,z =a 3,即M ⎝ ⎛⎭⎪⎫2a 3,a 3,a 3,所以|MN →|=⎝ ⎛⎭⎪⎫a -23a 2+⎝ ⎛⎭⎪⎫a -a 32+⎝ ⎛⎭⎪⎫a 2-a 32 =216a ,故选A.] 8.D [不妨设PM =a ,PN =b , 作ME ⊥AB 于E ,NF ⊥AB 于F . ∵∠EPM =∠FPN =45°, ∴PE =22a ,PF =22b , ∴EM →·FN →=(PM →-PE →)·(PN →-PF →) =PM →·PN →-PM →·PF →-PE →·PN →+PE →·PF → =ab cos60°-a ×22b cos45°-22ab cos45°+22a ×22b =ab 2-ab 2-ab 2+ab2=0,∴EM →⊥FN →,∴二面角α-AB -β的大小为90°.] 9.62211解析 设三棱锥为P -ABC ,且PA =6,PB =PC =4,以P 为原点建立空间直角坐标系如图,则P (0,0,0),A (6,0,0),B (0,4,0),C (0,0,4),PA →=(6,0,0),AB →=(-6,4,0),AC →=(-6,0,4),设平面ABC 的一个法向量为n =(x ,y ,z ), 则n ⊥AB →,n ⊥AC →,所以⎩⎪⎨⎪⎧-6x +4y =0,-6x +4z =0,即y =z =32x ,所以可选平面ABC 的一个法向量为n =(2,3,3),所以P 到平面ABC 的距离d =|PA →|·|cos〈PA →,n 〉|=|PA →·n ||n |=124+9+9=62211. 10.0解析 设OA →=a ,OB →=b ,OC →=c , 则|b |=|c |,〈a ,b 〉=〈a ,c 〉=π3,BC →=c -b ,∴OA →·BC →=a ·(c -b )=a ·c -a ·b =|a |·|c |cos π3-|a |·|b |cos π3=0,∴OA →⊥BC →,∴cos〈OA →,BC →〉=0. 能力提升练1.B [设A 1在底面ABC 内的射影为O ,过O 作OH ∥BC 交AB 于点H ,以O 为坐标原点,分别以OA →,OH →,OA 1→的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系(图略). 设△ABC 的边长为1,则A ⎝⎛⎭⎪⎫33,0,0, B 1⎝ ⎛⎭⎪⎫-32,12,63, ∴AB 1→=⎝ ⎛⎭⎪⎫-536,12,63,平面ABC 的法向量n =(0,0,1), 则AB 1与底面ABC 所成角α的正弦值sin α=|cos 〈AB 1→,n 〉|=637536+14+69=23.]2.C 3.B [|OA →|=a +b2=4|a |2+|b |2+4a ·b =7, 同理|OB →|=7,则cos∠AOB =OA →·OB→|OA →||OB →|=6|a |2-|b |2+a ·b 7=1114,从而有sin∠AOB =5314,∴△OAB 的面积S =12×7×7×5314=534,故选B.]4.B [建立如图所示的空间直角坐标系,设AB =1,易得平面APB 的一个法向量为n 1=(0,1,0),平面PCD 的一个法向量为n 2=(0,1,1), 故平面ABP 与平面CDP 所成二面角的余弦值为|n 1·n 2||n 1||n 2|=22,故所求二面角的大小是45°.] 5.-33 6.255第56练 立体几何中的易错题1.已知直线a ,b ,m ,其中a ,b 在平面α内.则“m ⊥a ,m ⊥b ”是“m ⊥α”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件2.设l 为直线,α,β是两个不同的平面.下列命题中正确的是( ) A .若l ∥α,l ∥β,则α∥β B .若l ⊥α,l ⊥β,则α∥β C .若l ⊥α,l ∥β,则α∥β D .若α⊥β,l ∥α,则l ⊥β3.(2019·湛江调研)设m ,n 是两条不同的直线,α,β是两个不同的平面,下列命题中正确的是( )A .α∩β=n ,m ⊂α,m ∥β⇒m ∥nB .α⊥β,α∩β=m ,m ⊥n ⇒n ⊥βC.m⊥n,m⊂α,n⊂β⇒α⊥βD.m∥α,n⊂α⇒m∥n4.若点P∈平面α,点Q∈平面α,点R∈平面β,α∩β=m,且R∉m,PQ∩m=M,过P,Q,R三点确定一个平面γ,则β∩γ是( )A.直线QR B.直线PRC.直线RM D.以上均不正确5.(2019·唐山模拟)在长方体ABCD-A1B1C1D1中,AB=BC=2AA1,则异面直线A1B与B1C所成角的余弦值为( )A.105B.15C.55D.1556.若P是两条异面直线l,m外的任意一点,则( )A.过点P有且仅有一条直线与l,m都平行B.过点P有且仅有一条直线与l,m都垂直C.过点P有且仅有一条直线与l,m都相交D.过点P有且仅有一条直线与l,m都异面7.在三棱锥S—ABC中,AB⊥AC,AB=AC=SA,SA⊥平面ABC,D为BC的中点,则异面直线AB与SD所成角的余弦值为( )A.55B.66C.306D.以上结论都不对8.已知三棱锥S-ABC的所有顶点都在球O的球面上,△ABC是边长为1的正三角形,SC为球O的直径,且SC=2,则此棱锥的体积为( )A.26B.36C.23D.229.如图,长方体ABCD-A1B1C1D1的底面是边长为a的正方形,若在侧棱AA1上至少存在一点E,使得∠C1EB=90°,则侧棱AA1的长的最小值为( )A.a B.2aC.3a D.4a10.在三棱锥A -BCD 中,侧棱AB ,AC ,AD 两两垂直,△ABC ,△ACD ,△ADB 的面积分别为22,32,62,则该三棱锥外接球的表面积为( ) A .2πB .6πC .46πD .24π11.已知一所有棱长都是2的三棱锥,则该三棱锥的体积为________.12.已知棱长为1的正方体ABCD -A 1B 1C 1D 1中,M 是棱CC 1的中点,则三棱锥A 1-ABM 的体积为________.第12题图 第13题图13.如图,正方体ABCD -A 1B 1C 1D 1的棱长为a ,点P 是棱AD 上一点,且AP =a3,过B 1,D 1,P的平面交平面ABCD 于PQ ,Q 在直线CD 上,则PQ =________.14.如图,矩形ABCD 中,E 为边AB 的中点,将△ADE 沿直线DE 翻转成△A 1DE .若M 为线段A 1C 的中点,则在△ADE 翻转过程中,正确的命题是________.①MB 是定值; ②点M 在圆上运动;③一定存在某个位置,使DE ⊥A 1C ; ④一定存在某个位置,使MB ∥平面A 1DE .15.在三棱锥P -ABC 中,PB =6,AC =3,G 为△PAC 的重心,过点G 作三棱锥的一个截面,使截面平行于PB 和AC ,则截面的周长为________.16.如图,在棱长为1的正方体ABCD -A 1B 1C 1D 1中,点E ,F 分别是棱BC ,CC 1的中点,P 是侧面BCC 1B 1内一点,若A 1P ∥平面AEF ,则线段A 1P 长度的取值范围是________.答案精析1.B 2.B 3.A 4.C 5.B 6.B7.B [如图,取AC的中点E,连接DE,SE,因为D,E分别为BC,AC的中点,所以DE∥AB,所以∠SDE就是异面直线AB与SD所成的角,令AB=AC=SA=2,由勾股定理得SE=5,又DE=1,很明显BA⊥平面SAC,所以DE⊥平面SAC,所以DE⊥SE,所以SD= 6.在Rt△SDE中,cos∠SDE=DESD =16=66.故选B.]8.A [设E为△ABC的重心,连接OA,OB,OE.∵三棱锥S-ABC内接于球O,∴OB=OC=OA=1.又△ABC为等边三角形,∴OE⊥平面ABC,∴三棱锥的高h=2OE.∵AB=AC=BC=1,E为△ABC的重心,连接CE,∴CE=33,∴OE=OC2-CE2=63,∴h =263,∴V S -ABC =13S △ABC ·h=13×12×1×32×263=26.] 9.B [设AA 1=h ,AE =x ,A 1E =h -x ,x ∈[0,h ],则BE 2=a 2+x 2,C 1E 2=(2a )2+(h -x )2,BC 21=a 2+h 2. 又∠C 1EB =90°, 所以BE 2+C 1E 2=BC 21,即a 2+x 2+(2a )2+(h -x )2=a 2+h 2, 即关于x 的方程x 2-hx +a 2=0,x ∈[0,h ]有解,当x =0时,a 2=0,不合题意,当x >0时,h =a 2x+x ≥2a ,当且仅当x =a 时取等号. 即侧棱AA 1的最小值为2a .]10.B [设两两垂直的三条侧棱分别为a ,b ,c , 可以得到12ab =22,12bc =32,12ac =62, 解得a =2,b =1,c = 3. 所以2R =a 2+b 2+c 2=6, 所以球的表面积为S =4πR 2=6π.] 11.13 12.16 13.22a 3解析 如图,∵平面A 1B 1C 1D 1∥平面ABCD ,而平面B 1D 1P ∩平面ABCD =PQ ,平面B 1D 1P ∩平面A 1B 1C 1D 1 =B 1D 1, ∴B 1D 1∥PQ .又∵B 1D 1∥BD ,∴BD ∥PQ . 设PQ ∩AB =M ,∵AB ∥CD , ∴△APM ∽△DPQ , ∴PQ PM =PD AP=2,即PQ =2PM .又△APM ∽△ADB ,∴PM BD =AP AD =13.∴PM =13BD ,PQ =23BD ,又BD =2a ,∴PQ =223a .14.①②④解析 取DC 中点N ,连接MN ,NB ,则MN ∥A 1D ,NB ∥DE ,所以平面MNB ∥平面A 1DE ,因为MB ⊂平面MNB ,所以MB ∥平面A 1DE ,④正确;∠A 1DE =∠MNB ,MN =12A 1D =定值,NB =DE =定值,根据余弦定理得,MB 2=MN 2+NB 2-2MN ·NB ·cos∠MNB ,所以MB 是定值,①正确;B 是定点,所以M 是在以B 为圆心,MB 为半径的圆上,②正确;当矩形ABCD 满足AC ⊥DE 时存在,其他情况不存在,③不正确.所以①②④正确. 15.8解析 过点G 作EF ∥AC ,分别交PA ,PC 于点E ,F ,过点E 作EN ∥PB 交AB 于点N ,过点F 作FM ∥PB 交BC 于点M ,连接MN ,则四边形EFMN 是平行四边形(平面EFMN 为所求截面),且EF =MN =23AC =2,FM =EN =13PB =2,所以截面的周长为2×4=8.16.⎣⎢⎡⎦⎥⎤324,52解析 取B 1C 1的中点M ,BB 1的中点N ,连接A 1M ,A 1N ,MN ,可以证明平面A 1MN ∥平面AEF ,所以点P 位于线段MN 上,把△A 1MN 置于平面上,则有A 1M =A 1N =1+⎝ ⎛⎭⎪⎫122=52,MN =⎝ ⎛⎭⎪⎫122+⎝ ⎛⎭⎪⎫122=22,所以当点P 位于M ,N 时,A 1P 最大,当P 位于线段MN 的中点O 时,A 1P 最小,此时A 1O =⎝ ⎛⎭⎪⎫522-⎝ ⎛⎭⎪⎫242=324,所以A 1O ≤A 1P ≤A 1M ,即324≤A 1P ≤52,所以线段A 1P 长度的取值范围是⎣⎢⎡⎦⎥⎤324,52.第57练 高考大题突破练—立体几何[基础保分练]1.(2019·四川诊断)如图所示,四棱锥S -ABCD 中,SA ⊥底面ABCD ,∠ABC =90°,SA =2,AB =3,BC =1,AD =23,∠ACD =60°,E 为CD 的中点.(1)求证:BC ∥平面SAE ;(2)求直线SD 与平面SBC 所成角的正弦值.2.(2016·山东)在如图所示的圆台中,AC 是下底面圆O 的直径,EF 是上底面圆O ′的直径,。
2020年高考数学 专题四 立体几何题型分析 理
2020专题四:立体几何题型分析考点一三视图、直观图与表面积、体积1.直观图(1)画法:常用斜二测画法.(2)规则:①原图形中x轴、y轴、z轴两两垂直,直观图中,x′轴、y′轴的夹角为45°(或135°),z′轴与x′轴和y′轴所在平面垂直.②原图形中平行于坐标轴的线段,直观图中仍平行于坐标轴.平行于x轴和z轴的线段在直观图中保持原长度不变,平行于y轴的线段长度在直观图中变为原来的一半.按照斜二测画法得到的平面图形的直观图,其面积与原图形的面积有以下关系S直观图=24S原图形,S原图形=22S直观图.2.三视图(1)几何体的三视图包括正(主)视图、侧(左)视图、俯视图,分别是从几何体的正前方、正左方、正上方观察几何体画出的轮廓线.(2)三视图的画法①基本要求:长对正,高平齐,宽相等.②画法规则:正侧一样高,正俯一样长,侧俯一样宽;看不到的线画虚线1.圆柱、圆锥、圆台的侧面展开图及侧面积公式圆柱圆锥圆台侧面展开图侧面积公式S圆柱侧=2πrl S圆锥侧=πrlS圆台侧=π(r+r′)l2名称几何体表面积体积柱体(棱柱和圆柱)S表面积=S侧+2S底V=Sh锥体(棱锥和圆锥)S表面积=S侧+S底V=13Sh台体(棱台和圆台)S表面积=S侧+S上+S下V=13(S上+S下+S上S下)h球S =4πR 2 V =43πR 3例1.等腰梯形ABCD ,上底CD =1,腰AD =CB =2,下底AB =3,以下底所在直线为x 轴,则由斜二测画法画出的直观图A ′B ′C ′D ′的面积为________.例2.(2020·重庆高考)某几何体的三视图如图所示,则该几何体的表面积为( )A .180B .200C .220D .240例3.(1)如图所示,已知三棱柱ABC A 1B 1C 1的所有棱长均为1,且AA 1⊥底面ABC ,则三棱锥B 1 ABC 1的体积为( )A.312 B.34 C.612D.64(2)(2020·新课标Ⅰ)某几何体的三视图如图所示,则该几何体的体积为( )A .16+8πB .8+8πC .16+16πD .8+16π考点二 球与空间几何体的“切”“接”问题 方法主要是“补体”和“找球心” 方法一:直接法例1、一个长方体的各顶点均在同一球面上,且一个顶点上的三条棱长分别为1,2,3 ,则此球的表面积为 .练习:已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积为( ) A. 16π B. 20π C. 24π D. 32π 方法二:构造法(构造正方体或长方体)例2(2020年福建高考题)若三棱锥的三条侧棱两两垂直,且侧棱长均为3,则其外接球的表面积是 练习 (2020年全国卷)一个四面体的所有棱长都为2,四个顶点在同一球面上,则此球的表面积为( ) A. 3π B. 4π C. 33π D. 6π 三、确定球心位置法例3、在矩形ABCD 中,AB=4,BC=3,AC 沿将矩形ABCD 折成一个直二面角B-AC-D ,则四面体ABCD 的外接球的体积为( )四、构造直角三角形例4、正四面体的棱长为a ,则其内切球和外接球的半径是多少,体积是多少?练习: 角度一 直三棱柱的外接球1.(2020·辽宁高考)已知直三棱柱ABC A 1B 1C 1的6个顶点都在球O 的球面上,若AB =3,AC =4,AB ⊥AC ,AA 1=12,则球O 的半径为( )A.3172 B .210 C.132D .310角度二 正方体的外接球2.(2020·合肥模拟)一个正方体削去一个角所得到的几何体的三视图如图所示 (图中三个四边形都是边长为2的正方形),则该几何体外接球的体积为________. 角度三 正四面体的内切球3.(2020·长春模拟)若一个正四面体的表面积为S 1,其内切球的表面积为S 2,则S 1S 2=________. 角度四 四棱锥的外接球4.四棱锥P ABCD 的五个顶点都在一个球面上,该四棱锥的三视图如图所示,E ,F 分别是棱AB ,CD 的中点,直线EF 被球面所截得的线段长为22,则该球的表面积为( ) A .9π B .3π C .22π D .12π考点三 利用空间向量求角和距离 1.两条异面直线所成角的求法π12125.A π9125.B π6125.C π3125.D设两条异面直线a ,b 的方向向量为a ,b ,其夹角为θ,则cos φ=|cos θ|=|a·b||a||b|(其中φ为异面直线a ,b 所成的角).2.直线和平面所成的角的求法如图所示,设直线l 的方向向量为e ,平面α的法向量为n ,直线l 与平面α所成的角为φ,两向量e 与n 的夹角为θ,则有sin φ=|cos θ|=|n·e||n||e|.3.求二面角的大小(1)如图①,AB ,CD 是二面角α l β的两个面内与棱l 垂直的直线,则二面角的大小θ=〈AB u u u r ,CD u u ur 〉.(2)如图②③,n 1,n 2分别是二面角α l β的两个半平面α,β的法向量,则二面角的大小θ=〈n 1,n 2〉(或π-〈n 1,n 2〉).4.点到平面的距离的求法设n r 是平面α的法向量,在α内取一点B, 则 A 到α的距离|||||cos |||AB n d AB n θ==u u u r r u u u r g r 易错点:1.求异面直线所成角时,易求出余弦值为负值而盲目得出答案而忽视了夹角为⎝⎛⎦⎥⎤0,π2.2.求直线与平面所成角时,注意求出夹角的余弦值的绝对值应为线面角的正弦值.3.利用平面的法向量求二面角的大小时,二面角是锐角或钝角由图形决定.由图形知二面角是锐角时cosθ=|n 1·n 2||n 1||n 2|;由图形知二面角是钝角时,cos θ=-|n 1·n 2||n 1||n 2|.当图形不能确定时,要根据向量坐标在图形中观察法向量的方向,从而确定二面角与向量n 1,n 2的夹角是相等(一个平面的法向量指向二面角的内部,另一个平面的法向量指向二面角的外部),还是互补(两个法向量同时指向二面角的内部或外部),这是利用向量求二面角的难点、易错点.一、线线角问题1.(2020·沈阳调研)在直三棱柱A 1B 1C 1 ABC 中,∠BCA =90°,点D 1,F 1分别是A 1B 1,A 1C 1的中点,BC =CA =CC 1,则BD 1与AF 1所成角的余弦值是( )A.3010 B.12 C.3015D.15102.如图,在棱长为1的正方体ABCD A 1B 1C 1D 1中,M 和N 分别是A 1B 1和BB 1的中点,那么直线AM 与CN 所成角的余弦值为________.二、线面角的问题3、(2020·湖南高考)如图,在直棱柱ABCD A 1B 1C 1D 1中,AD ∥BC ,∠BAD =90°,AC ⊥BD ,BC =1,AD =AA 1=3.(1)证明:AC ⊥B 1D ;(2)求直线B 1C 1与平面ACD 1所成角的正弦值.[针对训练](2020·福建高考改编)如图,在四棱柱ABCD A 1B 1C 1D 1中,侧棱AA 1⊥底面ABCD ,AB ∥DC ,AA 1=1,AB =3k ,AD =4k ,BC =5k ,DC =6k (k >0).若直线AA 1与平面AB 1C 所成角的正弦值为67,求k 的值.三、二面角问题4、(2020·新课标卷Ⅱ)如图,直三棱柱ABC A 1B 1C 1中,D ,E 分别是AB ,BB 1的中点,AA 1=AC =CB =22AB . (1)证明:BC 1//平面A 1CD ; (2)求二面角D A 1C E 的正弦值.[针对训练](2020·杭州模拟)如图,已知平面QBC 与直线PA 均垂直于Rt△ABC 所在平面, 且PA =AB =AC .(1)求证:PA ∥平面QBC ;(2)若PQ ⊥平面QBC ,求二面角Q PB A 的余弦值.四、 利用空间向量解决探索性问题.(2020·江西模拟)如图,四边形ABCD 是边长为3的正方形,DE ⊥平面ABCD ,AF ∥DE ,DE =3AF ,BE 与平面ABCD 所成的角为60°.(1)求证:AC ⊥平面BDE ; (2)求二面角F BE D 的余弦值;(3)设点M 是线段BD 上一个动点,试确定点M 的位置,使得AM ∥平面BEF ,并证明你的结论.[针对训练]已知正方体ABCD A 1B 1C 1D 1的棱长为1,点P 在线段BD 1上.当∠APC 最大时,三棱锥P ABC 的体积为________.五、近三年新课标高考试题立体几何(三视图1小+1小1大:(1)三视图(2)线面关系(3)与球有关的组合体(4)证明、求体积与表面积(注意规范性),作辅助线的思路(5)探索性问题的思考方法)(11)(6)在一个几何体的三视图中,正视图和俯视图如右图所示,则相应的侧视图可以为(15)已知矩形ABCD 的顶点都在半径为4的球O 的球面上,且6,23AB BC ==,则棱锥O ABCD -的体积为(18)(本小题满分12分)如图,四棱锥P-ABCD 中,底面ABCD 为平行四 边形,∠DAB=60°,AB=2AD ,PD ⊥底面ABCD . (Ⅰ)证明:PA ⊥BD ;(Ⅱ)若PD =AD ,求二面角A-PB-C 的余弦值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
微专题4 高考中的立体几何问题一、选择题(每小题5分,共30分)1.一个多面体的三视图如图4-1所示,则此多面体的表面积是()图4-1A.22B.24-C.22+D.20+2.如图4-2,网格纸上小正方形的边长为1,粗线画的是某组合体的三视图,则该组合体的体积是()图4-2A.+πB.+πC.4+πD.+π3.已知正方体ABCD-A1B1C1D1的所有顶点均在球O的表面上,E,F,G分别为AB,AD,AA1的中点,若平面EFG截球O所得圆的半径为,则该正方体的棱长为()A. B. C.3 D.24. [数学文化题]如图4-3为中国传统智力玩具鲁班锁,它起源于中国古代建筑中首创的榫卯结构,这种三维的拼插器具内部的凹凸部分啮合,外观看是严丝合缝的十字立方体,其上下、左右、前后完全对称,六根完全相同的正四棱柱分成三组,经90°榫卯起来.现有一鲁班锁的正四棱柱的底面正方形的边长为2,欲将其放入球形容器内(容器壁的厚度忽略不计),若球形容器的表面积的最小值为56π,则正四棱柱的高为()A. B.2 C.6 D.25. [数学文化题]中国古代计时器的发明时间不晚于战国时代(公元前476年~前222年),其中沙漏就是古代利用机械原理设计的一种计时装置,它由两个形状完全相同的容器和一个狭窄的连接管道组成,开始时细沙全部在上部容器中,细沙通过连接管道流到下部容器.如图4-4所示,某沙漏由上、下两个圆锥形容器组成,圆锥形容器的底面圆的直径和高均为8 cm,细沙全部在上部时,其高度为圆锥形容器高度的(细管长度忽略不计).若细沙全部漏入下部后,恰好堆成一个盖住沙漏底部的圆锥形沙堆,则此圆锥形沙堆的高为()图4-4A.2 cmB.cmC.cmD.cm6.如图4-5,在正三棱柱ABC-A1B1C1中,AA1=AB,E,F分别为BC,BB1的中点,M,N分别为AA1,A1C1的中点,则直线MN与EF所成角的余弦值为()图4-5A. B. C. D.二、填空题(每小题5分,共10分)7.若侧面积为8π的圆柱有一外接球O,则当球O的体积取得最小值时,圆柱的表面积为.8.如图4-6,在棱长为1的正方体ABCD-A1B1C1D1中,作以A为顶点,分别以AB,AD,AA1为轴,底面圆半径为r(0<r≤1)的圆锥.当半径r变化时,正方体挖去三个圆锥部分后,余下的几何体的表面积的最小值是.图4-6三、解答题(共48分)9.(12分)如图4-7,四边形ABCD为正方形,EA⊥平面ABCD,CF∥EA,EA=AB=2CF=2.(1)若EC交平面BDF于点G,求证:CG=CE;(2)求证:EC⊥平面BDF;(3)求多面体ABCDEF的体积.图4-710.(12分)在如图4-8所示的几何体中,矩形ABCD所在的平面与平面ABEF垂直,四边形ABEF 是等腰梯形,AB∥EF,AB=2,AD=EF=1,O为AB的中点.图4-8(1)设FC的中点为M,求证:OM∥平面DAF;(2)设平面CBF将几何体EF-ABCD分割成的两个锥体的体积分别为V F-ABCD,V F-CBE,求V F-ABCD 与V F-CBE的比值.11.(12分)如图4-9,在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,△PAD是等腰三角形,AB=2AD,E是AB上一点,且三棱锥P-BCE与四棱锥P-ADCE的体积之比为1∶2,CE与DA 的延长线交于点F,连接PF.(1)求证:平面PCD⊥平面PAD;(2)若三棱锥P-AEF的体积为,求线段AD的长.图4-912.(12分)如图4-10,在Rt△PBC中,∠PCB=90°,AD∥BC,AD=1,BC=3,将△PAD沿AD折起得四棱锥P-ABCD,使PD⊥PB.(1)求证:PD⊥平面PBC;(2)若三棱锥P-ADC的体积为,求四棱锥P-ABCD的表面积.图4-10答案1.C根据题中三视图知,该多面体是从一个棱长为2的正方体的左上角截去一个直三棱柱后剩余的部分,因此其表面积为6×22-1×1×2+×1=22+,故选C.2.D观察题中三视图可知该组合体的上面是三棱锥,下面是半径为1的半球,其直观图如图D 4-1所示.图D 4-1解法一如图D 4-2所示,将组合体中三棱锥A-BEF“补”成正方体,顶点A,B,E,F分别是正方体的棱的中点.取EF的中点C,连接AC,BC,则EF⊥平面ABC,由已知得,EF=AB=2,AC=BC=,所以S△ABC=×2×2=2,三棱锥A-BEF的体积V1=×S△ABC×EF=,半球的体积V2=×π×13=π.所以该组合体的体积V=V1+V2=+π.故选D.图D 4-2解法二如图D 4-3所示,将组合体中的三棱锥A-BEF“补”成正方体,顶点A,B,E,F分别是正方体的棱的中点,取AB的中点G,过EF和点G作截面EFDC,则截面EFDC将三棱锥A-BEF分成两个相同的小三棱锥,且AG=1,S△EFG=×2×2=2,所以三棱锥A-BEF的体积V1=2××S△EFG×AG=,半球体积V2=×π×13=π,所以该组合体的体积V=V1+V2=+π.故选D.图D 4-33.D设正方体的棱长为a,则AC1=a,由正方体ABCD-A1B1C1D1的外接球球心O为对角线AC1的中点,可知球O的半径R=a,因为E,F,G分别为AB,AD,AA1的中点,所以EF=EG=FG=a,所以△EFG为等边三角形,S△AEF=××=,S△EFG=×××=.设点A到平面EFG的距离为h,由等体积法得S△AEF×AG×=S△EFG×h×,解得h=,所以截面圆的半径r=)--)=,解得a=2,故选D.4.C设正四棱柱的高为h,表面积最小的球形容器可以看成长、宽、高分别为4,2,h的长方体的外接球,设外接球的半径为R,则4πR2=56π,所以4R2=56.又(2R)2=42+22+h2,所以56=20+h2,解得h=6.故选C.5.D由题意可知,开始时,沙漏上部分圆锥形容器中的细沙的高为H=×8=,底面半径为r=×4=,故细沙的体积V=πr2H=π×()2×=.当细沙漏入下部后,圆锥形沙堆的底面半径为4,设其高为H' ,则V=π×42×H'=,解得H'=,故此圆锥形沙堆的高为cm,故选D.6.C解法一如图D 4-4,在原三棱柱的上方,再放一个完全一样的三棱柱,连接AC1,CB1,C1B', 易得MN∥AC1,EF∥CB1∥C1B',图D 4-4那么∠AC1B'或∠AC1B'的补角即直线MN与EF所成的角.设AA1=AB=a,则AC1=C1B'=a,连接AB',则AB'=)=3a,=-,由余弦定理,得cos∠AC1B'=) )则直线MN与EF所成的角为∠AC1B'的补角,其余弦值为.故选C.解法二如图D 4-5,连接AC1,C1B,CB1,图D 4-5设C1B,CB1交于点O,取AB的中点D,连接CD,OD,则MN∥AC1∥OD,EF∥CB1,那么∠DOC或∠DOC的补角即直线MN与EF所成的角.设AA1=AB=a,则AC1=CB1=a,所以OD=OC=,又CD=,所以△OCD为正三角形,故∠DOC=60°,所以∠DOC即为直线MN与EF所成的角,且cos∠DOC=,所以直线MN与EF 所成角的余弦值为,故选C.7.12π由球体的对称性可知,圆柱的高即球心到圆柱两底面圆心的距离之和,设圆柱的底面半径为r,球心到圆柱底面的距离为d,外接球O的半径为R.由球心到圆柱底面的距离、圆柱底面的半径、球的半径之间构成直角三角形,可得r2+d2=R2.由题设可得2πr×2d=8π,所以d=,则R2=r2+d2=r2+≥2=4,当且仅当r=时取等号,此时球O的体积取得最小值.故此时圆柱的表面积S表=8π+2πr2=8π+2π )2=12π.8.3+-)π由题知,余下几何体的表面积由原正方体的表面的剩余部分和3个圆锥的侧面组成,其表面积S=πr·+3(1-r)+3(1-πr2)=6+π r-r2-),其中0<r≤1.设f(x)=x-x2-,0<x≤1,求导并整理得f'(x)=-2x-.当0<x≤1时,1<≤,-(2x+1)<2x2+1-(2x+1)=2x(x-1)≤0,∴<2x+1,∴f'(x)=-2x-<2x+1-2x-=1-<0,故f(x)在(0,1]上是减函数,则余下几何体的表面积S在(0,1]上也是减函数,故当r=1时,S min=3+-)π.9.(1)连接AC交BD于O,连接FO,如图D 4-6所示,∵EA∥FC,∴A,E,C,F四点共面,∴FO与EC 相交,又FO⊂平面BDF,∴FO与EC的交点即EC与平面BDF的交点G.(2分)过O作OH∥AE交EC于H,∵O是AC的中点,∴H是EC的中点,∴OH=AE.连接HF,∵AE∥CF,且AE=2CF,∴OH∥CF,且OH=CF,∴四边形HOCF是平行四边形,∴G是线段CH的中点,∴CG=CE.(4分)图D 4-6(2)∵EA⊥平面ABCD,BD⊂平面ABCD,∴EA⊥BD.∵BD⊥AC,AC∩EA=A,∴BD⊥平面EAC,又EC⊂平面EAC,∴BD⊥EC.(6分)∵OC=AB=CF=OH,OH⊥OC,∴四边形HOCF为正方形,∴OF⊥EC.∵BD∩OF=O,∴EC⊥平面BDF.(8分)(3)由(2)知BD⊥平面EACF.∵S梯形EACF===3,∴V多面体ABCDEF=V B-EACF+V D-EACF=S梯形EACF·BD=2.(12分)10.(1)设FD的中点为N,连接AN,MN.∵M为FC的中点,∴MN∥CD,MN=CD.(2分)又AO∥CD,AO=CD,∴MN∥AO,MN=AO,∴四边形MNAO为平行四边形,∴OM∥AN.(4分)又OM⊄平面DAF,AN⊂平面DAF,∴OM∥平面DAF.(6分)(2)过点F作FG⊥AB于G.∵平面ABCD⊥平面ABEF,平面ABCD∩平面ABEF=AB,∴FG⊥平面ABCD,∴V F-ABCD=S四边形ABCD·FG=AB·BC·FG=FG.(9分)同理可证CB⊥平面ABEF,∴V F-CBE=V C-BEF=S△BEF·CB=·EF·FG·CB=FG.∴-=4.(12分)-11.(1)因为PA⊥平面ABCD,所以PA⊥CD.(1分)又底面ABCD是矩形,所以AD⊥CD.(2分)因为PA∩AD=A,所以CD⊥平面PAD.(3分)因为CD⊂平面PCD,所以平面PCD⊥平面PAD.(4分)(2)不妨设AP=AD=x,则AB=2AD=2x,BC=x.(5分)因为三棱锥P-BCE与四棱锥P-ADCE的体积之比为1∶2,所以=,得=,得=,得BE=2AE.(7分) 则BE=,AE=.(8分)易知△AEF∽△BEC,则==,即AF=x.(9分)所以三棱锥P-AEF的体积V=××AF×AE×AP=××x××x=,解得x=3.故线段AD的长为3.(12分)12. (1)翻折前在Rt△PBC中,∠PCB=90°,AD∥BC,所以AD⊥PC,翻折后AD⊥PD,所以BC⊥PD.(2分)又PD⊥PB,PB∩BC=B,所以PD⊥平面PBC.(4分)(2)翻折后AD⊥DC,AD⊥PD,所以AD⊥平面PDC,由(1)知PD⊥PC,设PD=x.因为AD∥BC,AD=1,BC=3,所以DC=2x,PC=x.因为三棱锥P-ADC的体积为,所以V P-ADC=V A-PCD=·S△PCD·AD=×·x·x·1=,解得x=2,(6分)即PD=2,DC=4,PC=2,易求得PB=,PA=,AB=2,cos∠PAB=,则sin∠PAB=,所以S△PAB=××2×=2,(9分)所以四棱锥P-ABCD的表面积S=×3×6+×2×2+×3×2+2=9+5+2.(12分)。