高中数学《函数的周期性与对称性》针对练习及答案

合集下载

2023年高三数学《函数的周期性对称性》知识梳理与与专项练习(含答案解析)

2023年高三数学《函数的周期性对称性》知识梳理与与专项练习(含答案解析)

2023年高三数学《函数的周期性与对称性》知识梳理与专项练习(含答案解析)知识梳理一 函数的周期性函数()y f x =满足定义域内的任一实数x (其中,a b 为常数) (1)()()f x f x a =+,则()x f 是以T a =为周期的周期函数; (2)()()f x a f x b +=−, 则()x f 是以b a T +=为周期的周期函数; (3)()()f x a f x +=−,则()x f 是以2T a =为周期的周期函数; (4)()()1f x a f x +=±,则()x f 是以2T a =为周期的周期函数; 二 函数的对称性轴对称:若()()f a x f b x +=− 则f(x)关于2ba x +=对称. 中心对称:若()()2f a x f b x m ++−= 则f(x)关于(2ba +,m) 对称.三 由对称性推周期性(1) 函数()y f x =满足()()f a x f a x +=−(0a >),①若()x f 为奇函数,则函数()f x 周期为4T a =,②若()x f 为偶函数,则函数()f x 周期为2T a =.(2) 函数()y f x =()x R ∈的图像关于直线x a =和x b =()a b ≠都对称,则函数()f x 是以2a b −为最小正周期的周期函数;(3) 函数()y f x =()x R ∈的图像关于两点()0,A a y ,()0,B b y ()a b ≠都对称,则函数()f x 是以2a b −为最小正周期的周期函数;(4) 函数()y f x =()x R ∈的图像关于()0,A a y 和直线x b =()a b ≠都对称,则函数()f x 是以4a b −为最小正周期的周期函数;题型战法题型战法一 周期性与对称性的判断典例1.下列函数是周期函数的有( ) ①sin y x = ②cos y x = ③2y x = A .①③ B .②③ C .①② D .①②③【答案】C 【解析】 【分析】根据三角函数和二次函数的性质可得. 【详解】易得sin y x =和cos y x =是周期函数,2y x =不是周期函数. 故选:C.变式1-1.下列函数中,既是周期函数又是偶函数的是( ) A .0.5log y x = B .sin y x =C .cos y x =D .tan y x =【答案】C 【解析】直接利用函数性质判断即可. 【详解】选项A 中0.5log y x =不是周期函数,故排除A; 选项B,D 中的函数均为奇函数,故排除B,D; 故选:C. 【点睛】本题考查基本初等函数的周期性和奇偶性,属于基础题. 变式1-2.函数x y e =与x y e −=的图像( ) A .关于x 轴对称 B .关于y 轴对称 C .关于原点对称 D .关于直线y x =对称【答案】B 【解析】 【分析】设点00(,)P x y 在函数x y e =图像上,证明00(,)P x y 关于y 轴对称的点00(,)x y −在函数x y e −=的图像上.【详解】解:设点00(,)P x y 在函数x y e =图像上,则00xy e =,则00(,)P x y 关于y 轴对称的点00(,)x y −满足00()0x x y e e −−==,所以点00(,)x y −在函数x y e −=的图像上. 故选:B变式1-3.函数91()3x x f x +=的图像( )A .关于直线1x =对称B .关于y 轴对称C .关于原点对称D .关于x 轴对称【答案】B 【解析】 【分析】利用分离常数法化简函数式,可知函数()f x 为偶函数,进而判断对称性. 【详解】解:因为()()231911333333x xxx x xxx f x −++===+=+,()()33x x f x f x −−=+= 易知()f x 为偶函数,所以函数()f x 的图像关于y 轴对称. 故选:B.变式1-4.函数1()f x x x=+的图像关于( )对称. A .直线y x = B .原点C .y 轴D .x 轴【答案】B 【解析】根据函数的奇偶性判断. 【详解】因为函数1()f x x x=+的定义域为{}|0x x ≠,关于原点对称, 又11()()f x x x f x x x⎛⎫−=−−=−+=− ⎪⎝⎭,所以()f x 是奇函数,图像关于原点对称, 故选:B题型战法二 由函数周期性求函数值典例2.已知函数()y f x =为R 上的偶函数,若对于0x ≥时,都有()()4f x f x =+,且当[)0,2x ∈时,()()2log 1f x x =+,则()2021f −等于( ) A .1 B .-1 C .2log 6 D .23log 2【答案】A 【解析】 【分析】由已知确定函数的周期,利用周期性和奇偶性进行求解. 【详解】∵()y f x =为R 上的偶函数,∴(2021)(2021)f f −=, 又当0x ≥时,()(4)f x f x =+, ∴(2021)(2017)(1)f f f ==⋅⋅⋅=, 当[)0,2x ∈时,2()log (1)=+f x x , ∴2(2021)(1)log (11)1f f −==+=. 故选:A.变式2-1.定义在R 上的函数()f x 满足(2)()f x f x +=,当[1,1]x ∈−时,2()1f x x =+,则(2020.5)f =( ) A .1716B .54C .2D .1【答案】B 【解析】 【分析】由()()2f x f x +=可知,函数()f x 的周期为2,利用周期性把所给的自变量转化到区间[]1,1−上,代入求值即可. 【详解】由()()2f x f x +=可知,函数()f x 的周期为2,当[1,1]x ∈−时,2()1f x x =+, ∴1115(2020.5)202012244f f f ⎛⎫⎛⎫=+==+= ⎪ ⎪⎝⎭⎝⎭.故选:B变式2-2.已知函数()f x 是R 上的偶函数,若对于0x ≥,都有()()2f x f x +=.且当[)0,2x ∈时,()()2log 1f x x =+,则()()20132014f f −+的值为( )A .2−B .1−C .1D .2【答案】C 【解析】 【分析】由()()2f x f x +=可得函数的周期为2,再结合函数为偶函数可得()()()()2013201410f f f f −+=+,然后由已知的解析式可求得答案【详解】∵函数()f x 是(),−∞+∞上的偶函数, ∴()()f x f x −=,又∵对于0x ≥都有()()2f x f x +=,∴2T =,∵当[)0,2x ∈时,()()2log 1f x x =+,∴()()()()()()201320142013201421006121007f f f f f f −+=+=⨯++⨯()()2210log 2log 11f f =+=+=,故选:C.变式2-3.已知定义在R 上的偶函数()f x ,对x ∀∈R ,有(6)()(3)f x f x f +=+成立,当03x ≤≤时,()26f x x =−,则()2021f =( ) A .0 B .2−C .4−D .2【答案】C 【解析】 【分析】求得()f x 的周期,结合奇偶性求得()2021f 的值. 【详解】依题意对x ∀∈R ,有(6)()(3)f x f x f +=+成立, 令3x =−,则()()()()33323f f f f =−+=, 所以()30f =,故()()6f x f x +=, 所以()f x 是周期为6的周期函数,故()()()()202163371112164f f f f =⨯−=−==⨯−=−. 故选:C变式2-4.已知函数()f x 是定义在R 上的奇函数,f (1)5=,且(4)()f x f x +=−,则(2020)(2021)f f +的值为( )A .0B .5−C .2D .5【答案】B 【解析】 【分析】根据题意,分析可得(8)(4)()f x f x f x +=−+=,即函数()f x 是周期为8的周期函数,则有(2020)(0)f f =,(2021)f f =(1),由奇函数的性质求出(0)f 与f (1)的值,相加即可得答案. 【详解】解:根据题意,函数()f x 满足(4)()f x f x +=−,则有(8)(4)()f x f x f x +=−+=, 即函数()f x 是周期为8的周期函数,函数()f x 是定义在R 上的奇函数,则(0)0f =,(2020)(48252)f f f =+⨯=(4)(0)0f ==, (2021)(58252)f f f =+⨯=(5)f =−(1)5=−,则(2020)(2021)(0)f f f f +=+(1)5=−, 故选:B. 【点睛】本题考查函数的奇偶性与周期性的性质以及应用,注意分析函数的周期性,属于基础题.题型战法三 由函数对称性求函数值典例3.如果函数()f x 对任意的实数x ,都有()1()f x f x +=−,且当12x ≥时,()()2log 31f x x =−,那么函数()f x 在[]2,0−上的最大值与最小值之和为( )A .2B .3C .4D .-1【答案】C 【解析】根据()1()f x f x +=−,可知:()f x 关于12x =对称,根据对称性,要求函数()f x 在[]2,0−上的最大值与最小值之和,即求函数()f x 在[]1,3上的最大值与最小值之和,代入即可得解. 【详解】根据()1()f x f x +=−,可知:()f x 关于12x =对称, 那么要求函数()f x 在[]2,0−上的最大值与最小值之和, 即求函数()f x 在[]1,3上的最大值与最小值之和,因为()()2log 31f x x =−递增,所以最小值与最大值分别为:(1)1f =,(3)3f =,(1)(3)4f f +=,故答案为:C. 【点睛】本题考查了函数的对称性,考查了转化思想,计算量较小,思路要求较高,属于中档题.变式3-1.已知3()4f x ax bx =+−,若(2)6f =,则(2)f −=( ) A .-14 B .14 C .6 D .10【答案】A 【解析】 【分析】先计算(2)+(2)f f −,再代入数值得结果. 【详解】(2)+(2)8248248f f a b a b −=+−−−−=−Q ,又(2)6f =,所以(2)14,f −=−故选A 【点睛】本题考查函数性质,考查基本分析求解能力,属基础题.变式3-2.已知函数124xy a ⎛⎫= ⎪−⎝⎭的图像与指数函数x y a =的图像关于y 轴对称,则实数a 的值是 A .1 B .2 C .4 D .8【答案】C 【解析】 【分析】指数函数xy a =关于y 轴对称的函数为1xy a ⎛⎫= ⎪⎝⎭,由此得到124a −与a 的关系,即可求解出a 的值. 【详解】因为两函数的图像关于y 轴对称,所以124a −与a 互为倒数, 所以124aa =−,解得4a =. 故选C. 【点睛】本题考查指数函数图像对称与底数之间关系,难度较易.关于y 轴对称的指数函数的底数互为倒数.变式3-3.设函数()1f x x x a =++−的图像关于直线1x =对称,则a 的值为 A .1− B .1 C .2 D .3【答案】D 【解析】 【详解】试题分析:因为函数()1f x x x a =++−的图像关于直线1x =对称,所以点()()1,1f −−与点()(),a f a ,关于直线1x =对称,11,32aa −+==,故选D.考点: 函数的图像与性质.变式3-4.已知函数()sin cos f x a x x =+的图像关于直线3x π=对称,则4f π⎛⎫= ⎪⎝⎭( )AB C .D 【答案】B 【解析】 【分析】先由对称性求得a ,再将4π代入函数解析式即可求得答案.【详解】因为()f x 的图像关于直线3x π=对称,所以()203f f π⎛⎫= ⎪⎝⎭,即112=−,解得a 4f π⎛⎫= ⎪⎝⎭故选:B题型战法四 由周期性与对称性求函数解析式典例4.设()f x 是定义在R 上的周期为2的偶函数,已知[23]x ∈,时,()f x x =,则x ∈[-2,0]时,f (x )的解析式为f (x )=( ) A .4x + B .2x − C .31x −+ D .21x −+【答案】C 【解析】 【分析】根据已知中函数的奇偶性和周期性,结合[]2,3x ∈时,()f x x =,可得答案. 【详解】解:∵()f x 是定义在R 上的周期为2的偶函数,[]2,3x ∈时,()f x x =,∴[]21x ∈−−,时, []20,1x +∈,[]42,3x +∈,此时()()44f x f x x =+=+,[]1,0x ∈−时,[]0,1x −∈,[]22,3x −∈,此时()()()22f x f x f x x =−=−=−, 综上可得:[]2,0x ∈−时,()31f x x =−+ 故选:C . 【点睛】本题考查函数解析式的求法,函数的周期性,函数的奇偶性,难度中档. 变式4-1.已知函数()f x 满足(2)()f x f x +=,当(1,0)x ∈−时,有()2x f x =,则当x ∈(-3,-2)时,()f x 等于( ) A .2x B .2x −C .22x +D .(2)2x −+−【答案】C【解析】令(32)x ∈−−,,则2(1,)x +∈−0,根据(1,0)x ∈−时,f (x )=2x ,可求得f (x +2)的解析式,再根据f (x +2)=f (x ),即可求得f (x )解析式. 【详解】令(32)x ∈−−,,则2(1,)x +∈−0, ∵当(1,0)x ∈−时,有()2x f x =, ∴f (x +2)=2x +2, ∵f (x +2)=f (x ),∴f (x +2)=f (x )=2x +2,(32)x ∈−−,. 故选:C . 【点睛】本题考查函数解析式的求法,求函数解析式常见的方法有:待定系数法,换元法,凑配法,消元法等,考查学生的计算能力,属于基础题.变式4-2.已知()f x 是定义在R 上周期为2的函数,当[]1,1x ∈−时,()||f x x =,那么当[]7,5x ∈−−时()f x =( ) A .|3|x + B .|3|x − C .|6|x + D .|6|x −【答案】C 【解析】利用周期函数的定义求解即可. 【详解】设[]7,5x ∈−−,则[]61,1x +∈−, 由题意知,()66f x x +=+,因为函数()f x 是定义在R 上周期为2的函数, 所以()()6f x f x +=,即()6f x x =+. 故选: C 【点睛】本题考查周期函数的性质;熟练掌握周期函数的定义是求解本题的关键;属于常考题.变式4-3.若函数()f x 与()3xg x =的图像关于直线3x =对称,则()f x =( )A .33x −B .33x −C .63x −D .63x −【答案】D【解析】 【分析】先设出函数()f x 图像上任意点的坐标,再求出关于直线3x =对称的点,代入函数()g x 的解析式即可求解. 【详解】解:设函数()y f x =图像上的点为(,)M x y ,关于直线3x =对称的点为(6,)N x y −, 将点N 代入函数()y g x =的解析式可得:63x y −=, 故6()3x f x −=, 故选:D .变式4-4.下列函数中,其图像与函数2x y =的图像关于直线1x =对称的是( ) A .12x y −= B .22x y −= C .12x y += D .22x y +=【答案】B 【解析】 【分析】设所求函数图像上任意一点为(),x y ,由其关于直线1x =的对称点()2,x y −在函数2x y =的图像上可解得结果.【详解】设所求函数图像上任意一点为(),x y ,则其关于直线1x =的对称点()2,x y −在函数2x y =的图像上,所以22x y −=.故选:B.题型战法五 由周期性与对称性比较大小典例5.定义在R 上的函数()f x 满足:()()4f x f x +=成立且()f x 在[]2,0−上单调递增,设()6a f =,(b f =,()4c f =,则a ,b ,c 的大小关系是( ) A .a b c >> B .a c b >> C .b c a >> D .c b a >>【答案】D 【解析】 【分析】由()()4f x f x +=,得到()f x 是周期为4的周期函数,得到(6)(2),(4)(0)f f f f =−=,4)f f =,结合()f x 在[]2,0−上单调递增,得到(2)4)(0)f f f −<<,即可求解. 【详解】由题意,函数()f x 满足()()4f x f x +=,即函数()f x 是周期为4的周期函数,则(6)(68)(2),4),(4)(0)f f f f f f f =−=−==,又由函数()f x 在区间[]2,0−上单调递增,可得(2)4)(0)f f f −<<,即(6)(4)f f f <<,所以c b a >>. 故选:D.变式5-1.已知定义域为R 的函数()f x 是奇函数,且()()2f x f x +=−,若()f x 在区间[]0,1是减函数,则53f ⎛⎫⎪⎝⎭,()1f ,112f ⎛⎫⎪⎝⎭的大小关系是( ) A .()115123f f f ⎛⎫⎛⎫<<⎪ ⎪⎝⎭⎝⎭B .()115123f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭C .()511132f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭D .()511132f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭【答案】B 【解析】根据已知等式判断出函数的周期性,再根据奇函数的性质和单调性进行判断即可. 【详解】()()()()()()22224f x f x f x f x f x f x +=−⇒++=−+⇒=+,由此可知函数()f x 的周期为4,函数()f x 是奇函数,()()2f x f x +=−,所以有:55771142333333f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=−=−=−=−+= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭, 113311142222222f f f f ff ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+==−+=−−= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭, 因为()f x 在区间[]0,1是减函数,11132<<,所以()11132f f f ⎛⎫⎛⎫>> ⎪ ⎪⎝⎭⎝⎭,即()115123f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭, 故选:B变式5-2.已知函数()f x 的定义域为 R ,且满足下列三个条件: ①对任意的[]12,4,8x x ∈ ,且 12x x ≠,都有()1212()0f x f x x x −>− ;②(8)()f x f x += ;③(4)y f x =+ 是偶函数;若(7),(11)a f b f =−=,(2020)c f =,则,,a b c 的大小关系正确的是( ) A .a b c << B .b a c << C .b c a << D .c b a <<【答案】D 【解析】由已知条件可知()f x 在[]4,8上单调递增,周期为8,对称轴为4x =.则()7a f =,()5b f =,()4c f =,再结合函数的单调性即可判断大小.【详解】解:由①知,()f x 在[]4,8上单调递增;由②知,()f x 的周期为8; 由③知,()f x 的对称轴为4x =;则()()()717a f f f =−==,()()()()1183835b f f f f =−==−=,()()202025284c f f =−⨯=,因为457<<,由函数的单调性可知,c b a <<. 故选:D. 【点睛】本题考查了函数的对称性,考查了函数的周期,考查了函数的单调性.本题的关键是由已知条件分析出函数的性质.变式5-3.定义在R 上的函数()y x =满足以下三个条件:①对于任意的实数x ∈R ,都有()()220f x f x ++−=成立;②函数()1y f x =+的图像关于y 轴对称;③对任意的1x ,[]20,1x ∈,12x x ≠,都有()()()()11221221x f x x f x x f x x f x +>+成立.则()2021f ,()2022f ,()2023f 的大小关系为( )A .()()()202120232022f f f >>B .()()()202120222023f f f >>C .()()()202320222021f f f >>D .()()()202220212023f f f >>【答案】B 【解析】 【分析】由①②可得函数()f x 是周期为4的函数,且()f x 是奇函数,由③可得函数()f x 在[]0,1上单调递增,进而可得函数()f x 在[]1,1−上单调递增,从而利用周期性和单调性即可求解.【详解】解:由题意,因为函数()1y f x =+的图像关于y 轴对称,所以()()11f x f x +=−+, 所以()()2f x f x =−,所以函数()f x 的图像关于1x =对称,又()()220f x f x ++−=,所以()()20f x f x ++=,即()()2f x f x +=−, 因为()()()222f x f x f x ++=−+=⎡⎤⎣⎦,所以函数()f x 是周期为4的函数, 所以()()20211f f =,()()()202220f f f ==,()()20231f f =−, 因为()()2f x f x +=−,且()()2f x f x +=−,所以()()f x f x −=−, 所以函数()f x 为奇函数,又因为对任意的1x ,[]20,1x ∈,12x x ≠,都有()()()()11221221x f x x f x x f x x f x +>+成立,即()()()12120x x f x f x −−>⎡⎤⎣⎦, 所以函数()f x 在[]0,1上单调递增, 所以函数()f x 在[]1,1−上单调递增,因为101>>−,所以()()()202120222023f f f >>, 故选:B.变式5-4.已知定义在R 上的函数()f x 满足,①()()2f x f x +=,② ()2f x −为奇函数,③当[)0,1x ∈时,()()12120f x f x x x −>−()12x x ≠恒成立.则152f ⎛⎫− ⎪⎝⎭、()4f 、112f ⎛⎫ ⎪⎝⎭的大小关系正确的是( ) A .()1115422f f f ⎛⎫⎛⎫>>− ⎪ ⎪⎝⎭⎝⎭B .()1115422f f f ⎛⎫⎛⎫>>− ⎪ ⎪⎝⎭⎝⎭C .()1511422f f f ⎛⎫⎛⎫−>> ⎪ ⎪⎝⎭⎝⎭D .()1511422f f f ⎛⎫⎛⎫−>> ⎪ ⎪⎝⎭⎝⎭【答案】C 【解析】 【分析】根据单调性的定义可得()f x 在()0,1上单调递增,根据已知条件可得()f x 是周期为2的奇函数,根据周期性和单调性即可求解. 【详解】由()()2f x f x +=可得()f x 的周期为2, 因为()2f x −为奇函数,所以()f x 为奇函数,因为[)0,1x ∈时,()()12120f x f x x x −>−,所以()f x 在()0,1上单调递增,因为()f x 为奇函数,所以()f x 在()1,0-上单调递增, 所以()f x 在()1,1−上单调递增, 因为1515124222f f f ⎛⎫⎛⎫⎛⎫−=−+⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,()()()44220f f f =−⨯=, 1111123222f f f ⎛⎫⎛⎫⎛⎫=−⨯=− ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 所以()11022f f f ⎛⎫⎛⎫>>− ⎪ ⎪⎝⎭⎝⎭,即()1511422f f f ⎛⎫⎛⎫−>> ⎪ ⎪⎝⎭⎝⎭. 故选:C.题型战法六 由抽象函数周期性与对称性求函数值典例6.已知()f x 是定义域为R 的偶函数,()10f =,()5.52f =,()()()1g x x f x =−.若()1g x +是偶函数,则()0.5g −=( ) A .-3 B .-2 C .2 D .3【答案】D 【解析】 【分析】根据()1g x +得到()g x 关于1x =对称,得到()()2g x g x =−,结合()()()1g x x f x =−和()f x 为偶函数即可得()f x 周期为4,进而即得.【详解】因为()1g x +为偶函数,则()g x 关于1x =对称,即()()2g x g x =−. 即()()()()112x f x x f x −=−−,即()()20f x f x +−=,()10f =也满足. 又()f x 是定义域为R 偶函数,关于y 轴对称,∴()()2f x f x =−−,()()()()()2,42f x f x f x f x f x +=−+=−+=, ∴()f x 周期为4,∴()()()()5.5 1.5 2.5 2.52f f f f ==−==, ∴()()()0.5 2.5 1.5 2.53g g f −===. 故选:D.变式6-1.已知函数()f x 满足(3)(1)9(2)f x f x f +=−+对任意x ∈R 恒成立,又函数(9)f x +的图像关于点(9,0)−对称,且(1)2022,f = 则(45)f =( )A .2021B .2021−C .2022D .2022−【答案】D 【解析】 【分析】首先利用赋值法求出()20f =,代入等式赋值得到(4)()f x f x +=−,即对称轴为2x =,再根据函数图像的平移规律判断函数为奇函数,进一步求得函数周期,进而得到(45)(3)(3)(1)f f f f =−=−=−,则可求出结果.【详解】因为对任意x ∈R ,都有(3)(1)9(2),f x f x f +=−+ 令1,x =− 得(2)(2)9(2),f f f =+ 解得(2)0,f = 则(3)(1),f x f x +=− 即(4)(),f x f x +=− 所以函数()f x 的图像关于直线2x =对称.又函数(9)f x +的图像关于点(9,0)−对称,则函数()f x 的图像关于点(0,0)对称, 即函数()f x 为奇函数,所以(4)()(),f x f x f x +=−=−所以(8)(4)(),f x f x f x +=−+= 所以8是函数()f x 的一个周期, 所以(45)(683)(3)(3)(1)2022,f f f f f =⨯−=−=−=−=− 故选:D.变式6-2.若定义在实数集R 上的偶函数()f x 满足()0f x >,1(2)()f x f x +=,对任意的x ∈R 恒成立,则()2021f =( ) A .4 B .3 C .2 D .1【答案】D 【解析】 【分析】根据题干条件得到()f x 为周期函数,最小正周期为4,进而得到()()20211f f =,利用()f x 是偶函数得到()()11f f −=,进而得到()211f =,结合()0f x >,得到()11f =.【详解】1(2)()f x f x +=,则1()(2)f x f x =−,所以1(2)(2)()f x f x f x +==−,即()()4f x f x +=,()f x 为周期函数,最小正周期为4,则()()()2021505411f f f =⨯+=,令1x =−得:1(12)(1)f f −+=−,即()()111f f =−,又因为()f x 为偶函数,所以()()11f f −=,故()()111f f =,即()211f =,因为()0f x >,所以()11f =. 故选:D变式6-3.已知定义在R 上的函数()f x ,满足()()0f x f x -+=,(5)(5)f x f x −=+,且(1)2022f =,则(2020)(2021)f f −=( )A .2026B .4044C .2022−D .4044−【答案】C 【解析】 【分析】根据题意可知函数是奇函数,进而推导()f x 的周期,然后求出函数值即可. 【详解】()()0f x f x −+=,()()f x f x ∴−=−,()f x ∴是奇函数,x R ∈Q ,(0)=0f ∴. (5)(5)f x f x −=+,()(10)f x f x ∴−=+,由()()()(10)f x f x f x f x ì-=-ïïíï-=+ïî,()(20)f x f x ∴=+,()f x ∴的周期为20T =. 0(1)202()20=f f =,.(0)(1)020222022(2020)(2021)f f f f ∴−=−=−−=.故选:C变式6-4.函数()f x 定义域为R ,且,(4)()2(2)x R f x f x f ∀∈+=+,若函数(1)f x +的图像关于1x =−对称,且(1)3f =,则(2021)f =( ) A .3 B .-3C .6D .-6【答案】A 【解析】 【分析】由题设可知()f x 为偶函数且(2)(2)2(2)f f f =−+,即可得(2)0f =,易知()f x 是周期为4的函数,利用周期性求(2021)f 即可. 【详解】∵(1)f x +的图像关于1x =−对称, ∴()f x 关于y 轴对称,即()f x 为偶函数,又(2)(2)2(2)f f f =−+,即(2)(2)0f f +−=,而(2)(2)f f =−, ∴(2)(2)0f f =−=,故,(4)()x R f x f x ∀∈+=,∴()f x 是周期为4的函数,综上,(2021)(45051)(1)3f f f =⨯+==. 故选:A。

高考数学复习----《利用周期性和对称性解决函数问题》典型例题讲解

高考数学复习----《利用周期性和对称性解决函数问题》典型例题讲解

高考数学复习----《利用周期性和对称性解决函数问题》典型例题讲解【典型例题】例1、(2023·全国·高三专题练习)已知函数()f x 的定义域为R ,()22f x +为偶函数,()1f x +为奇函数,且当[]0,1x ∈时,()f x ax b =+.若()41f =,则3112i f i =⎛⎫+= ⎪⎝⎭∑( )A .12B .0C .12−D .1−【答案】C【解析】因为()22f x +为偶函数,所以()()2222f x f x −+=+, 用1122x +代替x 得:()()13f x f x −+=+, 因为()1f x +为奇函数,所以()()11f x f x −+=−+, 故()()31f x f x +=−+①,用2x +代替x 得:()()53f x f x +=−+②, 由①② 得:()()51f x f x +=+, 所以函数()f x 的周期4T =, 所以()()401f f ==,即1b =,因为()()11f x f x −+=−+,令0x =得:()()11f f =−,故()10f =,()10f a b =+=,解得:1a =−,所以[]0,1x ∈时,()1f x x =−+, 因为()()11f x f x −+=−+, 令12x =,得2123f f ⎛⎫⎛⎫=− ⎪ ⎪⎝⎭⎝⎭, 其中1111222f ⎛⎫=−+= ⎪⎝⎭,所以3122f ⎛⎫=− ⎪⎝⎭,因为()()2222f x f x −+=+,令14x =得:12214422f f ⎛⎫⎛⎫−⨯+=⨯+ ⎪ ⎪⎝⎭⎝⎭,即235212f f ⎛⎫⎛⎫==− ⎪ ⎪⎝⎭⎝⎭,因为4T =,所以7714222f f f ⎛⎫⎛⎫⎛⎫=−=− ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 因为()()11f x f x −+=−+, 令32x =得:151222f f ⎛⎫⎛⎫−=−= ⎪ ⎪⎝⎭⎝⎭, 故2721f ⎛⎫= ⎪⎝⎭,311111122235722222i f i f f f =⎛⎫⎛⎫⎛⎫⎛⎫+=++=−−+=− ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭∑.故选:C例2、(2023·四川资阳·统考模拟预测)已知函数()f x 的定义域为R ,()2f x −为偶函数,()()20f x f x −+−=,当[]2,1x ∈−−时,()14xf x ax a =−−(0a >且1a ≠),且()24f −=.则()131k f k ==∑( )A .16B .20C .24D .28【答案】C【解析】因为()2f x −是偶函数,所以()2(2)f x f x −−=−,所以()(4)f x f x =−−, 所以函数()f x 关于直线2x =−对称,又因为()()20f x f x −+−=,所以()()2f x f x −−=−, 所以()(2)f x f x =−−−,所以()f x 关于点(1,0)−中心对称, 由()(4)f x f x =−−及()(2)f x f x =−−−得(4)(2)f x f x −−=−−− 所以(4)(2)()f x f x f x −−=−−−=− 所以函数()f x 的周期为4, 因为当[]2,1x ∈−−时,()14xf x ax a =−−(0a >且1a ≠),且()24f −=,所以21424a a −=+−,解得:2a =或4a =−,因为0a >且1a ≠,所以2a =. 所以当[]2,1x ∈−−时,()1()242xf x x =−−,所以(2)4,(1)0f f −=−=,(3)(1)0f f −=−=,(0)(2)4f f =−−=−, (1)(14)(3)0f f f =−=−=,(2)(2)4f f =−=,(3)(1)0f f =−=, (4)(0)4f f ==−,所以(1)(2)(3)(4)8f f f f +++=,所以()131(1)+3824k f k f ==⨯=∑,故选:C .例3、(2023·山东济宁·高三嘉祥县第一中学校考阶段练习)已知定义在R 上的偶函数()f x 满足()()11f x f x −=+,且当01x ≤≤时,()21f x x =−.若直线y x a =+与曲线()y f x =恰有三个公共点,那么实数a 的取值的集合为( )A .51,4k k ⎛⎫++ ⎪⎝⎭(Z k ∈)B .521,24k k ⎛⎫++ ⎪⎝⎭(Z k ∈)C .52,214k k ⎛⎫−− ⎪⎝⎭(Z k ∈)D .5,14k k ⎛⎫−− ⎪⎝⎭(Z k ∈)【答案】B【解析】定义在R 上的偶函数()f x 满足()()11f x f x −=+, 所以()f x 的图像关于1x =对称,且()f x 为周期是2的偶函数,当11x −≤≤时,()21f x x =−,所以画出函数图像如下图所示:①当1a =±时,结合图像可知y x a =+与()21f x x =−([)1,1x ∈−)有两个公共点; ②当y x a =+与()21f x x =−([)1,1x ∈−)相切时,满足21x a x +=−,即210x x a ++−=,令()1410a ∆=−−=,解得54a =. 当54a =时,结合图像可知y x a =+与()y f x =(x R ∈)有两个公共点; 由图像可知, 51,4a ⎛⎫∈ ⎪⎝⎭时,直线y x a =+与()y f x =(x R ∈)有三个公共点;又因为()f x 周期2T =,可知521,24a k k ⎛⎫∈++ ⎪⎝⎭(Z k ∈). 故选:B .例4、(2023·全国·高三专题练习)已知定义在R 上的函数()f x 满足()()2f x f x +=,且当[)1,1x ∈−时,()2f x x =,若函数()log 1a g x x =+图像与()f x 的图像恰有10个不同的公共点,则实数a 的取值范围为( )A .()4,+∞B .()6,+∞C .()1,4D .()4,6【答案】D【解析】因为函数()f x 满足()()2f x f x +=,所以函数()f x 是周期为2的周期函数, 又函数()log 1a g x x =+的图像可由函数log a y x =的图像向左平移一个单位可得,所以函数()log 1a g x x =+的图像的对称轴为=1x −,当[)1,1x ∈−时,()2f x x =,所以函数()f x 的图像也关于=1x −对称,在平面直角坐标系中作出函数()y f x =与()y g x =在=1x −右侧的图像,数形结合可得,若函数()log 1a g x x =+图像与()f x 的图像恰有10个不同的公共点, 则由函数图像的对称性可得两图像在=1x −右侧有5个交点, 则()()13log 415log 61a a a g g ⎧>⎪=<⎨⎪=>⎩,解得()4,6a ∈. 故选:D .例5、(2023春·江西鹰潭·高三贵溪市实验中学校考阶段练习)已知()f x 是定义在R 上的奇函数,x ∀∈R ,恒有(4)()f x f x +=−,且当[2,0)x ∈−时,()f x x =−−1,则(0)(1)(2)(2020)(2021)f f f f f +++++=( )A .1B .-1C .0D .2【答案】B【解析】因为(4)(),(8)(4)()f x f x f x f x f x +=−+=−+=,所以()f x 的最小正周期是8, 因为(0)0,(2)(2)1,(3)(1)0f f f f f ==−−=−=−−=,(4)(0)0,(1)(3)f f f f =−==−−=(3)0f =,(5)(1)0f f =−=,(6)(2)1f f =−=, (7)(3)0,(8)(4)0f f f f =−==−=,又()f x 是周期为8的周期函数,所以(0)(1)(2)(3)(4)(5)(6)(7)f f f f f f f f +++++++==(2008)(2009)(2010)(2011)(2012)(2013)(2014)(2015)0f f f f f f f f +++++++=,(2016)(2017)(2018)(2019)(2020)(2021)(0)(1)(2)(3)(4)(5)f f f f f f f f f f f f +++++=+++++00(1)0001=++−+++=−,所以(0)(1)(2)(2020)(2021)1f f f f f +++++=−.故选:B例6、(2023·山东济宁·高三嘉祥县第一中学校考阶段练习)已知定义在R 上的偶函数()f x 满足()()11f x f x −=+,且当01x ≤≤时,()21f x x =−.若直线y x a =+与曲线()y f x =恰有三个公共点,那么实数a 的取值的集合为( )A .51,4k k ⎛⎫++ ⎪⎝⎭(Z k ∈)B .521,24k k ⎛⎫++ ⎪⎝⎭(Z k ∈)C .52,214k k ⎛⎫−− ⎪⎝⎭(Z k ∈)D .5,14k k ⎛⎫−− ⎪⎝⎭(Z k ∈)【答案】B【解析】定义在R 上的偶函数()f x 满足()()11f x f x −=+, 所以()f x 的图像关于1x =对称,且()f x 为周期是2的偶函数,当11x −≤≤时,()21f x x =−,所以画出函数图像如下图所示:①当1a =±时,结合图像可知y x a =+与()21f x x =−([)1,1x ∈−)有两个公共点;②当y x a =+与()21f x x =−([)1,1x ∈−)相切时,满足21x a x +=−,即210x x a ++−=,令()1410a ∆=−−=,解得54a =. 当54a =时,结合图像可知y x a =+与()y f x =(x R ∈)有两个公共点; 由图像可知, 51,4a ⎛⎫∈ ⎪⎝⎭时,直线y x a =+与()y f x =(x R ∈)有三个公共点;又因为()f x 周期2T =,可知521,24a k k ⎛⎫∈++ ⎪⎝⎭(Z k ∈). 故选:B .例7、(2023·全国·高三专题练习)已知定义在R 上的函数()f x 满足()()2f x f x +=,且当[)1,1x ∈−时,()2f x x =,若函数()log 1a g x x =+图像与()f x 的图像恰有10个不同的公共点,则实数a 的取值范围为( )A .()4,+∞B .()6,+∞C .()1,4D .()4,6【答案】D【解析】因为函数()f x 满足()()2f x f x +=,所以函数()f x 是周期为2的周期函数, 又函数()log 1a g x x =+的图像可由函数log a y x =的图像向左平移一个单位可得, 所以函数()log 1a g x x =+的图像的对称轴为=1x −,当[)1,1x ∈−时,()2f x x =,所以函数()f x 的图像也关于=1x −对称,在平面直角坐标系中作出函数()y f x =与()y g x =在=1x −右侧的图像,数形结合可得,若函数()log 1a g x x =+图像与()f x 的图像恰有10个不同的公共点, 则由函数图像的对称性可得两图像在=1x −右侧有5个交点, 则()()13log 415log 61a a a g g ⎧>⎪=<⎨⎪=>⎩,解得()4,6a ∈. 故选:D .例8、(2023春·江西鹰潭·高三贵溪市实验中学校考阶段练习)已知()f x 是定义在R 上的奇函数,x ∀∈R ,恒有(4)()f x f x +=−,且当[2,0)x ∈−时,()f x x =−−1,则(0)(1)(2)(2020)(2021)f f f f f +++++=( )A .1B .-1C .0D .2【答案】B【解析】因为(4)(),(8)(4)()f x f x f x f x f x +=−+=−+=,所以()f x 的最小正周期是8, 因为(0)0,(2)(2)1,(3)(1)0f f f f f ==−−=−=−−=,(4)(0)0,(1)(3)f f f f =−==−−=(3)0f =,(5)(1)0f f =−=,(6)(2)1f f =−=, (7)(3)0,(8)(4)0f f f f =−==−=,又()f x 是周期为8的周期函数,所以(0)(1)(2)(3)(4)(5)(6)(7)f f f f f f f f +++++++==(2008)(2009)(2010)(2011)(2012)(2013)(2014)(2015)0f f f f f f f f +++++++=,(2016)(2017)(2018)(2019)(2020)(2021)(0)(1)(2)(3)(4)(5)f f f f f f f f f f f f +++++=+++++00(1)0001=++−+++=−,所以(0)(1)(2)(2020)(2021)1f f f f f +++++=−.故选:B。

高三数学周期性和对称性试题答案及解析

高三数学周期性和对称性试题答案及解析

高三数学周期性和对称性试题答案及解析1.设f(x)是(-∞,+∞)上的奇函数,f(x+2)=-f(x),当0≤x≤1时,f(x)=x.(1)求f(3)的值;(2)当-4≤x≤4时,求f(x)的图像与x轴所围成图形的面积.【答案】(1)-1 (2)4【解析】解:(1)由f(x+2)=-f(x)得,f(x+4)=f[(x+2)+2]=-f(x+2)=f(x),所以f(x)是以4为周期的周期函数,所以f(3)=f(3-4)=-f(1)=-1.(2)由f(x)是奇函数与f(x+2)=-f(x),得f[(x-1)+2]=-f(x-1)=f[-(x-1)],即f(1+x)=f(1-x).故知函数y=f(x)的图像关于直线x=1对称.又0≤x≤1时,f(x)=x,且f(x)的图像关于原点成中心对称,则-1≤x≤0时,f(x)=x,则f(x)的图像如图所示.当-4≤x≤4时,设f(x)的图像与x轴围成的图形面积为S,则S=4S=4×=4.△OAB2.定义在R上的函数满足,则的值为( )A.B.0C.1D.2【答案】C【解析】由已知得,,,,,,,,所以函数的值以6为周期重复性出现.所以,故选C.3.定义在R上的函数满足.当时,,当时,.则()A.335B.338C.1678D.2012【答案】B【解析】由,可知函数的周期为6,所以,,,,所以在一个周期内有,所以4.函数的定义域为实数集,对于任意的都有.若在区间上函数恰有四个不同的零点,则实数的取值范围是().A.B.C.D.【答案】D【解析】因为对任意的都有,所以函数的周期为2. 由在区间上函数恰有四个不同的零点,即函数在上有四个不同的零点.即函数与函数在有四个不同的交点.所以.解得.故选D.【考点】1.分段函数的性质.2.函数的周期性.3.函数的等价变换.5.设定义在上的函数满足,若,则.【答案】【解析】∵,∴,∴,∴是一个周期为4的周期函数,∴.∵,∴==.【考点】抽象函数.6.函数的最小正周期.【答案】【解析】,.【考点】函数的周期.7.已知定义在R上的函数f(x)满足f(1)=1,f(x+2)=对任意x∈R恒成立,则f(2011)等于() A.1B.2C.3D.4【答案】A【解析】由f(x+2)=,得f(-1+2)=,即f(1)f(-1)=1,而f(1)=1,故f(-1)=1,且f(x+4)==f(x),∴f(2011)=f(503×4-1)=f(-1)=1.故选A.8.若f(x)=x2-x+a,f(-m)<0,则f(m+1)的值是()A.正数B.负数C.非负数D.不能确定正负【答案】B【解析】f(x)=(x-)2+a-,其对称轴为x=,而-m,m+1关于对称,故f(m+1)=f(-m)<0,故选B.9.已知函数的图像关于直线对称,则【答案】【解析】这类问题可用特殊值法求解,从函数解析式可知点在函数图象上,因此点也在函数图象上,故,.【考点】关于直线的对称问题.10.定义在上的函数满足则的值为()A.B.C.D.【答案】D【解析】由题意知,故选D.【考点】1.函数的周期性;2.分段函数;3.对数的运算11.设定义如下面数表,数列满足,且对任意自然数均有,则的值为___________________。

高中数学《函数的对称性与周期性》基础知识及专项练习题(含答案)

高中数学《函数的对称性与周期性》基础知识及专项练习题(含答案)

高中数学《函数的对称性与周期性》基础知识及专项练习题(含答案)一、基础知识(一)函数的对称性1、对定义域的要求:无论是轴对称还是中心对称,均要求函数的定义域要关于对称轴(或对称中心)对称2、轴对称的等价描述:(1)()()f a x f a x −=+⇔()f x 关于x a =轴对称(当0a =时,恰好就是偶函数)(2)()()()f a x f b x f x −=+⇔关于2a b x +=轴对称 在已知对称轴的情况下,构造形如()()f a x f b x −=+的等式只需注意两点,一是等式两侧f 前面的符号相同,且括号内x 前面的符号相反;二是,a b 的取值保证2a b x +=为所给对称轴即可。

例如:()f x 关于1x =轴对称()()2f x f x ⇒=−,或得到()()31f x f x −=−+均可,只是在求函数值方面,一侧是()f x 更为方便(3)()f x a +是偶函数,则()()f x a f x a +=−+,进而可得到:()f x 关于x a =轴对称。

① 要注意偶函数是指自变量取相反数,函数值相等,所以在()f x a +中,x 仅是括号中的一部分,偶函数只是指其中的x 取相反数时,函数值相等,即()()f x a f x a +=−+,要与以下的命题区分:若()f x 是偶函数,则()()f x a f x a +=−+⎡⎤⎣⎦:()f x 是偶函数中的x 占据整个括号,所以是指括号内取相反数,则函数值相等,所以有()()f x a f x a +=−+⎡⎤⎣⎦② 本结论也可通过图像变换来理解,()f x a +是偶函数,则()f x a +关于0x =轴对称,而()f x 可视为()f x a +平移了a 个单位(方向由a 的符号决定),所以()f x 关于x a =对称。

3、中心对称的等价描述:(1)()()f a x f a x −=−+⇔()f x 关于(),0a 轴对称(当0a =时,恰好就是奇函数)(2)()()()f a x f b x f x −=−+⇔关于,02a b +⎛⎫ ⎪⎝⎭轴对称 在已知对称中心的情况下,构造形如()()f a x f b x −=−+的等式同样需注意两点,一是等式两侧f 和x 前面的符号均相反;二是,a b 的取值保证2a b x +=为所给对称中心即可。

函数的周期性、对称性(解析版)

函数的周期性、对称性(解析版)

函数的周期性、对称性一、单选题1.(2023·全国·高三专题练习)已知函数f x =x -e 2+ln ex e -x ,若f e 2020 +f 2e2020+⋅⋅⋅+f 2018e 2020 +f 2019e 2020 =20192a +b ,其中b >0,则12a+a b 的最小值为()A.34B.54C.2D.22【答案】A【解析】因为f x =x -e 2+ln exe -x,所以f x +f e -x =x -e 2+ln ex e -x +(e -x )-e2+ln e (e -x )e -(e -x )=lnex e -x +ln e (e -x )x =ln exe -x ⋅e (e -x )x=ln e 2=2,令S =f e 2020 +f 2e 2020 +⋅⋅⋅+f 2018e 2020 +f 2019e2020 则2S =f e 2020 +f 2019e 2020 +f 2e 2020 +f 2018e 2020 +⋅⋅⋅+f 2019e 2020 +f e2020 =2×2019所以S =2019所以20192a +b =2019,所以a +b =2,其中b >0,则a =2-b .当a >0时12|a |+|a |b =12a +2-b b =12a +2b -1=12a +2b ⋅(a +b )2-1=1252+b 2a +2a b-1≥1252+2b 2a ⋅2a b -1=54当且仅当b 2a =2a b, 即 a =23,b =43 时等号成立;当a <0时 12|a |+|a |b =1-2a +-a b =1-2a +b -2b =1-2a +-2b +1=121-2a +-2b ⋅(a +b )+1=12-52+b -2a +-2ab +1≥12-52+2b -2a ⋅-2a b +1=34,当且仅当 b -2a =-2a b, 即 a =-2,b =4 时等号成立;因为34<54,所以12|a |+|a |b 的最小值为34.故选:A .2.(2023春·重庆·高三统考阶段练习)已知函数f (x )=ln x 2+1-x +1,正实数a ,b 满足f (2a )+f (b -4)=2,则4b a +a2ab +b 2的最小值为( )A.1B.2C.4D.658【答案】B【解析】f x +f -x =ln x 2+1-x +1+ln x 2+1+x +1=2,故函数f x 关于0,1 对称,又f x 在R 上严格递增;f (2a )+f (b -4)=2,∴2a +b -4=0即2a +b =4.4b a +a 2ab +b 2=4b a +a b 2a +b =4b a +a4b ≥24b a ⋅a 4b=2.当且仅当a =169,b =49时取得.故选:B .3.(2023·全国·高三专题练习)已知函数f x 的定义域为R ,f 2x +2 为偶函数,f x +1 为奇函数,且当x ∈0,1 时,f x =ax +b .若f 4 =1,则3i =1f i +12=( )A.12B.0C.-12D.-1【答案】C【解析】因为f 2x +2 为偶函数,所以f -2x +2 =f 2x +2 ,用12x +12代替x 得:f -x +1 =f x +3 ,因为f x +1 为奇函数,所以f -x +1 =-f x +1 ,故f x +3 =-f x +1 ①,用x +2代替x 得:f x +5 =-f x +3 ②,由①② 得:f x +5 =f x +1 ,所以函数f x 的周期T =4,所以f 4 =f 0 =1,即b =1,因为f -x +1 =-f x +1 ,令x =0得:f 1 =-f 1 ,故f 1 =0,f 1 =a +b =0,解得:a =-1,所以x ∈0,1 时,f x =-x +1,因为f -x +1 =-f x +1 ,令x =12,得f 12 =-f 32 ,其中f 12 =-12+1=12,所以f 32 =-12,因为f -2x +2 =f 2x +2 ,令x =14得:f -2×14+2 =f 2×14+2 ,即f 32 =f 52 =-12,因为T=4,所以f 72 =f72-4=f-12,因为f-x+1=-f x+1,令x=32得:f-12=-f52 =12,故f 72 =12,3 i=1fi+12=f32 +f52 +f72 =-12-12+12=-12.故选:C4.(2023·四川资阳·统考模拟预测)已知函数f x 的定义域为R,f x-2为偶函数,f x-2+f-x=0,当x∈-2,-1时,f x =1a x-ax-4(a>0且a≠1),且f-2=4.则13k=1f k=( )A.16B.20C.24D.28【答案】C【解析】因为f x-2是偶函数,所以f-x-2=f(x-2),所以f(x)=f(-x-4),所以函数f(x)关于直线x=-2对称,又因为f x-2+f-x=0,所以-f x-2=f-x,所以f(x)=-f(-x-2),所以f(x)关于点(-1,0)中心对称,由f(x)=f(-x-4)及f(x)=-f(-x-2)得f(-x-4)=-f(-x-2)所以f(-x-4)=-f(-x-2)=f(-x)所以函数f(x)的周期为4,因为当x∈-2,-1时,f x =1a x-ax-4(a>0且a≠1),且f-2=4,所以4=1a-2+2a-4,解得:a=2或a=-4,因为a>0且a≠1,所以a=2.所以当x∈-2,-1时,f x =12x-2x-4,所以f(-2)=4,f(-1)=0,f(-3)=f(-1)=0,f(0)=-f(-2)=-4,f(1)=f(1-4)=f(-3)=0,f(2)=f(-2)=4,f(3)=f(-1)=0,f(4)=f(0)=-4,所以f(1)+f(2)+f(3)+f(4)=8,所以13k=1f k=f(1)+3×8=24,故选:C.5.(2023·全国·高三专题练习)已知函数f(x),g(x)的定义域均为R,且f(x)+g(2-x)=5,g(x)-f(x-4)=7.若y=g(x)的图像关于直线x=2对称,g(2)=4,则22k=1f k =( )A.-21B.-22C.-23D.-24【答案】D【解析】因为y =g (x )的图像关于直线x =2对称,所以g 2-x =g x +2 ,因为g (x )-f (x -4)=7,所以g (x +2)-f (x -2)=7,即g (x +2)=7+f (x -2),因为f (x )+g (2-x )=5,所以f (x )+g (x +2)=5,代入得f (x )+7+f (x -2) =5,即f (x )+f (x -2)=-2,所以f 3 +f 5 +⋯+f 21 =-2 ×5=-10,f 4 +f 6 +⋯+f 22 =-2 ×5=-10.因为f (x )+g (2-x )=5,所以f (0)+g (2)=5,即f 0 =1,所以f (2)=-2-f 0 =-3.因为g (x )-f (x -4)=7,所以g (x +4)-f (x )=7,又因为f (x )+g (2-x )=5,联立得,g 2-x +g x +4 =12,所以y =g (x )的图像关于点3,6 中心对称,因为函数g (x )的定义域为R ,所以g 3 =6因为f (x )+g (x +2)=5,所以f 1 =5-g 3 =-1.所以∑22k =1f (k )=f 1 +f 2 +f 3 +f 5 +⋯+f 21 +f 4 +f 6 +⋯+f 22 =-1-3-10-10=-24.故选:D6.(2023·全国·高三专题练习)设函数f x =x 3+ax 2+bx +2a ,b ∈R ,若f 2+x +f 2-x =8,则下列不等式正确的是( )A.f e +f 32>8 B.f e +f 2-3 >8C.f ln7 +f 2+3 >8 D.f ln5 +f 3ln2 <8【答案】C【解析】由题(2+x )3+a (2+x )2+b (2+x )+2+(2-x )3+a (2-x )2+b (2-x )+2=8,化简整理得(6+a )x 2+2(2a +b +3)=0,于是6+a =0,2a +b +3=0⇒a =-6,b =9,所以f (x )=x 3-6x 2+9x +2,进而f (x )=3x 2-12x +9=3(x -1)(x -3),据此,f (x )在(-∞,1),(3,+∞)上单调递增,f (x )在(1,3)上单调递减,因为f (2+x )+f (2-x )=8,即f (x )+f (4-x )=8.对于A ,由f (e )+f (4-e )=8,又1<4-e <32<3,所以f (4-e )>f 32,即f (e )+f 32<8,故A 错误;对于B ,f (2-3)=(2-3)3-6(2-3)2+9(2-3)+2=4,因为1<2<e<3,所以f(2)>f(e),而f(2)=23-6×22+9×2+2=4,所以f(e)+f(2-3)<8,故B错误;对于C,f(2+3)=(2+3)3-6(2+3)2+9(2+3)+2=4,而1<ln7<2,所以f(ln7)>f(2)=4,所以f(ln7)+f(2+3)>8,故C正确;对于D,由f(ln5)+f(4-ln5)=8,因为1<3ln2<4-ln5<3,所以f(3ln2)>f(4-ln5),所以f(ln5)+f(3ln2)>8,故D错误.故选:C.7.(2023·全国·高三专题练习)定义在R上的奇函数f x 满足f2-x=f x ,且在0,1上单调递减,若方程f x =-1在0,1上所有实根之和是( )上有实数根,则方程f x =1在区间-1,11A.30B.14C.12D.6【答案】A【解析】由f2-x=f x 知函数f x 的图象关于直线x=1对称,∵f2-x=f x ,f x 是R上的奇函数,∴f-x=f x+2=-f x ,∴f x+4=f x ,∴f x 的周期为4,考虑f x 的一个周期,例如-1,3,由f x 在0,1上是增函数,上是减函数知f x 在1,2f x 在-1,0上是减函数,f x 在2,3上是增函数,对于奇函数f x 有f0 =0,f2 =f2-2=f0 =0,故当x∈0,1时,f x <f2 =0,时,f x <f0 =0,当x∈1,2当x∈-1,0时,f x >f0 =0,当x∈2,3时,f x >f2 =0,方程f x =-1在0,1上有实数根,则这实数根是唯一的,因为f x 在0,1上是单调函数,则由于f2-x上有唯一实数,=f x ,故方程f x =-1在1,2在-1,0上f x >0,和2,3则方程f x =-1在-1,0上没有实数根,和2,3从而方程f x =-1在一个周期内有且仅有两个实数根,当x∈-1,3,方程f x =-1的两实数根之和为x+2-x=2,当x∈-1,11,方程f x =-1的所有6个实数根之和为x+2-x+4+x+4+2-x+x+8+2-x+8=2+8+2+8+2+8=30.故选:A.8.(2023·全国·高三专题练习)对于三次函数f x =ax3+bx2+cx+d a≠0,给出定义:设f'x 是函数y=f x 的导数,f″x 是f'x 的导数,若方程f″x =0有实数解x0,则称点x0,f x0为函数y =f x 的“拐点”.经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.设函数g x =13x3-12x2+3x-512,则g12019+g22019+⋯+g20182019=( )A.2016B.2017C.2018D.2019【答案】C【解析】函数g x =13x3-12x2+3x-512,函数的导数g'x =x2-x+3,g'x =2x-1,由g'x0=0得2x0-1=0,解得x0=12,而g12 =1,故函数g x 关于点12,1对称,∴g x +g1-x=2,故设g12019+g22019+...+g20182019=m,则g20182019+g20172019+...+g12019=m,两式相加得2×2018=2m,则m=2018,故选C.9.(2023春·云南曲靖·高三曲靖一中校考阶段练习)定义在R上的函数f x 满足f-x+f x =0 ,f x =f2-x,且当x∈0,1时,f x =x2.则函数y=7f x -x+2的所有零点之和为( ) A.7 B.14 C.21 D.28【答案】B【解析】依题意,f x 是奇函数.又由f x =f2-x知,f x 的图像关于x=1对称.f x+4=f1+x+3=f1-x+3=f-2-x=-f2+x=-f2--x=-f-x=f x ,所以f x 是周期为4的周期函数.f2+x=f1+1+x=f1-1+x=f-x=-f x =-f2-x,所以f x 关于点2,0对称.由于y=7f x -x+2=0⇔f x =x-2 7从而函数y=7f x -x+2的所有零点之和即为函数f x 与g x =x-27的图像的交点的横坐标之和.而函数g x =x-27的图像也关于点2,0对称.画出y=f x ,g x =x-27的图象如图所示.由图可知,共有7个交点,所以函数y=7f x -x+2所有零点和为7×2=14.故选:B10.(2023·全国·高三专题练习)已知定义在R上的可导函数f x 的导函数为f (x),满足f (x)<f(x)且f x+3为偶函数,f(x+1)为奇函数,若f(9)+f(8)=1,则不等式f x <e x的解集为( )A.-3,+∞B.1,+∞C.(0,+∞)D.6,+∞【答案】C【解析】因为f x+3为偶函数,f(x+1)为奇函数,所以f x+3=f-x+3,f(x+1)+f(-x+1)=0.所以f x =f-x+6,f(x)+f(-x+2)=0,所以f(-x+6)+f(-x+2)=0.令t=-x+2,则f(t+4)+f(t)=0.令上式中t取t-4,则f(t)+f(t-4)=0,所以f(t+4)=f(t-4).令t取t+4,则f(t)=f(t+8),所以f(x)=f(x+8).所以f x 为周期为8的周期函数.因为f(x+1)为奇函数,所以f(x+1)+f(-x+1)=0,令x=0,得:f(1)+f(1)=0,所以f(1)=0,所以f(9)+f(8)=1,即为f(1)+f(0)=1,所以f(0)=1.记g x =f xe x,所以gx =f x -f xe x.因为f (x)<f(x),所以g x <0,所以g x =f xe x在R上单调递减.不等式f x <e x可化为f xe x<1,即为g x <g0 .所以x>0.故选:C11.(2023·全国·高三专题练习)设函数f x 的定义域为R,f x+1为奇函数,f x+2为偶函数,当x∈1,2时,f(x)=ax2+b.若f0 +f3 =6,则f 92 =( )A.-94B.-32C.74D.52【答案】D【解析】[方法一]:因为f x +1 是奇函数,所以f -x +1 =-f x +1 ①;因为f x +2 是偶函数,所以f x +2 =f -x +2 ②.令x =1,由①得:f 0 =-f 2 =-4a +b ,由②得:f 3 =f 1 =a +b ,因为f 0 +f 3 =6,所以-4a +b +a +b =6⇒a =-2,令x =0,由①得:f 1 =-f 1 ⇒f 1 =0⇒b =2,所以f x =-2x 2+2.思路一:从定义入手.f 92 =f 52+2 =f -52+2 =f -12 f -12 =f -32+1 =-f 32+1 =-f 52-f 52 =-f 12+2 =-f -12+2 =-f 32所以f 92 =-f 32 =52.[方法二]:因为f x +1 是奇函数,所以f -x +1 =-f x +1 ①;因为f x +2 是偶函数,所以f x +2 =f -x +2 ②.令x =1,由①得:f 0 =-f 2 =-4a +b ,由②得:f 3 =f 1 =a +b ,因为f 0 +f 3 =6,所以-4a +b +a +b =6⇒a =-2,令x =0,由①得:f 1 =-f 1 ⇒f 1 =0⇒b =2,所以f x =-2x 2+2.思路二:从周期性入手由两个对称性可知,函数f x 的周期T =4.所以f 92=f 12 =-f 32 =52.故选:D .二、多选题12.(2023春·云南·高三云南师大附中校考阶段练习)已知定义域为R 的函数f x 在-1,0 上单调递增,f 2+x =f 2-x ,且图象关于3,0 对称,则f x ( )A.周期T =4B.在0,2 单调递减C.满足f 2021 <f 2022 <f 2023D.在0,2023 上可能有1012个零点【答案】ABD【解析】A 选项:由f (2+x )=f (2-x )知f (x )的对称轴为x =2,且f (4+x )=f (-x ),又图象关于3,0 对称,即f (3+x )=-f (3-x ),故f (6+x )=-f (-x ),所以-f (4+x )=f (6+x ),即-f (x )=f (2+x ),所以f (x )=f (x +4),f (x )的周期为4,正确;B 选项:因为f (x )在-1,0 上单调递增,T =4,所以f (x )在3,4 上单调递增,又图象关于3,0 对称,所以f (x )在2,3 上单调递增,因为关于x =2对称,所以f (x )在1,2 上单调递减,f (1)=f (3)=0,故f (x )在0,2 单调递减,B 正确;C 选项:根据周期性,f (2021)=f (1),f (2022)=f (2),f (2023)=f (3),因为f (x )关于x =2对称,所以f (1)=f (3)=0,f (2)<f (1),故f (2022)<f (2021)=f (2023),错误;D 选项:在0,4 上,f (1)=f (3)=0,f (x )有2个零点,所以f (x )在0,2020 上有1010个零点,在2020,2023 上有2个零点,故f (x )在0,2023 上可能有1012个零点,正确,故选:ABD .13.(2023春·广东广州·高三统考阶段练习)已知函数f x 、g x 的定义域均为R ,f x 为偶函数,且f x +g 2-x =1,g x -f x -4 =3,下列说法正确的有( )A.函数g x 的图象关于x =1对称 B.函数f x 的图象关于-1,-1 对称C.函数f x 是以4为周期的周期函数 D.函数g x 是以6为周期的周期函数【答案】BC【解析】对于A 选项,因为f x 为偶函数,所以f -x =f x .由f x +g 2-x =1,可得f -x +g 2+x =1,可得g 2+x =g 2-x ,所以,函数g x 的图象关于直线x =2对称,A 错;对于B 选项,因为g x -f x -4 =3,则g 2-x -f -2-x =3,又因为f x +g 2-x =1,可得f x +f -2-x =-2,所以,函数f x 的图象关于点-1,-1 对称,B 对;对于C 选项,因为函数f x 为偶函数,且f x +f -2-x =-2,则f x +f x +2 =-2,从而f x +2 +f x +4 =-2,则f x +4 =f x ,所以,函数f x 是以4为周期的周期函数,C 对;对于D 选项,因为g x -f x -4 =3,且f x =f x -4 ,∴g x -f x =3,又因为f x +g 2-x =1,所以,g x +g 2-x =4,又因为g 2-x =g 2+x ,则g x +g x +2 =4,所以,g x +2 +g x +4 =4,故g x +4 =g x ,因此,函数g x 是周期为4的周期函数,D 错.故选:BC .14.(2023春·湖南长沙·高三长郡中学校考阶段练习)设定义在R 上的函数f x 与g x 的导函数分别为f x 和g x ,若f x +2 -g 1-x =2,f x =g x +1 ,且g x +1 为奇函数,则下列说法中一定正确的是( )A.g 1 =0 B.函数g x 的图象关于x =2对称C.2021k =1f k g k =0D.2022k =1g k =0【答案】AC【解析】因为g x +1 为奇函数,所以g x +1 =-g -x +1 ,取x =0可得g 1 =0,A 对,因为f x +2 -g 1-x =2,所以f x +2 +g 1-x =0;所以f x +g 3-x =0,又f x =g x +1 ,g x +1 +g 3-x =0,故g 2+x +g 2-x =0,所以函数g x 的图象关于点(2,0)对称,B 错,因为f x =g x +1 ,所以f x -g x +1 =0,所以f x -g x +1 =c ,c 为常数,因为f x +2 -g 1-x =2,所以f x -g 3-x =2,所以g x +1 -g 3-x =2-c ,取x =1可得c =2,所以g x +1 =g 3-x ,又g x +1 =-g -x +1 ,所以g 3-x =-g -x +1 ,所以g x =-g x -2 ,所以g x +4 =-g x +2 =g (x ),故函数g (x )为周期为4的函数,因为g x +2 =-g x ,所以g 3 =-g 1 =0,g 4 =-g 2 ,所以g (1)+g (2)+g (3)+g (4)=0,所以2022k =1g k =g (1)+g (2)+g (3)+g (4) +g (5)+g (6)+g (7)+g (8) +⋅⋅⋅+g (2017)+g (2018)+g (2019)+g (2020) +g (2021)+g (2022),所以2022k =1g k =505×0+ g (2021)+g (2022)=g (1)+g (2)=g (2),由已知无法确定g (2)的值,故2022k =1g k 的值不一定为0,D 错;因为f x +2 -g 1-x =2,所以f x +2 =2-g x +1 ,f x +6 =2-g x +5 ,所以f x +2 =f (x +6),故函数f (x )为周期为4的函数,f (x +4)g (x +4)=f (x )g (x )所以函数f (x )g (x )为周期为4的函数,又f (1)=2-g (0),f (2)=2-g (1)=2,f (3)=2-g (2)=2+g (0),f (4)=2-g (3)=2,所以f (1)g (1)+f (2)g (2)+f (3)g (3)+f (4)g (4)=0+2g (2)+2g (4)=0,所以2021k =1f k g k =505f (1)g (1)+f (2)g (2)+f (3)g (3)+f (4)g (4) +f (2021)g (2021)2021k =1f kg k =f (1)g (1)=0 ,C 对,故选:AC .15.(2023·全国·高三专题练习)设函数y =f (x )的定义域为R ,且满足f (x )=f (2-x ),f (-x )=-f (x -2),当x ∈(-1,1]时,f (x )=-x 2+1,则下列说法正确的是( )A.f (2022)=1B.当x ∈4,6 时,f (x )的取值范围为-1,0C.y =f (x +3)为奇函数D.方程f (x )=lg (x +1)仅有5个不同实数解【答案】BCD【解析】依题意,当-1<x<0时,0<f x <1,当0≤x≤1时,0≤f x ≤1,函数y=f(x)的定义域为R,有f(x)=f(2-x),又f(-x)=-f(x-2),即f(x)=-f(-x-2),因此有f(2-x)=-f(-x-2),即f(x+4)=-f(x),于是有f(x+8)=-f(x+4)=f(x),从而得函数f(x)的周期T=8,对于A,f2022=-f0 =-1,A不正确;=f252×8+6=f6 =f-2对于B,当4≤x≤5时,0≤x-4≤1,有0≤f(x-4)≤1,则f(x)=-f(x-4)∈[-1,0],当5≤x≤6时,-4≤2-x≤-3,0≤(2-x)+4≤1,有0≤f[(2-x)+4]≤1,f(x)=f(2-x)=-f[(2-x)+4]∈[-1,0],当x∈4,6,B正确;时,f(x)的取值范围为-1,0对于C,f(x+3)=-f[(x+3)+4]=-f(x-1)=-f[2-(x-1)]=-f(-x+3),函数y=f(x+3)为奇函数,C正确;对于D,在同一坐标平面内作出函数y=f(x)、y=lg(x+1)的部分图象,如图:方程f(x)=lg(x+1)的实根,即是函数y=f(x)与y=lg(x+1)的图象交点的横坐标,观察图象知,函数y=f(x)与y=lg(x+1)的图象有5个交点,因此方程f(x)=lg(x+1)仅有5个不同实数解,D正确.故选:BCD16.(2023·全国·高三专题练习)已知定义在R上的单调递增的函数f x 满足:任意x∈R,有f1-x+f1+x=2,f2+x=4,则( )+f2-xA.当x∈Z时,f x =xB.任意x∈R,f-x=-f xC.存在非零实数T,使得任意x∈R,f x+T=f xD.存在非零实数c,使得任意x∈R,f x -cx≤1【答案】ABD【解析】对于A,令x=1-t,则f t +f2-t=2,=2,即f x +f2-x又f2+x=4-2-f x=f x +2;=4-f2-x+f2-x=4,∴f x+2令x=0得:f1 +f1 =2,f2 +f2 =4,∴f1 =1,f2 =2,则由f x+2=f x +2可知:当x∈Z时,f x =x,A正确;对于B ,令x =1+t ,则f -t +f 2+t =2,即f -x +f 2+x =2,∴f -x =2-f 2+x =2-4-f 2-x =f 2-x -2,由A 的推导过程知:f 2-x =2-f x ,∴f -x =2-f x -2=-f x ,B 正确;对于C ,∵f x 为R 上的增函数,∴当T >0时,x +T >x ,则f x +T >f x ;当T <0时,x +T <x ,则f x +T <f x ,∴不存在非零实数T ,使得任意x ∈R ,f x +T =f x ,C 错误;对于D ,当c =1时,f x -cx =f x -x ;由f 1-x +f 1+x =2,f 2+x +f 2-x =4知:f x 关于1,1 ,2,2 成中心对称,则当a ∈Z 时,a ,a 为f x 的对称中心;当x ∈0,1 时,∵f x 为R 上的增函数,f 0 =0,f 1 =1,∴f x ∈0,1 ,∴f x -x ≤1;由图象对称性可知:此时对任意x ∈R ,f x -cx ≤1,D 正确.故选:ABD .17.(2023·全国·高三专题练习)设函数f (x )定义域为R ,f (x -1)为奇函数,f (x +1)为偶函数,当x ∈(-1,1)时,f (x )=-x 2+1,则下列结论正确的是( )A.f 72 =-34B.f (x +7)为奇函数C.f (x )在(6,8)上为减函数D.方程f (x )+lg x =0仅有6个实数解【答案】ABD【解析】f (x +1)为偶函数,故f (x +1)=f (-x +1),令x =52得:f 72 =f -52+1 =f -32,f (x -1)为奇函数,故f (x -1)=-f (-x -1),令x =12得:f -32 =-f 12-1 =-f -12,其中f -12 =-14+1=34,所以f 72 =f -32 =-f -12 =-34,A 正确;因为f (x -1)为奇函数,所以f (x )关于-1,0 对称,又f (x +1)为偶函数,则f (x )关于x =1对称,所以f (x )周期为4×2=8,故f (x +7)=f (x -1),所以f (-x +7)=f (-x -1)=-f x -1 =-f x -1+8 =-f x +7 ,从而f (x +7)为奇函数,B 正确;f (x )=-x 2+1在x ∈(-1,0)上单调递增,又f (x )关于-1,0 对称,所以f (x )在-2,0 上单调递增,且f (x )周期为8,故f (x )在(6,8)上单调递增,C 错误;根据题目条件画出f (x )与y =-lg x 的函数图象,如图所示:其中y =-lg x 单调递减且-lg12<-1,所以两函数有6个交点,故方程f (x )+lg x =0仅有6个实数解,D 正确.故选:ABD18.(2023·全国·高三专题练习)已知f (x )是定义域为(-∞,+∞)的奇函数,f (x +1)是偶函数,且当x ∈0,1 时,f (x )=-x (x -2),则( )A.f x 是周期为2的函数B.f 2019 +f 2020 =-1C.f x 的值域为-1,1D.y =f x 在0,2π 上有4个零点【答案】BCD【解析】对于A ,f x +1 为偶函数,其图像关于x 轴对称,把f x +1 的图像向右平移1个单位得到f x 的图像,所以f (x )图象关于x =1对称,即f (1+x )=f (1-x ),所以f (2+x )=f (-x ),f x 为R 上的奇函数,所以f (-x )=-f x ,所以f (2+x )=-f (x ),用2+x 替换上式中的x 得, f (4+x )=-f (x +2),所以,f (4+x )=f (x ),则f x 是周期为4的周期函数.故A 错误.对于B ,f x 定义域为R 的奇函数,则f 0 =0,f x 是周期为4的周期函数,则f 2020 =f 0 =0;当x ∈0,1 时,f x =-x x -2 ,则f 1 =-1×1-2 =1,则f 2019 =f -1+2020 =f -1 =-f 1 =-1,则f 2019 +f 2020 =-1.故B 正确.对于C ,当x ∈0,1 时,f x =-x x -2 ,此时有0<f x ≤1,又由f x 为R 上的奇函数,则x ∈-1,0 时,-1≤f x <0,f (0)=0,函数关于x =1对称,所以函数f x 的值域-1,1 .故C 正确.对于D ,∵f (0)=0,且x ∈0,1 时,f x =-x x -2 ,∴x ∈[0,1],f (x )=-x (x -2),∴x ∈[1,2],2-x ∈[0,1],f (x )=f (2-x )=-x (x -2)①∴x ∈[0,2]时,f (x )=-x (x -2),此时函数的零点为0,2;∵f (x )是奇函数,∴x ∈[-2,0],f (x )=x (x +2),②∴x ∈2,4 时,∵f (x )的周期为4,∴x -4∈-2,0 ,f x =f x -4 =x -2 x -4 ,此时函数零点为4;③∴x ∈4,6 时,∴x -4∈0,2 ,f x =f x -4 =-(x -4)(x -6),此时函数零点为6;④∴x ∈6,2π 时,∴x -4∈2,4 ,f x =f x -4 =x -6 x -8 ,此时函数无零点;综合以上有,在(0,2π)上有4个零点.故D 正确;故选:BCD19.(2023春·广东广州·高三广州市禺山高级中学校考阶段练习)已知f x 是定义域为(-∞,+∞)的奇函数,f x +1 是偶函数,且当x ∈0,1 时,f x =-x x -2 ,则( )A.f x 是周期为2的函数B.f 2019 +f 2020 =-1C.f x 的值域为[-1,1]D.f x 的图象与曲线y =cos x 在0,2π 上有4个交点【答案】BCD【解析】根据题意,对于A ,f x 为R 上的奇函数,f x +1 为偶函数,所以f (x )图象关于x =1对称,f (2+x )=f (-x )=-f (x )即f (x +4)=-f (x +2)=f (x )则f x 是周期为4的周期函数,A 错误;对于B ,f x 定义域为R 的奇函数,则f 0 =0,f x 是周期为4的周期函数,则f 2020 =f 0 =0;当x ∈0,1 时,f x =-x x -2 ,则f 1 =-1×1-2 =1,则f 2019 =f -1+2020 =f -1 =-f 1 =-1,则f 2019 +f 2020 =-1;故B 正确.对于C ,当x ∈0,1 时,f x =-x x -2 ,此时有0<f x ≤1,又由f x 为R 上的奇函数,则x ∈-1,0 时,-1≤f x <0,f (0)=0,函数关于x =1对称,所以函数f x 的值域[-1,1].故C 正确.对于D ,∵f (0)=0,且x ∈0,1 时,f x =-x x -2 ,∴x ∈[0,1],f (x )=-x (x -2),∴x ∈[1,2],2-x ∈[0,1],f (x )=f (2-x )=-x (x -2),∴x ∈[0,2],f (x )=-x (x -2),∵f (x )是奇函数,∴x ∈[-2,0],f (x )=x (x +2),∵f (x )的周期为4,∴x ∈[2,4],f (x )=(x -2)(x -4),∴x ∈[4,6],f (x )=-(x -4)(x -6),∴x ∈[6,2π],f (x )=(x -6)(x -8),设g (x )=f (x )-cos x ,当x ∈[0,2],g (x )=-x 2+2x -cos x ,g ′(x )=-2x +2+sin x ,设h(x)=g′(x),h′(x)=-2+cos x<0在[0,2]恒成立,h(x)在[0,2]单调递减,即g′(x)在[0,2]单调递减,且g′(1)=sin1>0,g′(2)=-2+sin2<0,存在x0∈(1,2),g′(x0)=0,x∈(0,x0),g′(x)>0,g(x)单调递增,x∈(x0,2),g′(x)<0,g(x)单调递减,g(0)=-1,g(1)=1-cos1>0,g(x0)>g(1)>0,g(2)=-cos2>0,所以g(x)在(0,x0)有唯一零点,在(x0,2)没有零点,即x∈(0,2],f x 的图象与曲线y=cos x有1个交点,当x∈2,4时,,g x =f x -cos x=x2-6x+8-cos x,则g′x =2x-6+sin x,h x =g′x =2x-6+sin x,则h′x =2+cos x>0,所以g′x 在2,4上单调递增,且g′3 =sin3>0,g′2 =-2+sin2<0,所以存在唯一的x1∈2,3⊂2,4,使得g′x =0,所以x∈2,x1,g′x <0,g x 在2,x1单调递减,x∈x1,4,g′x >0,g x 在x1,4单调递增,又g3 =-1-cos3<0,所以g x1<g(3)<0,又g2 =-cos2>0,g4 =-cos4>0,所以g x 在2,x1上有一个唯一的零点,在x1,4上有唯一的零点,所以当x∈2,4时,f x 的图象与曲线y=cos x有2个交点,,当x∈4,6时,同x∈[0,2],f x 的图象与曲线y=cos x有1个交点,当x∈[6,2π],f(x)=(x-6)(x-8)<0,y=cos x>0,f x 的图象与曲线y=cos x没有交点,所以f x 的图象与曲线y=cos x在0,2π上有4个交点,故D正确;故选:BCD.20.(2023·全国·高三专题练习)已知函数f2x+1的图像关于直线x=1对称,函数y=f x+1关于点1,0对称,则下列说法正确的是( )A.f1-x=f1+xB.f x 的周期为4C.f1 =0D.f x =f32-x【答案】AB【解析】f2x的图像关于直线x=32对称,f x 的图像关于x=3对称,又关于点2,0中心对称,所以周期为4,所以B正确而D错误;又f 3-x =f 3+x ,其中x 换x +1得f 2-x =f 4+x =f x ,再将x 换x +1得f 1-x =f 1+x ,但无法得到f (1)=0 所以A 正确C 错误.故选:AB .21.(2023·全国·高三专题练习)已知函数f (x )及其导函数f (x )的定义域均为R ,记g (x )=f (x ),若f 32-2x ,g (2+x )均为偶函数,则( )A.f (0)=0B.g -12 =0C.f (-1)=f (4)D.g (-1)=g (2)【答案】BC【解析】[方法一]:对称性和周期性的关系研究对于f (x ),因为f 32-2x为偶函数,所以f 32-2x =f 32+2x 即f 32-x =f 32+x ①,所以f 3-x =f x ,所以f (x )关于x =32对称,则f (-1)=f (4),故C 正确;对于g (x ),因为g (2+x )为偶函数,g (2+x )=g (2-x ),g (4-x )=g (x ),所以g (x )关于x =2对称,由①求导,和g (x )=f (x ),得f 32-x=f 32+x ⇔-f 32-x =f 32+x ⇔-g 32-x =g 32+x ,所以g 3-x +g x =0,所以g (x )关于32,0 对称,因为其定义域为R ,所以g 32=0,结合g (x )关于x =2对称,从而周期T =4×2-32 =2,所以g -12 =g 32 =0,g -1 =g 1 =-g 2 ,故B 正确,D 错误;若函数f (x )满足题设条件,则函数f (x )+C (C 为常数)也满足题设条件,所以无法确定f (x )的函数值,故A 错误.故选:BC .[方法二]:【最优解】特殊值,构造函数法.由方法一知g (x )周期为2,关于x =2对称,故可设g x =cos πx ,则f x =1πsin πx +c ,显然A ,D 错误,选BC .故选:BC .[方法三]:因为f 32-2x,g (2+x )均为偶函数,所以f 32-2x =f 32+2x 即f 32-x =f 32+x ,g (2+x )=g (2-x ),所以f 3-x =f x ,g (4-x )=g (x ),则f (-1)=f (4),故C 正确;函数f (x ),g (x )的图象分别关于直线x =32,x =2对称,又g (x )=f (x ),且函数f (x )可导,所以g 32 =0,g 3-x =-g x ,所以g (4-x )=g (x )=-g 3-x ,所以g (x +2)=-g (x +1)=g x ,所以g -12=g 32 =0,g -1 =g 1 =-g 2 ,故B 正确,D 错误;若函数f (x )满足题设条件,则函数f (x )+C (C 为常数)也满足题设条件,所以无法确定f (x )的函数值,故A 错误.故选:BC .【整体点评】方法一:根据题意赋值变换得到函数的性质,即可判断各选项的真假,转化难度较高,是该题的通性通法;方法二:根据题意得出的性质构造特殊函数,再验证选项,简单明了,是该题的最优解.22.(2023·全国·高三专题练习)定义f x 是y =f x 的导函数y =f x 的导函数,若方程f x =0有实数解x 0,则称点x 0,f x 0 为函数y =f x 的“拐点”.可以证明,任意三次函数f x =ax 3+bx 2+cx +d a ≠0 都有“拐点”和对称中心,且“拐点”就是其对称中心,请你根据这一结论判断下列命题,其中正确命题是( )A.存在有两个及两个以上对称中心的三次函数B.函数f x =x 3-3x 2-3x +5的对称中心也是函数y =tan π2x 的一个对称中心C.存在三次函数h x ,方程h x =0有实数解x 0,且点x 0,h x 0 为函数y =h x 的对称中心D.若函数g x =13x 3-12x 2-512,则g 12021+g 22021 +g 32021 +⋅⋅⋅+g 20202021 =-1010【答案】BCD【解析】对于A .设三次函数f x =ax 3+bx 2+cx +d a ≠0 ,易知y =f x 是一次函数,∴任何三次函数只有一个对称中心,故A 不正确;对于B .由f x =x 3-3x 2-3x +5,得f x =3x 2-6x -3,f x =6x -6,由6x -6=0,得x =1,函数f x 的对称中心为1,0 ,又由π2x =k π2,k ∈Z ,得x =k ,k ∈Z ,∴f x 的对称中心是函数y =tan π2x 的一个对称中心,故B 正确;对于C .设三次函数h x =ax 3+bx 2+cx +d a ≠0 ,所以h x =3ax 2+2bx +c ,h x =6ax +2b联立3ax 02+2bx 0+c =0,6ax 0+2b =0,得3ac -b 2=0,即当3ac -b 2=0时,存在三次函数h x ,方程h x =0有实数解x 0,且点x 0,h x 0 为函数y =h x 的对称中心,故C 正确.对于D .∵g x =13x 3-12x 2-512,∴g x =x 2-x ,g x =2x -1,令g x =2x -1=0,得x =12,∵g 12 =13×12 3-12×12 2-512=-12,∴函数g x =13x 3-12x 2-512的对称中心是12,-12,∴g x +g 1-x =-1,设T =g 12021+g 22021 +g 32021 +⋯+g 20202021 ,所以2T =g 12021 +g 20202021 +g 22021 +g 20192021 +⋯+g 20202021 +g 12021 =-2020所以g 12021 +g 22021 +g 32021+⋯+g 20202021 =-1010,故D 正确.故选:BCD .三、填空题23.(2023·全国·高三专题练习)设f x 的定义域为R ,且满足f 1-x =f 1+x ,f x +f -x =2,若f 1 =3,则f 1 +f 2 +f 3 +⋯+f 2022 f 2023 +f 2028 +f 2030=___________.【答案】2024【解析】因为f x +f -x =2,f 1 =3,所以f -1 =-1,f 0 =1,f 2 =f 0 =1,由f 1-x =f 1+x ,得f -x =f x +2 ,f x =f 2-x ,有f x +2 +f 2-x =2,可得f x +f 2-x -2 =2,有f x +f 4-x =2,又由f x +f -x =2,可得f 4-x =f -x ,可知函数f x 的周期为4,可得f 2023 =f -1 =-1,f 2028 =f 0 =1,f 2030 =f 2 =1,有f 2023 +f 2028 +f 2030 =1,因为f x +f -x =2,f 1 =3,所以f -1 =-1,f 0 =1由f 1-x =f 1+x 得f -x =f x +2 ,所以f x +f x +2 =2,f x +1 +f x +3 =2,即f x +f x +1 +f x +2 +f x +3 =4,所以f -1 +f 0 +f 1 +f 2 + f 3 +f 4 +⋯+f 2021 +f 2022 =4×506=2024所以f 1 +f 2 +f 3 +⋯+f 2022 =2024-f 0 -f -1 =2024-1--1 =2024.故f 1 +f 2 +f 3 +⋯+f 2022 f 2023 +f 2028 +f 2030 =2024.故答案为:202424.(2023·全国·高三专题练习)对于定义在D 上的函数f x ,点A m ,n 是f x 图像的一个对称中心的充要条件是:对任意x ∈D 都有f x +f 2m -x =2n ,判断函数f x =x 3+2x 2+3x +4的对称中心______.【答案】-23,7027【解析】因为f x =x 3+2x 2+3x +4,由于f x +f -23×2-x =x 3+2x 2+3x +4+-23×2-x 3+2-23×2-x 2+3-23×2-x +4=7027×2=14027.即m =-23,n =7027.所以-23,7027是f x =x 3+2x 2+3x +4的一个对称中心.故答案为:-23,7027 .25.(2023·全国·高三专题练习)对于三次函数f x =ax 3+bx 2+cx +d a ≠0 ,现给出定义:设f x 是函数y =f x 的导数,f x 是f x 的导数,若方程f x =0有实数解x 0,则称点x 0,f x 0 为函数f x =ax 3+bx 2+cx +d a ≠0 的“拐点”.经过探究发现:任何一个三次函数都有“拐点”,任何一个三次函数都有对称中心,且“拐点”就是对称中心.设函数g x =2x 3-3x 2+1,则g 1100+g 2100+⋯+g 99100 =____.【答案】4912【解析】依题意得,g x =6x 2-6x ,g x =12x -6,令g x =0,得x =12, ∵g 12 =12,∴函数g x 的对称中心为12,12,则g 1-x +g x =1,∵1100+99100=2100+98100=⋯=49100+51100=1,∴g 1100 +g 99100 =g 2100 +g 98100 =⋯=g 49100 +g 51100 =1∴g 1100 +g 2100+⋯+g 99100 =g 1100 +g 99100 +g 2100 +g 98100 +⋯+g 49100 +g 51100 +g 12=49+12=4912,故答案为4912.26.(2023·四川成都·成都七中校考模拟预测)已知S n 为数列a n 的前n 项和,数列a n 满足a 1=-2,且S n =32a n+n ,f x 是定义在R 上的奇函数,且满足f 2-x =f x ,则f a 2021 =______.【答案】0【解析】∵S n =32a n +n ,∴S n -1=32a n -1+n -1n ≥2 ,两式相减得,a n =32a n -32a n -1+1,即a n -1=3a n -1-1 ,∴a n -1a n -1-1=3,即数列a n -1 是以-3为首项,3为公比的等比数列,∴a n -1=-3⋅3n -1=-3n ,∴a n =-3n +1.∵f x 是定义在R 上的奇函数,且满足f 2-x =f x ,∴令x =2,则f 2 =f 0 =0,又f2-x=f x =-f(-x),∴f(2+x)=-f(x),∴f(x+4)=f(x+2+2)=-f(x+2)=-[-f(-x)]=f(x),即f(x+4)=f(x),即f x 是以4为周期的周期函数.∵a2021=-32021+1=-4-12021+1=-C020*******⋅-10+C1202142020⋅-11+⋯+C2020202141⋅-12020+C2021202140⋅-12021+1=-C020*******⋅-10+C1202142020⋅-11+⋯+C2020202141⋅-12020+2其中C020*******⋅-10+C1202142020⋅-11+⋯+C2020202141⋅-12020能被4整除,∴f a2021=f-32021+1=f2 =0.故答案为:0.27.(2023·全国·高三专题练习)已知定义域为R的奇函数f x 满足f x+1=f3-x,当x∈0,2时,f x =-x2+4,则函数y=f x -a a∈R在区间-4,8上的零点个数最多时,所有零点之和为__________.【答案】14【解析】由于定义域为R的奇函数f x 满足f x+1=f3-x,∴f-x=-f x ,f x+4=f-x,∴f x+4=-f x ,∴f x+8=-f x+4=f x ,∴函数f x 为周期函数,且周期为8,当x∈0,2时,f x =-x2+4,函数y=f x -a a∈R在区间-4,8上的零点的个数,即为函数y=f x 与y=a 的交点的个数,作出函数 y=f x ,x∈-4,8上的函数的图象,显然,当a=0 时,交点最多,符合题意,此时,零点的和为-4+-2+0+2+4+6+8=14 .28.(2023·全国·高三专题练习)已知函数f(x)满足f(x+3)=f(1-x)+9f(2)对任意x∈R恒成立,又函数f x +9 的图象关于点(-9,0)对称,且f (1)=2022,则f (45)=_________.【答案】-2022【解析】因为函数f (x )满足f (x +3)=f (1-x )+9f (2)对任意x ∈R 恒成立,所以令x =-1,即f (2)=f (2)+9f (2),解得f (2)=0,所以f (x +3)=f (1-x )对任意x ∈R 恒成立,又函数f x +9 的图象关于点(-9,0)对称,将函数f x +9 向右平移9个单位得到f (x ),所以f (x )关于点(0,0),即f (x )为R 上的奇函数,所以f (x )=-f -x ,又f (x +3)=f (1-x )对任意x ∈R 恒成立,令x =-x -3,得f (-x )=f (x +4),即-f (x )=f (x +4),再令x =x +4,得-f (x +4)=f (x +8),分析得f (x )=f (x +8),所以函数f (x )的周期为8,因为f (1)=2022,所以在f (x +3)=f (1-x )中,令x =0,得f (3)=f (1)=2022,所以f (45)=f 6×8-3 =f -3 =-f 3 =-2022.故答案为:-2022.29.(2023·全国·高三专题练习)已知f x 是定义在R 上的函数,若对任意x ∈R ,都有f (x +8)=f (x )+f (4),且函数f (x -2)的图像关于直线x =2对称,f (2)=3,则f (2022)=_______.【答案】3【解析】因为函数f (x -2)的图像关于直线x =2对称,所以函数f (x )的图像关于直线x =0对称,即函数f x 是偶函数,则有f x =f -x ;因为对任意x ∈R ,都有f (x +8)=f (x )+f (4),令x =-4,得f -4+8 =f -4 +f 4 ⇒f -4 =f 4 =0,所以对任意x ∈R ,都有f (x +8)=f (x )+f (4)=f x ,即函数f x 的周期为8,则f 2022 =f 252×8+6 =f 6 =f 6-8 =f -2 =f 2 =3,故答案为:3.30.(2023·全国·高三专题练习)已知定义在R 上的函数f (x )和函数g (x )满足2f (x )=g (x )-g (-x ),且对于任意x 都满足f (x )+f (-x -4)+5=0,则f (2021)+f (2019)=________.【答案】5050【解析】由题意知:f (x )定义域为R ,2f (-x )=g (-x )-g (x ),可得:f (x )+f (-x )=0,f (x )为奇函数,又f (-x -4)=-f (x )-5=-f (x +4),则f (x +4)=f (x )+5,可得:f (2021)+f (2019)=f (1+4×505)+f (-1+4×505)=f (1)+5×505+f (-1)+5×505=5050.故答案为:5050.31.(2023·全国·高三专题练习)已知定义域为R 的奇函数f x ,当x >0时,有f x =-log 34-x ,0<x ≤54f x -3 ,x >54,则f 2 +f 4 +f 6 +⋅⋅⋅+f 2022 =______.【答案】0【解析】R上的奇函数f x ,则有f-x=-f(x),而当x>0时,有f x =-log34-x,0<x≤5 4f x-3,x>5 4,于是有f(2)=f(-1)=-f(1)=1,f(4)=f(1)=-1,f(6)=f(3)=f(0)=0,因∀x>54,f(x)=f(x-3),则有∀n∈N∗,f(6n-4)=f(2)=1,f(6n-2)=f(1)=-1,f(6n)=f(3)=0,所以f2 +f4 +f6 +⋅⋅⋅+f2022=337f2 +f4 +f6=0.故答案为:032.(2023·全国·高三专题练习)已知函数f x =x3-3x2+9x+4,若f a =7,f b =15,则a+b=___________.【答案】2【解析】因为f x =3x2-6x+9,对称轴为x=1,所以f x 的对称中心为1,f1,即1,11,因为f x =3x2-6x+9=3(x-1)2+6>0,所以f x 在R上单调递增,所以方程f a =7,f b =15的解a,b均有且只有一个,因为f a +f b =2f1 =22,所以a,7,b,15关于对称中心1,11对称,所以a+b=2,故答案为:233.(2023·全国·高三专题练习)已知函数f x 的定义域为R,且f x 为奇函数,其图象关于直线x=2对称.当x∈0,4时,f x =x2-4x,则f2022=____.【答案】4【解析】∵f x 的图象关于直线x=2对称,∴f(-x)=f(x+4),又f x 为奇函数,∴f(-x)=-f x ,故f(x+4)=-f x ,则f(x+8)=-f(x+4)=f x ,∴函数f x 的周期T=8,又∵2022=252×8+6,∴f2022= f6 =f(-2)=-f2 =-(4-8)=4.故答案为:4.34.(2023·全国·高三专题练习)若函数f(x)=1-x2x2+ax+b,a,b∈R的图象关于直线x=2对称,则a+b=_______.【答案】7【解析】由题意f(2+x)=f(2-x),即f(x)=f(4-x),所以f(0)=f(4)f(1)=f(3),即b=-15(16+4a+b)0=-8(9+3a+b),解得a=-8b=15,此时f(x)=(1-x2)(x2-8x+15)=-x4+8x3-14x2-8x+15,f(4-x)=-(4-x)4+8(4-x)3-14(4-x)2-8(4-x)+15=-(x4-16x3+96x2-256x+256)+8(64-48x+12x2-x3)-14(16-8x+x2)-32+8x+15= -x4+8x3-14x2-8x+15=f(x),满足题意.所以a=-8,b=15,a+b=7.故答案为:7.35.(2023·全国·高三专题练习)已知函数f x =3x-5x-2,g x =2x+22x-2+1,记f(x)与g(x)图像的交点横,纵坐标之和分别为m与n,则m-n的值为________.【答案】-2.【解析】f(x)=3x-5x-2=3+1x-2在(-∞,2)和(2,+∞)上都单调递减,且关于点(2,3)成中心对称,g(x)=2x+22x-2+1=4×2x-2+22x-2+1=4-22x-2+1在(-∞,+∞)上单调递增,g(4-x)+g(x)=4-222-x+1+4-22x-2+1=8-2(2x-2+1)+2(22-x+1)(22-x+1)(2x-2+1)=8-2(2x-2+22-x+2)2+2x-2+22-x=8-2=6,所以g(x)的图像也关于点(2,3)成中心对称,所以f(x)与g(x)图像有两个交点且关于点(2,3)对称,设这两个交点为(x1,y1)、(x2,y2),则x1+x2=2×2=4,y1+y2=2×3=6,所以m=4,n=6,所以m-n=4-6=-2.故答案为:-2.。

第8节 专题:函数的周期性与对称性—答案版

第8节 专题:函数的周期性与对称性—答案版

第八节专题:函数的周期性与对称性核心基础达标【1】详见解析解析:①202T =-=②303T =--=③()()60f x f x +-=等价()()6f x f x +=,606T =-=④347T =--=⑤2408T =-=⑥20(2)4T =--=⑦()()70f x f x ++=等价()()7f x f x =-+,20714T =-=⑧22710T =-=⑨()()230f x f x -++=等价()()23f x f x -=-+,22310T =--=⑩2306T =-=⑪()2048T =--=⑫22310T =--=⑬()22412T =--=⑭()()31f x f x +=等价于()()13f x f x =+,2036T =-=⑮()()132f x f x ++=等价于()()213f x f x +=+,2134T =-=⑯2102T =-=⑰2138T =--=⑱2036T =-=⑲()()21f x f x +=-等价于()()12f x f x =-+,2024T =-=⑳()()322f x f x -+=-等价于()()232f x f x --=+,23210T =--=【2】详见解析解析:①因为()()33f x f x +=-,满足轴对称模型,3332x +==,所以函数关于3x =成轴对称.②因为()()24f x f x +=-,满足轴对称模型,2432x +==,所以函数关于3x =成轴对称.③因为()()370f x f x +---=,等价于()()37f x f x +=--,满足轴对称模型,3722x -==-,所以函数关于2x =-成轴对称.④因为()()130f x f x +--=,等价于()()13f x f x +=-,满足轴对称模型,1322x +==,所以函数关于2x =成轴对称.⑤因为()()4363f x f x +=--,满足轴对称模型,4612x -==-,所以函数关于1x =-成轴对称.⑥因为()()262f x f x =--,满足轴对称模型,0632x -==-,所以函数关于3x =-成轴对称.⑦因为()()440f x f x ++-=,满足点对称模型,4442x +==,所以函数关于()4,0成点对称.⑧因为()()20f x f x +--=,满足点对称模型,0212x -==-,所以函数关于()1,0-成点对称.⑨因为()()15f x f x +=--,等价于()()150f x f x ++-=,满足点对称模型,1532x +==,所以函数关于()3,0成点对称.⑩因为()()60f x f x -+-=,满足点对称模型,0632x -==-,所以函数关于()3,0-成点对称.⑪因为()()2420f x f x +-=,满足点对称模型,0422x +==,所以函数关于()2,0成点对称.⑫因为()()1373f x f x -=-+,等价于()()13730f x f x -++=,满足点对称模型,1742x +==,所以函数关于()4,0成点对称.⑬因为()()334f x f x ++-=,满足点对称模型,3332x +==,所以函数关于()3,2成点对称.⑭因为()()62f x f x +-=,满足点对称模型,0632x +==,所以函数关于()3,1成点对称.⑮因为()()143f x f x +=--,等价于()()134f x f x ++-=,满足点对称模型,1322x +==,所以函数关于()2,2成点对称.⑯因为()()2462f x f x =---等价于()()2624f x f x +--=,,满足点对称模型,0632x -==-,所以函数关于()3,2-成点对称.【3】详见解析解析:①x 前系数为异号,表示对称性,则对称轴为4022x +==②x 前系数为同号,表示周期性,则正周期为()415T =--=③x 前系数为异号,表示对称性,则对称轴为6222x -==④x 前系数为同号,表示周期性,则正周期为426T =--=⑤x 前系数为同号,表示周期性,则正周期为624T =-=⑥x 前系数为异号,表示对称性,4232x +==,对称点为()3,0⑦x 前系数为同号,表示周期性,则正周期为2126T =--=⑧x 前系数为异号,表示对称性,41322x -==,对称点为3,02⎛⎫ ⎪⎝⎭【4】详见解析解析:(1)因为()f x 为奇函数,所以()f x 关于()0,0点对称,且满足()()40f x f x ++-=,则()f x 又关于()2,0点对称,所以周期2204T =-=,图像如下图.(2)因为()f x 为偶函数,所以()f x 关于0x =轴对称,且满足()()42f x f x +=-,则()f x 又关于3x =轴对称,所以周期2306T =-=,图像如下图.(3)()1f x +为奇函数,则()1f x +关于()0,0点对称,而()1f x +是由()f x 向左平移一个单位得到,等价于()f x 向左平移一个单位关于()0,0点对称,()f x 则关于()1,0成点对称,且满足()()6f x f x +=-,则()f x 又关于3x =轴对称,所以周期4318T =-=,图像如下图.(4)()1f x -为偶函数,则()1f x -关于0x =轴对称,而()1f x -是由()f x 向右平移一个单位得到,等价于()f x 向右平移一个单位关于0x =轴对称,()f x 则关于1x =-成轴对称,且满足()()20f x f x +-=,则()f x 又关于()1,0成点对称,所以周期()4118T =--=,图像如下图.(5)()1f x +为偶函数,则()1f x +关于0x =轴对称,而()1f x +是由()f x 向左平移一个单位得到,等价于()f x 向左平移一个单位关于0x =轴对称,()f x 则关于1x =成轴对称,且满足()()240f x f x +--=,则()f x 又关于3x =成轴对称,所以周期2314T =-=,图像如下图.(6)()5f x +为奇函数,则()5f x +关于()0,0点对称,而()5f x +是由()f x 向左平移5个单位得到,等价于()f x 向左平移5个单位关于()0,0点对称,()f x 则关于()5,0成点对称,且满足()()22f x f x +=--,则()f x 又关于()2,0成点对称,所以周期2526T =-=,图像如下图.(7)()f x 为偶函数,所以()f x 关于0x =轴对称,且满足()()262f x f x -++-=,则()f x 又关于()2,1成点对称,所以周期4208T =-=,图像如下图.(8)()2f x +为偶函数,则()2f x +关于0x =轴对称,而()2f x +是由()f x 向左平移2个单位得到,等价于()f x 向左平移2个单位关于0x =轴对称,()f x 则关于2x =成轴对称,且满足()()82f x f x +-=-,则()f x 又关于()4,1-成点对称,所以周期4428T =-=,图像如下图.(9)()21f x +为奇函数,则()21f x +关于()0,0点对称,则()1f x +同样关于()0,0点对称(伸缩变换是横坐标发生倍数变化,原点是0所以位置不发生变化),而()1f x +是由()f x 向左平移1个单位得到,等价于()f x 向左平移1个单位关于()0,0点对称,()f x 则关于()1,0成点对称,且满足()()82f x f x +=--,则()f x 又关于3x =成轴对称,所以周期4318T =-=,图像如下图.(10)()42f x -为偶函数,则()42f x -关于0x =轴对称,则()2f x -同样关于0x =轴对称(伸缩变换是横坐标发生倍数变化,原点是0所以位置不发生变化),而()2f x -是由()f x 向右平移2个单位得到,等价于()f x 向右平移2个单位关于0x =轴对称,()f x 则关于2x =-成轴对称,且满足()()420f x f x ++--=,则()f x 又关于()1,0成点对称,所以周期42112T =--=,图像如下图.【5】C解析:由已知可得()()()()()()204204f x f x f x f x f x f x ++=⇒+++=⇒+=,即4T =是函数()f x 的一个周期,所以171152122224f f f ⎛⎫⎛⎫⎛⎫=-==+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故选:C 【6】B解析:()f x 是周期为2的奇函数,()()()0.5=0.51,0.51f f f --=-=,所以()()()2.5=20.5=0.5=1f f f +.故选:B 【7】D解析:因为()()93f x f x +=-+,所以()f x 的周期为12,因为2022121696=⨯-,所以()()20226f f =-,因为当)6,6x ∈-⎡⎣时,()2f x x =-,故()()62022628f f =-=--=.故选:D 【8】0解析:令2x =-,则()()()2222f f f =-+,又()()22f f -=,所以()20f =,于是()()()422f x f x f +=+化为:()()4f x f x +=,所以()f x 的周期4T =,所以()()()20225054220f f f =⨯+==.故答案为:0.【9】14解析:由()()14f x f x =+可得()()148f x f x +=+,所以()()()184f x f x f x +=+,故()f x 为周期函数,且周期为8,()()()112023=1==43f f f -,故答案为:14【10】12解析:根据题意,()()41f x f x ⋅+=,显然()0f x ≠,所以()()14f x f x +=,所以()()18()4f x f x f x +==+,所以函数()f x 的周期为8,所以()()()1119321f f f ===-.故答案为:12【11】()2918f x x x =++解析:因为()()3f x f x -=-,所以()()3f x f x =-+,则()()33f x f x -=+,所以()()6f x f x +=,可得函数()f x 的周期为6,又当0,3x ∈⎡⎤⎣⎦时,()23f x x x =-,则当6,3x ∈--⎡⎤⎣⎦时,60,3x +∈⎡⎤⎣⎦,()()()()226636918f x f x x x x x =+=+-+=++.【12】2()1024f x x x =-+解析:由()()2=f x f x +-,可知()f x 的周期为4∵当[0,1]x ∈时2()2f x x x =-,∴当[4,5]x ∈时,4[0,1]x -∈∴22()(4)(4)2(4)1024f x f x x x x x =-=---=-+.【13】()22f x x x=+解析:当[2,0]x ∈-时,2[0,2]x +∈,()(2)f x f x =-+=22[2(2)(2)]2x x x x -+-+=+;【14】()2(2)f x x n =-,Z n ∈.解析:令21,212[1,1]x x n n n ∈⇒-∈-⎡⎤⎣⎦-+且Z n ∈,则()22(2)f x n x n -=-,又()2()f x f x +=,则()()2f x f x n =-,即()2(2)f x x n =-,综上,在区间21,21n n -+⎡⎤⎣⎦上()2(2)f x x n =-,Z n ∈.【15】(1)证明见解析;(2)2()68,[2,4]f x x x x =-+∈解析:(1)证明:∵(2)()f x f x +=-,∴(4)(2)()f x f x f x +=-+=.∴()f x 是周期为4的周期函数.(2)∵[2,4]x ∈,∴[4,2]x -∈--,∴4[0,2]x -∈,∴22(4)2(4)(4)68f x x x x x -=---=-+-.∵2(4)()(),()68f x f x f x f x x x -=-=-∴-=-+-,即2()68,[2,4]f x x x x =-+∈.【16】()2,4626,682x x f x x x -⎧≤<⎪⎪=⎨-⎪≤<⎪⎩解析:依题意,函数()y f x =是以4为周期的周期函数,当46x ≤<时,042x ≤-<,所以()()424122x x f x f x --=-=+=,当68x ≤<时,280x -≤-<,所以()()868122x x f x f x --=-=+=,综上所述,()2,4626,682x x f x x x -⎧≤<⎪⎪=⎨-⎪≤<⎪⎩.【17】C解析:由()()32f x f x +=,可得()()()342f x f x f x +==+,所以()f x 的周期为4,则()()()3100032f f f ===-.故选:C .【18】C解析:方法一:因为()()20f x f x -+=,()()10f x f x --=,可得()10f =,()()21f x f x -=--,()()()()21,1f x f x f x f x +=-++=-,即得()()2f x f x +=,所以函数()f x 的周期为2,令1x =,可得()()100f f ==,故A ,B 正确;又()f x 的周期为2,所以()()202400f f ==,故D 正确;而C 不一定正确.故选:C .方法二:由()()20f x f x -+=可知,()f x 关于()1,0成点对称,()()10f x f x --=可知()f x 关于12x =成轴对称,所以14122T =-=.令1x =,可得()()100f f ==,故A ,B 正确;又()f x 的周期为2,所以()()202400f f ==,故D 正确;而C 不一定正确.【19】C解析:方法一:对于A 中,函数()1f x +为偶函数,则有()()11f x f x +=-,可得()()2f x f x +=-,又由()f x 为奇函数,则()()()()22,f x f x f x f x --=-+-=-,则有()()2f x f x --=--,所以()()2f x f x ---=-,即()()2=f x f x --,所以A 错误;对于B 中,函数()1f x +为偶函数,则有()()11f x f x +=-,所以B 不正确;对于C 中,由()()()2+==f x f x f x --,则()()()42f x f x f x +=-+=,所以()f x 是周期为4的周期函数,所以()()22f x f x +=-,所以C 正确;对于D 中,由()f x 是周期为4的周期函数,可得()()()()150********f f f f =-+⨯=-=-,其中结果不一定为0,所以D错误.故选:C .方法二:函数()1f x +为偶函数,所以()f x 关于1x =成轴对称,又因为()f x 为R 上的奇函数,所以()f x 关于()0,0成点对称,则根据周期结论4104T =-=,可根据性质画出函数简图:对于A 中,()()20f x f x --+=等价于函数关于()1,0-点对称,由图像可知错误.对于B 中,()()1f x f x -=+等价于函数关于12x =成轴对称,由图像可知错误.对于C 中,()()22f x f x +=-等价于函数周期为4,正确对于D 中,由()f x 是周期为4的周期函数,可得()()()()150********f f f f =-+⨯=-=-,由图像可知错误,故选C【20】BCD解析:由题设()4()(2)f x f x f x -=-=--,则()6(4)f x f x -=--,所以()6()f x f x -=,故3x =是()f x 的一条对称轴,B 对;且()6(2)(4)()f x f x f x f x -=-⇒+=,则()f x 为周期函数,且周期4T =,A 错;所以()4()()f x f x f x -=-=-且定义域为R ,故()f x 为奇函数,C 对;()2024(5064)(0)(20)(2)0f f f f f =⨯==-==,D 对.故选:BCD方法二:由()()()()2,40f x f x f x f x =-+-=可得函数()f x 关于1x =对称,关于()2,0成点对称,所以周期为4T =,当12x ≤≤时,()2f x x =-+,可画出图像:由图像可知选项的正误.【21】AC解析:∵()1f x +是奇函数,则(1)(1)(2)()f x f x f x f x +=--+⇒+=--,∴(12)(1)(1)0f f f -+=-⇒=,故C 正确;又()()22f x f x +=-,故()(2)()(2)f x f x f x f x --=-⇒-=+,所以(2)(4)()f x f x f x -+=+=,即4T =是()f x 的一个周期,故A 正确;由()f x 关于()1,0中心对称,即函数()f x 在[0,1]上的单调性与1,2⎡⎤⎣⎦上的单调性一致,由(1)202f a a =+=⇒=-,则1,2x ∈⎡⎤⎣⎦时,()222f x x =-+,此时函数单调递减,即B 错误;由上知:213115532()(4)(()2(2333339f f f f =+==-=-⨯+=-,故D 错误.故选:AC 【22】ACD解析:对于A 项,由()11f x +-是奇函数,可得函数()f x 关于点()1,1对称,所以有()11f =,故A 项正确;对于B 项,无法求出()0f 的值,故B 项错误;对于C 项,函数()f x 是定义域为R 的偶函数,所以()f x 关于0x =成轴对称,又函数()f x 关于点()1,1对称,根据周期相关结论,所以有4104T =-=,所以()f x 是以4为周期的函数,故C 项正确;对于D 项,因为()()()4f x f x f x +==-,所以2x =也是函数()f x 的对称轴.又()f x 是以4为周期的函数,所以()f x 的图象关于6x =对称,故D 项正确.故选:ACD .【23】BCD解析:对于A ,因为()1f x -是奇函数,所以()f x 的图象关于()1,0-对称,且()()0110f f -=-=,因为()f x 为偶函数,图象关于y 轴对称,且当11x -<<时,()2f x x =,作出()f x 的图象,如下图所示:由图可知,()f x 的值域为()1,1-,故A 错误;对于B ,()f x 的图象关于()1,0-对称,()f x 为偶函数,图象关于y 轴对称,根据周期相关结论,所以有4104T =-=,所以()f x 是以4为周期的函数,故B 正确.对于C ,由图象可得在1,1-⎡⎤⎣⎦上,()f x 的图象与x 轴有3个交点,所以函数在1,1-⎡⎤⎣⎦上有3个零点,故C 正确;()f x 对于D ,由题意得()()510f f ==,()()400f f ==,所以()()54f f =,故D 正确.故选:BCD .【24】AC解析:对于AB ,因为()()22f x f x +=-,所以()()31f f =,又()f x 为偶函数,则()()11f f =-,因为()f x 在2,0-⎡⎤⎣⎦上单调递减,所以()112f f ⎛⎫->- ⎪⎝⎭,从而()132f f ⎛⎫>- ⎪⎝⎭,因此选项A 正确,B 错误;对于CD ,因为()()22f x f x +=-,所以5322f f ⎛⎫⎛⎫= ⎪ ⎝⎭⎝⎭,因为()f x 为偶函数,所以3322f f ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭,因为()f x 在2,0-⎡⎤⎣⎦上单调递减,所以3(1)2f f ⎛⎫->- ⎪⎝⎭,所以()512f f ⎛⎫>- ⎪⎝⎭,所以选项C 正确,D 错误,故选:AC .【25】D解析:因为()+2y f x =的图象关于直线2x =-对称,所以()y f x =的图象关于直线0x =对称,即()f x 为偶函数.因为()()()+21f x f x f -=,所以()()()1211f f f -+--=,又()()11f f -=,所以()10f =,可得()()+2f x f x =,所以()f x 的最小正周期为2,所以(99)(1)0f f ==,(100)(0)8f f ==,所以(99)(100)8f f +=.故选:D .【26】D解析:因为对任意x R ∈,都有(3)(1)9(2),f x f x f +=-+令1,x =-得(2)(2)9(2),f f f =+解得(2)0,f =则(3)(1),f x f x +=-即(4)(),f x f x +=-所以函数()f x 的图象关于直线2x =对称.又函数(9)f x +的图象关于点(9,0)-对称,则函数()f x 的图象关于点(0,0)对称,即函数()f x 为奇函数,所以(4)()(),f x f x f x +=-=-所以(8)(4)(),f x f x f x +=-+=所以8是函数()f x 的一个周期,所以(45)(683)(3)(3)(1)2022,f f f f f =⨯-=-=-=-=-故选:D .【27】AD解析:因为()()11f x f x +=-,所以函数()f x 的图象关于直线1x =对称,故A 正确;因为函数()2y f x =-的图象是函数()y f x =的图象向右平移2个单位得到,函数()2y f x =-的图象是函数()y f x =-的图象向右平移2个单位得到,又函数()y f x =与函数()y f x =-关于y 轴对称,所以()2y f x =-与()2y f x =-的图象关于直线2x =对称,故B 错误;因为()f x 为偶函数,且()()2f x f x +=-,所以()()()()42f x f x f x f x +=-+==-,所以函数()f x 关于直线2x =对称,故C 错误;因为()f x 为奇函数,且()()2f x f x =--,所以()()()2f x f x f x +=-=-,所以函数()f x 的图象关于直线1x =对称,故D 正确.故选:AD .【28】ABC解析:将2x =代入()()()492f x f x f =-+得()()()2292f f f =+,所以()20f =,故A 正确;将()20f =代入()()()492f x f x f =-+得()()4f x f x =-,所以()f x 关于2x =对称,()9f x +是()f x 向左平移9个单位长度得到,因为()9f x +的图象关于点()9,0-对称,所以()f x 关于点()0,0对称所以()()()()4,f x f x f x f x =-=--所以()()()44,f x f x f x =-=--()()()4448f x f x f x -=---=--所以()()8f x f x =-,所以()f x 的周期为8,所以()()()()44485400f f f f =+⨯===,()()()()()453863312022f f f f f =-+⨯=-=-=-=-()()()()46286220f f f f =-+⨯=-=-=所以()()()4445462022f f f ++=-,故B 正确;1133f x ⎛⎫-+ ⎪⎝⎭是由()f x 先向右平移一个单位得到()1f x -,再保持纵坐标不变,横坐标变为原来的三倍得到113f x ⎛-⎫⎪⎝⎭,最后向上平移3个单位长度得到1133f x ⎛⎫-+ ⎪⎝⎭,所以1133f x ⎛⎫-+ ⎪⎝⎭关于点()3,3对称,故C 正确,D 错误;故选:ABC 【29】2解析:由()()3f x f x +-=可得,()f x 关于30,2⎛⎫ ⎪⎝⎭成点对称,函数()1f x +是偶函数,可得()f x 关于1x =成轴对称,根据周期结论可得4104T =-=,所以()f x 为周期函数,且周期为4,()()20231=2f f =-【30】0解析:因为()f x 是定义域为(),-∞+∞的奇函数,所以()00f =,因为()()11f x f x -=+,所以()f x 关于1x =成轴对称,根据周期相关结论可得4104T =-=所以()f x 的周期为4.因为()()040f f ==,()13f =,()f x 关于1x =成轴对称,所以()()020f f ==,()()()1313f f f -==-=-,所以()()()()12340f f f f +++=,则()()()()1232023505000f f f f ++++=⨯+= .【31】 2-解析:因为12f x ⎛⎫+⎪⎝⎭为奇函数,所以()f x 关于1,02⎛⎫⎪⎝⎭成点对称,12f x ⎛⎫- ⎪⎝⎭为偶函数,所以()f x 关于12x =-成轴对称,所以114422T =+=因为(0)2f =,可作出满足函数性质的简图所以(1)(0)2f f =-=-,(2)(0)2f f =-=-,(3)(1)2f f =-=,(4)(0)2f f ==,所以220()250222k f k ==+⨯--=-∑.故选:C .【32】2-解析:()42f x +为偶函数,则()42f x +关于0x =轴对称,则()2f x +同样关于0x =轴对称(伸缩变换是横坐标发生倍数变化,原点是0所以位置不发生变化),而()2f x +是由()f x 向左平移2个单位得到,等价于()f x 向左平移2个单位关于0x =轴对称,()f x 则关于2x =成轴对称,因为()f x 为R 上的奇函数,所以()f x 关于()0,0成点对称,则根据周期相关结论,所以有4208T =-=,所以()f x 是以8为周期的函数,.所以()()()()()()2023202425281252810f f f f f f +=⨯-+⨯=-+,又注意到()f x 为R 上的奇函数,所以()00f =,又因为()12f =,所以()()()()()()202320241010202f f f f f f +=-+=-+=-+=-.故答案为:2-.【33】(1)2()68f x x x =-+;(2)0解析:(1)将()()4f x f x =--中的x 用x -代换得()()4f x f x -=-+,又因为()()2f x f x +=-,得()()42f x f x +=-+,将x 用2x -替换得()()2f x f x +=-,所以()()4f x f x +=,且()()f x f x -=-,所以函数周期为4,且函数是奇函数,当2,0x ∈-⎡⎤⎣⎦时,()()22f x f x x x =--=+,向右移4个单位,当2,4x ∈⎡⎤⎣⎦时,()()()2242468f x x x x x =-+-=-+;(2)()00f =,()11f =,()20f =,()31f =-,则()()()()01230f f f f +++=,由周期是4知:()()()()()()0123450443f f f f f f ++++++⨯+ =()()()()01230f f f f +++=.。

函数周期性和对称性课件及习题与答案

函数的周期性和对称性一、 函数的轴对称:定理1:如果函数()x f y =满足()()x b f x a f -=+,则函数()x f y =的图象关于直线2ba x +=对称. 推论1:如果函数()x f y =满足()()x a f x a f -=+,则函数()x f y =的图象关于直线a x =对称.推论2:如果函数()x f y =满足()()x f x f -=,则函数()x f y =的图象关于直线0=x (y 轴)对称.特别地,推论2就是偶函数的定义和性质.它是上述定理1的简化.二、 函数的点对称:定理2:如果函数()x f y =满足()()b x a f x a f 2=-++,则函数()x f y =的图象关于点()b a ,对称.推论3:如果函数()x f y =满足()()0=-++x a f x a f ,则函数()x f y =的图象关于点()0,a 对称.推论4:如果函数()x f y =满足()()0=-+x f x f ,则函数()x f y =的图象关于原点()0,0对称.三、函数周期性的性质:定理3:若函数()x f 在R 上满足()x a f x a f -=+)(,且()x b f x b f -=+)((其中b a ≠),则函数()x f y =以()b a -2为周期. 定理4:若函数()x f 在R 上满足()x a f x a f --=+)(,且()x b f x b f --=+)((其中b a ≠),则函数()x f y =以()b a -2为周期.定理5:若函数()x f 在R 上满足()x a f x a f -=+)(,且()x b f x b f --=+)((其中b a ≠),则函数()x f y =以()b a -4为周期.1、()()f x f x a =+,则()y f x =是以T a =为周期的周期函数;2、 若函数y=f(x)满足f(x+a)=-f(x)(a>0),则f(x)为周期函数且2a 是它的一个周期。

高三数学周期性和对称性试题答案及解析

高三数学周期性和对称性试题答案及解析1.设偶函数f(x)对任意x∈R都有f(x+3)=-,且当x∈[-3,-2]时,f(x)=4x,则f(107.5)=()A.10B.C.-10D.-【答案】B【解析】因为f(x+3)=-,故有f(x+6)=-=f(x).函数f(x)是以6为周期的函数.f(107.5)=f(6×17+5.5)=f(5.5)=-=-=-=.故选B.2.设定义在上的函数满足,若,则.【答案】【解析】∵,∴,∴,∴是一个周期为4的周期函数,∴.∵,∴==.【考点】抽象函数.3.定义在上的函数满足则的值为()A.B.C.D.【答案】D【解析】由题意知,故选D.【考点】1.函数的周期性;2.分段函数;3.对数的运算4.定义在上的函数满足,当时,,当时,.则=()A.338B.337C.1678D.2013【答案】B【解析】因为,定义在上的函数满足,所以,,是周期为6的周期函数.又当时,,当时,.所以,,故=,选B.【考点】函数的周期性,函数的概念.5.已知函数,正项等比数列满足,则.【答案】【解析】对任意的,都有,又可以证明对任意,,所以,所以用倒序相加法可求出结果为.【考点】函数的对称性、对数的运算性质.6.已知定义在R上的函数满足条件,且,则 .【答案】【解析】由可知,,所以函数是周期为3的周期函数,.【考点】1.抽象函数及其应用;2.函数的周期性7.已知函数是定义在上的奇函数,若对于任意的实数,都有,且当时,,则的值为()A.B.C.D.【答案】A.【解析】由已知为上奇函数且周期为2,对于任意的实数,都有,.【考点】函数的性质.8.函数对于任意实数满足条件,若,则________.【答案】【解析】因为,所以,,则,所以,得周期T=4,则====.【考点】函数的周期性.9.设是定义在R上的周期为3的周期函数,如图表示该函数在区间(-2,1]上的图像,则+=()A.3B.2C.1D.0【答案】C【解析】,,所以+=.【考点】函数的周期性.10.设是以2为周期的函数,且当时, .【答案】-1【解析】∵是以2为周期的函数,且时,,则.【考点】函数求值11.已知是R上最小正周期为2的周期函数,且当时,,则函数在区间上的图像与x轴的交点个数为()A.6B.7C.8D.9【答案】B【解析】当0≤x<2时,令=0,则x(x-1)(x+1)=0,解得x=0或1;又f(x)是R上最小正周期为2的周期函数,∴f(0)=f(2)=f(4)=f(6)=0,f(1)=f(3)=f(5)=0,故在区间[0,6]上,方程f(x)=0共有7个根,∴函数y=f(x)的图象在区间[0,6]上与x轴的交点的个数为7.故选B.【考点】本题考查了根的存在性及根的个数判断.点评:正确求出一个周期内的根的个数和理解周期性是解题的关键12.定义在上的函数满足且时,则()A.B.C.D.【答案】C【解析】因为根据题意可以,函数是奇函数,且周期为4,那么根据时,则,选C.13.设函数是定义在R上的以5为周期的奇函数,若则a的取值范围是()A.B.C.D.【答案】A【解析】因为函数f(x)=y是周期为5的奇函数,且f(2)>1,那么可知,因此可知f(3)="f(-2)=-f(2)=" <-1,解得a的范围是A14.(本小题满分12分已知f(x)是实数集R上的函数,且对任意x R,f(x)=f(x+1)+f(x-1)恒成立. (Ⅰ)求证:f(x)是周期函数.(Ⅱ)已知f(-4)=2,求f(2012).【答案】(1)证明∵f(x)=f(x+1)+f(x-1)∴f(x+1)=f(x)-f(x-1),则f(x+2)=f∴f(x+3)=f……………5分f (x+6)=f∴f(x)是周期函数且6是它的一个周期. …………………7分(2)解f(2 012)=f(335×6+2)=f(2)=f(6+(-4))=f(-4)=2.……12分【解析】略15.已知为R上的奇函数,且,若,则A.0B.±1C.1D.【答案】D【解析】故选D16.已知定义在R上的函数的图像关于点对称,且满足,,,则的值为A.B.0 C.1D.2【答案】D【解析】由得周期为T=3,由函数的图像关于点对称得,所以=217.已知是R上的偶函数,且满足时,= 。

高三数学函数的周期性和对称性形典型例题解析1

高三数学函数的周期性和对称性典型例题解析11.函数定义域为,且对任意,都有,若在区间上则( )A.B. C. D.【答案】C【解析】第一步,准确求出函数的周期性:由()()2f x f x +=,可知()f x 是周期为2的函数, 第二步,运用函数的周期性求解实际问题:令1-=x 故()()11f f -=,代入解析式,得()22a a e -+=-,解得2a =, 从而()()22,10{22,01x x x f x x e x +-≤≤=-<≤,故()()()()2017201810022f f f f +=+=+=,故选C.2.已知定义域为R 的函数()f x 满足()2()f x f x +=,且当01x ≤≤时,()2(12)f x g x =+,则()2021f -=()A .lg3-B .lg 9C .lg 3D .0【答案】C 【分析】由()()2f x f x +=得出函数的周期2T =,所以()()20211f f -=代入解析式可得答案. 【详解】由()f x 满足()()2f x f x +=,所以函数的周期2T =,且当01x ≤≤时,()2(12)f x g x =+,所以()()20211lg3f f -==. 故选:C.3.已知函数()f x 的定义域为R ,()2f x +为偶函数,()21f x +为奇函数,则( )A .102f ⎛⎫-= ⎪⎝⎭B .()10f -=C .()20f =D .()40f =【答案】B【分析】因为函数()2f x +为偶函数,则()()22f x f x +=-,可得()()31f x f x +=-, 因为函数()21f x +为奇函数,则()()1221f x f x -=-+,所以,()()11f x f x -=-+, 所以,()()()311f x f x f x +=-+=-,即()()4f x f x =+, 故函数()f x 是以4为周期的周期函数,因为函数()()21F x f x =+为奇函数,则()()010F f ==, 故()()110f f -=-=,其它三个选项未知. 故选:B.4.函数y =f(x)在[0,2]上单调递增,且函数f(x +2)是偶函数,则下列结论成立的是( ) A . f(1)<f(52)<f(72) B . f(72)<f(52)<f(1) C . f(72)<f(1)<f(52) D . f(52)<f(1)<f(72) 【答案】C5.函数f(x +2)是偶函数,则其图象关于y 轴对称,所以函数y =f(x)的图像关于x =2对称,则f(52)=f(32),f(72)=f(12),函数y =f(x)在[0,2]上单调递增,则有 f(12)<f(1)<f(32),所以f(72)<f(1)<f(52).选C . 考点:抽象函数的周期性.6.(多选)已知函数()1y f x =-的图象关于直线1x =-对称,且对x ∀∈R 有()()4f x f x +-=.当(]0,2x ∈时,()2f x x =+.则下列说法正确的是( ) A .()f x 的周期8T = B .()f x 的最大值为4 C .()20212f = D .()2f x +为偶函数【答案】ABD 【分析】由函数()1y f x =-的图象关于直线1x =-对称,得()()22f x f x -+=--,又()()4f x f x +-=,所以()()()44f x f x f x =--=--,()()444f x f x --++=,从而可得()()8f x f x +=,进而根据周期性、对称性、(]0,2x ∈时()f x 的解析式即可求解. 【详解】解:函数()1y f x =-的图象关于直线1x =-对称,∴函数()y f x =的图象关于直线2x =-对称, ∴()()22f x f x -+=--对x R ∀∈有()()4f x f x +-=,∴函数()y f x =的图象关于()0,2中心对称,∴()()2222f x f x -++=--+⎡⎤⎣⎦,即()()()44f x f x f x =--=--,又()()444f x f x --++=,即()()444f x f x --=-+,∴()()4f x f x +=-,∴()()()444f x f x f x ++=-+=⎡⎤⎡⎤⎣⎦⎣⎦,即()()8f x f x +=,()()22f x f x +=-+, ∴()f x 的周期8T =,选项A 正确;()2f x +为偶函数,选项D 正确;当(]0,2x ∈时,()2f x x =+,()()4f x f x +-=,∴当[)2,0x ∈-时,(]0,2x -∈,()24f x x +-+=,即()2f x x =+, ∴当[]2,2x ∈-时,()2f x x =+,又函数()y f x =的图象关于直线2x =-对称,∴在一个周期[]6,2-上,()()max24f x f ==, ()f x ∴在R 上的最大值为4,选项B 正确;()()()()()2021252855141121f f f f f =⨯+==+=-=-+=∴,选项C 错误. 故选:ABD.7. 已知定义在R 上的函数()f x 的图象关于点3,04⎛⎫-⎪⎝⎭对称, 且满足()32f x f x ⎛⎫=-+ ⎪⎝⎭ ,又()()11,02f f -==-,则()()()()123...2008f f f f ++++=( )A .669B .670C .2008D .1 【答案】D 【解析】试题分析:由()32f x f x ⎛⎫=-+⎪⎝⎭得()()3f x f x =+,又()()11,02f f -==-, (1)(13)(2)f f f ∴-=-+=,(0)(3)f f =,()f x 的图象关于点3,04⎛⎫- ⎪⎝⎭对称,所以()1131()()(1),(1)(2)(3)0222f f f f f f f -=--=-+=∴++=,由()()3f x f x =+可得()()()()()()()123...2008669(123)(1)(1)(1)1f f f f f f f f f f ++++=⨯+++==-=,故选D.考点:函数的周期性;函数的对称性.8.已知()21y f x =-为奇函数, ()y f x =与()y g x =图像关于y x =对称,若120x x +=,则()()12g x g x +=( )A. 2B. -2C. 1D. -1 【答案】B 【解析】()21y f x =-为奇函数,故()21y f x =-的图象关于原点()0,0对称,而函数()y f x =的图象可由()21y f x =-图象向左平移12个单位,再保持纵坐标不变,横坐标伸长到原来的2倍得到,故()y f x =的图象关于点()1,0-对称,又()y f x =与()y g x =图象关于y x =对称,故函数()y g x =的图象关于点()0,1-对称,120x x +=,即12x x =-,故点()()()()1122,,,x g x x g x ,关于点()0,1-对称,故()()122g x g x +=-,故选B.9.已知函数()tan sin cos f x x x x =-,现有下列四个命题: ①f (x )的最小正周期为π; ②f (x )的图象关于原点对称;③f (x )的图象关于(2π,0)对称; ④f (x )的图象关于(π,0)对称. 其中所有真命题的序号是( ) A .①②③ B .②③④ C .①②③④ D .①②④【答案】C 【分析】利用函数的对称性和周期的判断方法直接对选项进行逐一判断即可得出答案. 【详解】因为tan y x =与1sin cos sin 22y x x x ==的最小正周期均为π,所以f (x )的最小正周期是π.因为()()f x f x -=-,所以f (x )是奇函数,其图象关于原点对称. 因为()()tan sin cos f x x x x f x π-=-+=-,所以f (x )的图象关于(2π,0)对称. 因为()()2tan sin cos f x x x x f x π-=-+=-,所以f (x )的图象关于(π,0)对称. 所以①②③④均正确 故选:C10.设函数()f x 的定义域为R ,()1f x +为奇函数,()2f x +为偶函数,当[]1,2x ∈时,2()f x ax b =+.若()()036f f +=,则92f ⎛⎫= ⎪⎝⎭( )A .94-B .32-C .74D .52【答案】D 【分析】通过()1f x +是奇函数和()2f x +是偶函数条件,可以确定出函数解析式()222f x x =-+,进而利用定义或周期性结论,即可得到答案. 【解析】因为()1f x +是奇函数,所以()()11f x f x -+=-+①;因为()2f x +是偶函数,所以()()22f x f x +=-+②.令1x =,由①得:()()()024f f a b =-=-+,由②得:()()31f f a b ==+, 因为()()036f f +=,所以()462a b a b a -+++=⇒=-,令0x =,由①得:()()()11102f f f b =-⇒=⇒=,所以()222f x x =-+.思路一:从定义入手.9551222222f f f f ⎛⎫⎛⎫⎛⎫⎛⎫=+=-+=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 1335112222f f f f ⎛⎫⎛⎫⎛⎫⎛⎫-=-+=-+=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 511322=2222f f f f ⎛⎫⎛⎫⎛⎫⎛⎫-=-+=--+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭所以935222f f ⎛⎫⎛⎫=-=⎪ ⎪⎝⎭⎝⎭. 思路二:从周期性入手由两个对称性可知,函数()f x 的周期4T =.所以91352222f f f ⎛⎫⎛⎫⎛⎫==-=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 故选:D .【点睛】在解决函数性质类问题的时候,我们通常可以借助一些二级结论,求出其周期性进而达到简便计算的效果. 11.设函数1()1xf x x-=+,则下列函数中为奇函数的是( ) A .()11f x -- B .()11f x -+C .()11f x +-D .()11f x ++【答案】B【分析】分别求出选项的函数解析式,再利用奇函数的定义即可. 【解析】由题意可得12()111x f x x x-==-+++, 对于A ,()2112f x x --=-不是奇函数; 对于B ,()211f x x -=+是奇函数;对于C ,()21122f x x +-=-+,定义域不关于原点对称,不是奇函数; 对于D ,()2112f x x ++=+,定义域不关于原点对称,不是奇函数.12.已知函数()()f x x ∈R 满足()2()f x f x -=-,若函数1x y x+=与()y f x =图像的交点为1122(,),(,),,(,),m m x y x y x y ⋅⋅⋅则1()mi i i x y =+=∑( )(A )0 (B )m (C )2m (D )4m 【答案】C 【解析】试题分析:由于()()2f x f x -+=,不妨设()1f x x =+,与函数111x y x x+==+的交点为()()1,2,1,0-,故12122x x y y +++=,故选C. 考点: 函数图象的性质13.已知f(x)是定义域为(−∞,+∞)的奇函数,满足f(1−x)=f(1+x) .若f(1)=2 则f(1)+f(2)+f(3)+⋯+f(50)=( )A . −50B . 0C . 2D . 50 【答案】C【解析】因为f(x)是定义域为(−∞, + ∞)的奇函数,且f(1−x)=f(1+x), 所以f(1+x)=−f(x −1)∴f(3+x)=−f(x +1)=f(x −1)∴T =4,因此f(1)+f(2)+f(3)+⋯+f(50)=12[f(1)+f(2)+f(3)+f(4)]+f(1)+f(2), 因为f(3)=−f(1),f(4)=−f(2),所以f(1)+f(2)+f(3)+f(4)=0,∵f(2)=f(−2)=−f(2)∴f(2)=0,从而f(1)+f(2)+f(3)+⋯+f(50)=f(1)=2,选C. 14.已知函数f(x)=lnx +ln(2−x),则A . f(x)在(0,2)单调递增B . f(x)在(0,2)单调递减C . y =f(x)的图像关于直线x=1对称D . y =f(x)的图像关于点(1,0)对称 【答案】C【解析】由题意知,f(2−x)=ln(2−x)+lnx =f(x),所以f(x)的图象关于直线x =1对称,故C 正确,D 错误;又f(x)=ln[x(2−x)](0<x <2),由复合函数的单调性可知f(x)在(0,1)上单调递增,在(1,2)上单调递减,所以A ,B 错误,故选C . 【考点】函数的对称性、单调性。

第2讲 函数的对称性与周期性(解析版)-2024高考数学常考题型

第2讲函数的对称性与周期性【考点分析】1.函数的对称性、周期性是高考命题热点,近两年新高考都考了一道选择题,分值5分,知识点比较灵活,需要全面掌握常见对称性,周期性的结论考点一:函数常见对称性结论①若函数()x f 对于任意的x 均满足()()f a x f b x +=-,则函数()y f x =关于直线()()22a xb x a bx ++-+==对称.②若函数()x f 对于任意的x 均满足()()2f a x f a x b ++-=则()y f x =关于点()a b ,对称.考点二:函数常见周期性结论若函数对于任意的x 都满足()()x f T x f =+,则T 为()x f 的一个周期,且()()x f nT x f =±几个常见周期性结论①若函数()y f x =满足()()f x m f x +=-,则2T m =.②若函数()y f x =满足)((1)f x m f x =±+,则2T m =.③若函数()y f x =满足1()()1()f x f x m f x -+=+,则2T m =.④若函数()y f x =满足()()b x f a x f +=+,则a b T -=.⑤若函数()y f x =的图象关于直线x a =,x b =都对称,则()f x 为周期函数且2||b a -是它的一个周期.⑥函数()y f x =()x R ∈的图象关于两点0()A a y ,、0()B b y ,都对称,则函数()y f x =是以2||b a -为周⑦函数()y f x =()x R ∈的图象关于0()A a y ,和直线x b =都对称,则函数()y f x =是以4||b a -为周期的周期函数.⑧若函数()y f x =满足1()()1()f x f x m f x ++=-,则函数()f x 是以4m 为周期的周期函数.【题型目录】题型一:利用周期性求函数值题型二:利用周期性求函数解析式题型三:根据函数的对称性、周期性、奇偶性写函数题型四:根据函数的对称性、奇偶性、周期性综合运用【典型例题】题型一:利用周期性求函数值【例1】设()f x 是定义在R 上周期为2的函数,当(11]x ∈-,时,2210()01x x m x f x x ⎧++-<<⎪=≤≤,,其中m R ∈.若13(()162f f =,则m 的值是.答案:1解析: ()x f 是定义在R 上周期为2的函数,当(11]x ∈-,时,2210()01x x m x f x x ⎧++-<<⎪=≤≤,,∴m m f f +-=+⎪⎭⎫ ⎝⎛-⨯+⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛432122121232,41161161==⎪⎭⎫⎝⎛f ,∴14341=⇒+-=m m 【例2】设()f x 为定义在R 上的奇函数,(2)()f x f x +=-,当01x ≤≤时,()f x x =,则(7.5)f =__________答案:5.0-解析: (2)()f x f x +=-,∴()x f 是周期为4的函数,所以()()()5.05.05.05.7-=-=-=f f f 【例3】定义在R 上的函数()f x 对任意x R ∈,都有()()()()112,214f x f x f f x -+==+,则()2016f 等于A.14B.12C.13D.35答案:D解析: ()()()()()()()()x f x f x f x f x f x f x f x f =+-++--=+++-=+11111121214,所以()x f 是周期为4的函数,()()()()53212142016=+-==f f f f 【例4】(重庆南开高一上期中)已知定义在R 上的奇函数()f x 满足()()4f x f x +=,且()11f =,则()()20202019f f -的值为()A.1-B.0C.1D.2答案:C解析: ()()4f x f x +=所以4=T ,所以()()002020==f f ,()()()1112019-=-=-=f f f ,所以()()()20202010119f f =--=-【例5】(2022·云南昭通·高一期末)已知函数()y f x =是定义在R 上的周期函数,且周期为2,当[]0,1x ∈时,()21xf x =-,则132f ⎛⎫ ⎪⎝⎭=()A .1B .1C 1D .1【题型专练】1.(2021·山东·临沂市兰山区教学研究室高三开学考试)已知()f x 是R 上的奇函数,且()()2f x f x +=-,当()0,2x ∈时,()22f x x x =+,则()15f =()A .3B .3-C .255D .255-【答案】B【分析】根据题意可知()f x 是周期函数,根据周期以及奇函数即可求解.【详解】由()()2f x f x +=-可得,()()42=()f x f x f x +=-+,故()f x 是以4为周期的周期函数,故(15)(1)(1)3f f f =-=-=-,故选:B2.(2023·全国·高三专题练习)已知()f x 是定义在R 上的偶函数,且(6)()f x f x +=-,若当[]3,0x ∈-时,()6x f x -=,则(2021)f =()A .0B .1C .6D .216【答案】C【分析】由(6)()f x f x +=-可得函数周期为6,进而(2021)(33761)(1)f f f =⨯-=-,最后求出答案.【详解】根据题意,偶函数()f x 满足(6)()f x f x +=-,即(6)()f x f x +=,()f x 是周期为6的周期函数,则(2021)(33761)(1)f f f =⨯-=-,当[3,0]x ∈-时,()6x f x -=,则1(1)66f -==,故(2021)6f =故选:C3.(重庆南开高一上期末)函数()f x 的定义域为R ,且102f ⎛⎫=⎪⎝⎭,()00f ≠.若对任意实数x ,y 都有()()222x y y y f f x f x f +-⎛⎫⎛⎫= ⎪⎝⎭⎝+⎪⎭,则()2020f =()A.B.-1C.0D.1答案:D解析:由题意知,令0==y x ,可得()()02022f f =,因()00f ≠,所以()10=f 102f ⎛⎫=⎪⎝⎭所以()()0212121=⎪⎭⎫⎝⎛-+⎪⎭⎫ ⎝⎛++=++x x f x x f x f x f ,所以()()x f x f -=+1,所以2=T ,所以()()102020==f f 4.(2022·云南红河·高一期末)已知()f x 是定义在R 上的奇函数,R x ∀∈,都有(4)()f x f x +=,若当[0,1]x ∈时,2()log ()f x x a =+,则(7)f -=()A .1-B .0C .1D .2【答案】C【分析】()f x 是定义在R 上的奇函数得a ,有(4)=()f x f x +得到()f x 是周期函数,利用函数周期性可得答案.【详解】()f x 是定义在R 上的奇函数,(0)=0f ∴,得=1a ,∴当[]0,1x ∈时,2()log (1)=+f x x ,R x ∀∈,都有(4)=()f x f x +,()f x ∴是周期为4的周期函数,()()()7=7811f f f ∴--+==.故选:C.5.(2022·黑龙江·大庆中学高二期末)()f x 是定义在R 上的奇函数,且满足()()22f x f x -=+,又当(]0,1x ∈时,()3xf x =,则131log 72f ⎛⎫= ⎪⎝⎭______.题型二:利用周期性求函数解析式【例1】已知定义在实数集R 上的函数()x f 满足:(1)()()x f x f =-;(2)()()x f x f -=+22;(3)当[]2,0∈x 时解析式为12-=x y ,当[]0,4-∈x 时,求函数的解析式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章 函数2.3.2 函数的周期性与对称性(针对练习)针对练习针对练习一 周期性与对称性的判断1.下列函数中,既是奇函数又是周期函数的是 A .sin y x = B .cos y x =C .ln y x =D .3y x =2.已知函数()3lg x f x x =+,则下列选项正确的是( ) A .()f x 是奇函数 B .()f x 是偶函数 C .()f x 是周期函数 D .()f x 没有最大值3.函数221()f x x x =+的图像关于( ) A .y 轴对称 B .直线y x =-对称 C .坐标原点对称 D .直线y x =对称4.函数5x y =与5-=x y 的图象( ) A .关于y 轴对称 B .关于x 轴对称 C .关于原点对称 D .关于直线y x =轴对称5.函数cos y x =与函数cos y x =-的图象 A .关于直线1x =对称 B .关于原点对称 C .关于x 轴对称 D .关于y 轴对称针对练习二 由函数周期性求函数值6.已知()f x 在R 上是奇函数,且满足(4)()f x f x +=,当(2,0)x ∈-时,2()2f x x =,则(2019)f 等于( )A .-2B .2C .-98D .987.已知函数()f x 是定义在R 上周期为4的奇函数,当02x <<时,()2log f x x =,则()722f f ⎛⎫+= ⎪⎝⎭A .1B .-1C .0D .28.已知函数()f x 是R 上的奇函数,且3()()2f x f x -=-,且当30,4x ⎛⎤∈ ⎥⎝⎦时,()23f x x =-,则(2021)(2022)(2023)f f f -+--的值为( ) A .4 B .4- C .0 D .6-9.已知定义在R 上的函数()f x 满足()()2=-+f x f x ,当(]0,2x ∈时,()22log xf x x =+,则(2022)f =( ) A .5 B .12C .2D .-210.定义在R 上的函数()f x ,满足()()5f x f x +=,当(]3,0x ∈-时,()1f x x =--,当(]0,2x ∈时,()2log f x x =,则()()()122022f f f ++⋅⋅⋅+=( ).A .403B .405C .806D .809针对练习三 由函数对称性求函数值11.设定义在R 上的奇函数()y f x =,满足对任意的t R ∈都有()()1f t f t =-,且当10,2x ⎡⎤∈⎢⎥⎣⎦时,()2f x x =-,则()332f f ⎛⎫+- ⎪⎝⎭的值等于( ) A .12- B .13-C .14-D .15-12.已知函数()f x 是定义在R 上的奇函数,且()f x 的图象关于直线2x =对称,当02x <<时,()22x x f x +=-,则()5f =A .3B .3-C .7D .7-13.已知(1)y f x =+是定义在R 上的奇函数,且(4)(2)f x f x +=-,当[1,1)x 时,()2x f x =,则(2021)(2022)+=f f ( )A .1B .4C .8D .1014.函数()y f x =为偶函数,且图象关于直线32x =对称,()54f =,则()1f -=( ) A .3 B .4 C .3- D .4-15.已知函数()2f x x ax =+对定义域内任意的x 都有()()22f x f x -=+,则实数a 等于( ) A .4 B .-4C .14D .14-针对练习四 由周期性与对称性求函数解析式16.设奇函数()f x 的定义域为R ,且(4)()f x f x +=,当(]4,6x ∈时()21x f x =+,则()f x 在区间[)2,0-上的表达式为 A .()21x f x =+ B .4()21x f x -+=-- C .4()21x f x -+=+ D .()21x f x -=+17.函数y =f (x )是以2为周期的偶函数,且当x ∈(0,1)时,f (x )=x +1,则在x ∈(1,2)时f (x )=( ) A .﹣x ﹣3 B .3﹣x C .1﹣x D .x +118.设函数()()y f x x R =∈为偶函数,且x R ∀∈;满足3122f x f x ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭,当[]2,3x ∈时,()f x x =,则当[]2,0x ∈-时,()f x = A .4x + B .2x - C .21x ++ D .31x -+19.函数()f x 的图象与曲线2log y x =关于x 轴对称,则()f x =( ) A .2x B .2x - C .2log ()x - D .21log x20.若函数()y g x =的图象与ln y x =的图象关于直线2x =对称,则()g x =( ) A .()ln 2x + B .()ln 2x -C .()ln 4x -D .()ln 4x +针对练习五 由周期性与对称性比较大小21.已知函数()f x 是奇函数,且(2)()f x f x +=-,若()f x 在[]1,0-上是增函数,313(1),(),()23f f f 的大小关系是( )A .313(1)()()23f f f << B .313()(1)()23f f f << C .133()(1)()32f f f << D .133()()(1)32f f f <<22.已知定义在R 上的函数()y f x =满足下列三个条件:①对任意的1212x x ≤<≤,都有()()12f x f x >;②()1y f x =+的图象关于y 轴对称; ②对任意的R x ∈,都有()()2f x f x =+,则13f ⎛⎫ ⎪⎝⎭,32f ⎛⎫ ⎪⎝⎭,83f ⎛⎫⎪⎝⎭的大小关系是( )A .831323f f f ⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ B .813332f f f ⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ C .138323f f f ⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭D .381233f f f ⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭23.定义在R 上的函数()f x 满足:()()111f x f x -=-+成立且()f x 在[]2,0-上单调递增,设()6a f =,(b f =,()4c f =,则a ,b ,c 的大小关系是( ) A .a b c >> B .a c b >> C .b c a >> D .c b a >>24.已知函数()y f x =的定义域为R ,且满足下列三个条件:②任意[]12,4,8x x ∈,当12x x <时,都有()()12120f x f x x x ->-;②()()4f x f x +=-;②()4y f x =+是偶函数;若()()()6,11,2025a f b f c f ===,则a b c 、、的大小关系正确的是( )A .a b c <<B .a c b <<C .b a c <<D .c b a <<25.已知定义在R 上的函数()f x 满足:(1)(2)()f x f x -=;(2)(2)(2)f x f x +=-;(3)12,[1,3]x x ∈ 时,1212()[()()]0x x f x f x -->.则(2019),(2020),(2021)f f f 的大小关系是( )A .(2021)(2020)(2019)f f f >>B .(2019)(2020)(2021)f f f >>C .(2020)(2021)(2019)f f f >>D .(2020)(2019)(2021)f f f >>针对练习六 由抽象函数周期性与对称性求函数值26.已知()f x 是定义域为(),-∞+∞的偶函数,且满足()()2f x f x +=-,()01f =,则()()()()1232018f f f f ++++= ( )A .1-B .0C .1D .201827.已知函数()f x 是R 上的奇函数,且对任意x ∈R 有()1f x +是偶函数,且()11f -=,则()()20202021f f +=. A .1- B .0 C .1 D .228.已知()f x 是定义在R 上的奇函数,()1f x -为偶函数,且函数()f x 与直线y x =有一个交点()()1,1f ,则()()()()()12320182019f f f f f +++++=( )A .2-B .0C .1-D .129.设定义在R 上的函数()f x 满足()(2)13f x f x ⋅+=,若(1)2f =,则(99)f = A .132B .134C .2D .430.已知函数()f x 对任意的R x ∈都有()()()21f x f x f +-=.若函数()2y f x =+的图象关于2x =-对称,且()08f =,则()()99100f f +=( )A .0B .4C .5D .8第二章 函数2.3.2 函数的周期性与对称性(针对练习)针对练习针对练习一 周期性与对称性的判断1.下列函数中,既是奇函数又是周期函数的是 A .sin y x = B .cos y x =C .ln y x =D .3y x =【答案】A 【解析】 【详解】根据函数的奇偶性定义可知函数3sin ,y x y x ==为奇函数,sin y x =为周期函数,选A.2.已知函数()3lg x f x x =+,则下列选项正确的是( ) A .()f x 是奇函数 B .()f x 是偶函数 C .()f x 是周期函数 D .()f x 没有最大值【答案】D 【解析】 【分析】根据指数函数、对数函数的性质直接进行分析即可. 【详解】因为()3lg x f x x =+的定义域为()0,∞+,不关于原点对称,排除A 和B ; 又因为3,lg x y y x ==在()0,∞+上单调递增, 所以()f x 易知不是周期函数,排除C ,()f x 在()0,∞+上单调递增没有最大值,故D 正确,故选:D. 3.函数221()f x x x =+的图像关于( ) A .y 轴对称B .直线y x =-对称C .坐标原点对称D .直线y x =对称【答案】A 【解析】 【分析】函数221()f x x x =+,观察知该函数是一个偶函数,解答本题要先证明其是偶函数再由偶函数的性质得出其对称轴是y 轴. 【详解】函数的定义域为R , ()()()()222211f x x x f x x x -=-+=+=-, ()221f x x x ∴=+是一个偶函数, 由偶函数的性质知函数221()f x x x=+的图像关于y 轴对称. 故选:A . 【点睛】本题考点是奇偶函数图象的对称性,考查了偶函数的证明以及偶函数的性质,属于一道基本题.4.函数5x y =与5-=x y 的图象( ) A .关于y 轴对称 B .关于x 轴对称 C .关于原点对称 D .关于直线y x =轴对称【答案】A 【解析】 【分析】设()5x f x =,得()5xf x --=,根据函数()y f x =与函数()y f x =-之间的对称性可得出正确选项. 【详解】设()5x f x =,得()5x f x --=,由于函数()y f x =与函数()y f x =-的图象关于y 轴对称,因此,函数5x y =与5-=x y 的图象关于y 轴对称. 故选A. 【点睛】本题考查函数图象之间对称性的判断,熟悉两函数关于坐标轴、原点对称的两个函数解析式之间的关系是关键,考查推理能力,属于基础题. 5.函数cos y x =与函数cos y x =-的图象 A .关于直线1x =对称 B .关于原点对称 C .关于x 轴对称 D .关于y 轴对称【答案】C 【解析】 【分析】作出函数cos y x =与函数cos y x =-的简图,即可得到答案. 【详解】根据余弦函数的图像,作出函数cos y x =与函数cos y x =-的简图如下:由图可得函数cos y x =与函数cos y x =-的图象关于x 轴对称, 故答案选C 【点睛】本题考查余弦函数的图像问题,属于基础题.针对练习二 由函数周期性求函数值6.已知()f x 在R 上是奇函数,且满足(4)()f x f x +=,当(2,0)x ∈-时,2()2f x x =,则(2019)f 等于( )A .-2B .2C .-98D .98【答案】B 【解析】 【分析】根据已知条件判断出()f x 的周期,由此求得()2019f 的值. 【详解】由于(4)()f x f x +=,所以()f x 是周期为4的周期函数,所以()()()()22019505411212f f f =⨯-=-=⨯-=.故选:B 【点睛】本小题主要考查利用函数的周期性化简求值,属于基础题.7.已知函数()f x 是定义在R 上周期为4的奇函数,当02x <<时,()2log f x x =,则()722f f ⎛⎫+= ⎪⎝⎭A .1B .-1C .0D .2【答案】A 【解析】 【详解】函数()f x 是定义在R 上周期为4的奇函数, (2)(2)(2)(2)0f f f f ∴-==-⇒=,又122711()()()log 1222f f f =-=-=-=,所以()7212f f ⎛⎫+= ⎪⎝⎭,故选A. 8.已知函数()f x 是R 上的奇函数,且3()()2f x f x -=-,且当30,4x ⎛⎤∈ ⎥⎝⎦时,()23f x x =-,则(2021)(2022)(2023)f f f -+--的值为( ) A .4 B .4- C .0 D .6-【答案】B 【解析】 【分析】由已知可求得函数的周期为3,结合函数为奇函数可得1(2021)(2022)(2023)2()2f f f f -+--=即可求解.【详解】因为3()()2f x f x -=-,所以(3)()f x f x -=,因此函数的周期为3,所以(2021)(2022)(2023)f f f -+--(2)(0)(1)f f f =-+--, 又函数()f x 是R 上的奇函数,所以(3)()()f x f x f x -==--, 所以(1)(2)f f -=--,即(2)(1)f f =-,所以原式1(2)(0)(1)(2)(1)2(1)2()2f f f f f f f =-++=-+==,又当30,4x ⎛⎤∈ ⎥⎝⎦时,()23f x x =-,可得1()22f =-,因此原式1242f ⎛⎫==- ⎪⎝⎭.故选:B .9.已知定义在R 上的函数()f x 满足()()2=-+f x f x ,当(]0,2x ∈时,()22log xf x x =+,则(2022)f =( ) A .5 B .12C .2D .-2【答案】A 【解析】 【分析】根据题中条件,先确定函数以4为周期,利用函数周期性,再由给定区间的解析式,即可求出结果. 【详解】由()()2=-+f x f x 可得()()2f x f x +=-,所以()()()42f x f x f x +=-+=,因此函数()f x 以4为周期,又当(]0,2x ∈时,()22log xf x x =+, 所以()()222450522log 25(2022)f f f =+⨯==+=.故选:A.10.定义在R 上的函数()f x ,满足()()5f x f x +=,当(]3,0x ∈-时,()1f x x =--,当(]0,2x ∈时,()2log f x x =,则()()()122022f f f ++⋅⋅⋅+=( ).A .403B .405C .806D .809【答案】B 【解析】 【分析】由函数的周期性计算. 【详解】由()()5f x f x +=得()f x 是周期函数,周期是5,2(1)log 10f ==,2log (2)21f ==,(3)(2)(2)11f f =-=---=,(4)(1)0f f =-=,(5)011f =--=-,所以(1)(2)(3)(4)(5)1f f f f f ++++=,()()()1220224041(1)(2)405f f f f f ++⋅⋅⋅+=⨯++=.故选:B .针对练习三 由函数对称性求函数值11.设定义在R 上的奇函数()y f x =,满足对任意的t R ∈都有()()1f t f t =-,且当10,2x ⎡⎤∈⎢⎥⎣⎦时,()2f x x =-,则()332f f ⎛⎫+- ⎪⎝⎭的值等于( ) A .12- B .13-C .14-D .15-【答案】C 【解析】 【分析】利用函数()y f x =的奇偶性和对称性可分别求得()3f 和32f ⎛⎫- ⎪⎝⎭的值,相加即可求得结果. 【详解】由于函数()y f x =为R 上的奇函数,满足对任意的t R ∈都有()()1f t f t =-, 则()()()()()()()()31322121100f f f f f f f f =-=-=-=--=--===,2333111112222224f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-=-=--=--==-=- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,因此,()31324f f ⎛⎫+-=- ⎪⎝⎭.故选:C. 【点睛】本题考查利用函数的奇偶性与对称性求函数值,考查计算能力,属于基础题. 12.已知函数()f x 是定义在R 上的奇函数,且()f x 的图象关于直线2x =对称,当02x <<时,()22x x f x +=-,则()5f =A .3B .3-C .7D .7-【答案】D 【解析】 【分析】由题意可得()()22f x f x +=-+,再将()5f 化成()1f -,即可得到答案; 【详解】由题意可得()()22f x f x +=-+,所以()()()()()()35323211217f f f f f =+=-+=-=-=--=-.故选:D. 【点睛】本题考查函数的性质,考查运算求解能力与推理论证能力.13.已知(1)y f x =+是定义在R 上的奇函数,且(4)(2)f x f x +=-,当[1,1)x 时,()2x f x =,则(2021)(2022)+=f f ( )A .1B .4C .8D .10【答案】A 【解析】根据函数的奇偶性,对称性判断函数的周期并求解. 【详解】因为(1)f x +是定义在R 上的奇函数,所以()y f x =图象的对称中心为(1,0),且(1)0f =. 因为(4)(2)f x f x +=-,所以()y f x =图象的对称轴方程为3x =, 故()f x 的周期8T =,(2021)(5)==f f (1)0f =,(2022)(6)(0)1===f f f ,从而(2021)(2022)1+=f f , 故选:A .14.函数()y f x =为偶函数,且图象关于直线32x =对称,()54f =,则()1f -=( ) A .3 B .4 C .3- D .4-【答案】B 【解析】 【分析】利用函数的对称性和偶函数的性质进行求解即可. 【详解】因为函数()y f x =的图象关于直线32x =对称,所以()(2)54f f -==, 又因为函数()y f x =为偶函数,所以()2(2)4f f -==,()1(1)f f -=, 而函数()y f x =的图象关于直线32x =对称,所以()1(1)(2)4f f f -===.故选:B15.已知函数()2f x x ax =+对定义域内任意的x 都有()()22f x f x -=+,则实数a 等于( ) A .4 B .-4 C .14D .14-【答案】B 【解析】 【分析】根据()()22f x f x -=+得到()f x 关于2x =对称,利用对称轴公式得到答案. 【详解】()()22f x f x -=+则()f x 关于2x =对称,故242aa -=∴=-故选:B 【点睛】本题考查了函数的对称问题,根据()()22f x f x -=+确定函数的对称轴是解题的关键.针对练习四 由周期性与对称性求函数解析式16.设奇函数()f x 的定义域为R ,且(4)()f x f x +=,当(]4,6x ∈时()21x f x =+,则()f x 在区间[)2,0-上的表达式为 A .()21x f x =+ B .4()21x f x -+=-- C .4()21x f x -+=+ D .()21x f x -=+【答案】B 【解析】 【分析】由()()4f x f x +=,可得原函数的周期,再结合奇偶性,把自变量的范围[)2,0-转化到(]4,6上,则f (x )在区间[)2,0-上的表达式可求. 【详解】当[2,0)x ∈-时,(]0,2x -∈,(]44,6x ∴-+∈又②当(]4,6x ∈时,()21x f x =+,4(4)21x f x -+∴-+=+又(4)()f x f x +=,∴函数()f x 的周期为4T =,(4)()f x f x ∴-+=-又②函数()f x 是R 上的奇函数,()()f x f x ∴-=-∴4()21x f x -+-=+,∴当[)2,0x ∈-时,4()21x f x -+=--.故选:B . 【点睛】本题综合考查函数的周期性、奇偶性,以及函数解析式的求法.要注意函数性质的灵活转化,是中档题.一般这类求函数解析式的题目是求谁设谁,再由周期性或者奇偶性将要求的区间化到所给的区间内.17.函数y =f (x )是以2为周期的偶函数,且当x ∈(0,1)时,f (x )=x +1,则在x ∈(1,2)时f (x )=( ) A .﹣x ﹣3 B .3﹣xC .1﹣xD .x +1【答案】B 【解析】 【分析】先设x ∈(1,2),根据周期性和奇偶性将x 转化到(0,1),代入函数解析式,然后根据性质化简求出解析式即可. 【详解】设x ∈(1,2),则﹣x ∈(﹣2,﹣1),2﹣x ∈(0,1), ∴f (2﹣x )=2﹣x +1=3﹣x ,函数y =f (x )是以2为周期的偶函数, ∴f (x +2)=f (x ),f (﹣x )=f (x ), 则f (2﹣x )=f (﹣x )=f (x )=3﹣x . 故选:B . 【点睛】本题主要考查了函数的奇偶性、周期性等有关性质,同时考查了函数解析式的求解方法,属于基础题.18.设函数()()y f x x R =∈为偶函数,且x R ∀∈;满足3122f x f x ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭,当[]2,3x ∈时,()f x x =,则当[]2,0x ∈-时,()f x = A .4x + B .2x - C .21x ++ D .31x -+【答案】D 【解析】 【详解】试题分析:由3122f x f x ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭可得 (2)()f x f x +=,则当[2,1]x ∈--时,4[2,3],()(4)413x f x f x x x +∈=+=+=++;当 [1,0]x ∈-时,[0,1]x -∈, 2[2,3]x -∈,()()(2)231f x f x f x x x =-=-=-=--,应选D.考点:分段函数的解析式及分类整合思想.【易错点晴】函数的周期性、奇偶性及分类整合思想不仅是中学数学中的重要知识点也是解决许多数学问题的重要思想和方法.本题在求解时,先从题设中的已知条件3122f x f x ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭入手,探究出其周期为 2,再分类求出当[]2,0x ∈-时,和当[1,0]x ∈-时函数的解析表达式分别为4[2,3],()(4)x f x f x +∈=+413x x =+=++和 [0,1],2[2,3]x -∈-,()()(2)231f x f x f x x x =-=-=-=--,从而使得问题巧妙获解.19.函数()f x 的图象与曲线2log y x =关于x 轴对称,则()f x =( ) A .2x B .2x - C .2log ()x - D .21log x【答案】D 【解析】任取函数()f x 上的一点(),x y ,先求出点(),x y 关于x 轴对称的点坐标为(),x y -,又点(),x y -在曲线2log y x =上,整理即可得出结果.【详解】任取函数()f x 上的一点(),x y ,由函数()f x 的图象与曲线2log y x =关于x 轴对称, 则点(),x y 关于x 轴对称的点坐标为(),x y -, 又点(),x y -在曲线2log y x =上, 可得222log log log 1y y xx x -=⇒=-=, 则()21log f x x=. 故选:D. 【点睛】关键点睛:求出点(),x y 关于x 轴对称的点坐标是解题的关键.20.若函数()y g x =的图象与ln y x =的图象关于直线2x =对称,则()g x =( ) A .()ln 2x + B .()ln 2x -C .()ln 4x -D .()ln 4x +【答案】C 【解析】 【分析】在函数()y g x =的图象上任取一点(),x y ,由对称性的知识可知,点(),x y 关于直线2x =的对称点在函数ln y x =的图象上,然后计算即可得解. 【详解】在函数()y g x =的图象上任取一点(),x y , 则点(),x y 关于直线2x =对称的点为()4,x y -,且点()4,x y -在函数ln y x =的图象上,所以()ln 4y x =-. 故选:C . 【点睛】本题考查函数的对称性的应用,考查逻辑思维能力和分析能力,属于常考题.针对练习五 由周期性与对称性比较大小21.已知函数()f x 是奇函数,且(2)()f x f x +=-,若()f x 在[]1,0-上是增函数,313(1),(),()23f f f 的大小关系是( )A .313(1)()()23f f f <<B .313()(1)()23f f f <<C .133()(1)()32f f f << D .133()()(1)32f f f <<【答案】D 【解析】 【分析】由f (x+2)=﹣f (x ),得f (x+4)=f (x ),利用函数奇偶性单调性之间的关系,即可比较大小. 【详解】②f (x+2)=﹣f (x ),函数f (x )是奇函数, ②f (x+2)=﹣f (x )=f (﹣x ), ②函数f (x )关于x=1对称, 且f (x+4)=f (x ),②函数是周期为4的周期数列. ②f (x )在[﹣1,0]上是增函数,②f (x )在[﹣1,1]上是增函数,f (x )在[1,2]上是减函数, f (133)=f (4+13)=f (13)=f (53),②f (x )在[1,2]上是减函数,且1<32<53, ②f (1)>f (32)>f (53), 即f (133)<f (32)<f (1),故选D . 【点睛】本题主要考查函数值的大小比较,利用函数的奇偶性,对称性和单调性是解决本题的关键,综合考查函数的性质,考查学生的转化意识,属于中档题. 22.已知定义在R 上的函数()y f x =满足下列三个条件: ②对任意的1212x x ≤<≤,都有()()12f x f x >; ②()1y f x =+的图象关于y 轴对称; ②对任意的R x ∈,都有()()2f x f x =+ 则13f ⎛⎫⎪⎝⎭,32f ⎛⎫ ⎪⎝⎭,83f ⎛⎫⎪⎝⎭的大小关系是( )A .831323f f f ⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ B .813332f f f ⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭C .138323f f f ⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ D .381233f f f ⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭【答案】A 【解析】 【分析】根据②可得()y f x =在()1,2上单调递减,根据②可得()y f x =的图象关于1x =对称,根据②可得()y f x =周期为2,根据单调性、周期性、对称性即可比较大小. 【详解】因为②对任意的1212x x ≤<≤,都有()()12f x f x >; 可得()y f x =在()1,2上单调递减, 因为②()1y f x =+的图象关于y 轴对称; 可得()y f x =的图象关于1x =对称, 因为②对任意的R x ∈,都有()()2f x f x =+, 所以()y f x =周期为2,因为()y f x =的图象关于1x =对称,所以1533f f ⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭, 因为()y f x =周期为2,所以824333f f f ⎫⎛⎫⎛⎫==⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 因为()y f x =在()1,2上单调递减,435323<<, 所以435323f f f ⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,即831323f f f ⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 故选:A.23.定义在R 上的函数()f x 满足:()()111f x f x -=-+成立且()f x 在[]2,0-上单调递增,设()6a f =,(b f =,()4c f =,则a ,b ,c 的大小关系是( ) A .a b c >> B .a c b >>C .b c a >>D .c b a >>【答案】D 【解析】 【分析】由()()111f x f x -=-+,可得函数()f x 周期4T =,将自变量的值利用周期转化到[]2,0-,结合单调性,即得解 【详解】由题意,()()111f x f x -=-+,则()()113f x f x +=-+ ()1(3)f x f x ∴-=+()(4)f x f x ∴=+,可得函数()f x 周期4T =()6(2)a f f ∴==-,(()4b f f ==,()4(0)c f f ==由于()f x 在[]2,0-上单调递增(2)4)(0)f f f ∴-<<即a b c ∴<< 故选:D 【点睛】本题考查了函数的周期性与单调性综合,考查了学生综合分析,转化划归,数学运算能力,属于中档题24.已知函数()y f x =的定义域为R ,且满足下列三个条件:②任意[]12,4,8x x ∈,当12x x <时,都有()()12120f x f x x x ->-;②()()4f x f x +=-;②()4y f x =+是偶函数;若()()()6,11,2025a f b f c f ===,则a b c 、、的大小关系正确的是( )A .a b c <<B .a c b <<C .b a c <<D .c b a <<【答案】C 【解析】 【分析】由条件②确实单调性,条件②确定周期性,条件②确定对称性,由对称性和周期性化自变量到区间[4,8]上,再由单调性得大小关系、 【详解】因为任意[]12,4,8x x ∈,当12x x <时,都有()()12120f x f x x x ->-,所以()f x 在[4,8]上是增函数,因为()()4f x f x +=-,所以(8)(4)()f x f x f x +=-+=,()f x 是周期函数,周期是8; 由()4y f x =+是偶函数,得()f x 的图象关于直线4x =对称,(11)(3)f f =(5)f =,(2025)(1)(7)f f f ==,又(5)(6)(7)f f f <<,所以b a c <<. 故选:C . 【点睛】思路点睛:本题考查函数的奇偶性、单调性、周期性.解题方法一般是利用周期性把自变量化小,再由周期性(或对称性)化自变量到同一个单调区间上,然后由单调性得函数值大小.25.已知定义在R 上的函数()f x 满足:(1)(2)()f x f x -=;(2)(2)(2)f x f x +=-;(3)12,[1,3]x x ∈ 时,1212()[()()]0x x f x f x -->.则(2019),(2020),(2021)f f f 的大小关系是( )A .(2021)(2020)(2019)f f f >>B .(2019)(2020)(2021)f f f >>C .(2020)(2021)(2019)f f f >>D .(2020)(2019)(2021)f f f >>【答案】B 【解析】根据已知可得函数()f x 的图象关于直线1x =对称,周期为4,且在[]1,3上为增函数,得出()()20193f f =,()()()202002f f f ==,()()20211f f =,根据单调性即可比较(2019),(2020),(2021)f f f 的大小.【详解】解:②函数()f x 满足:(2)()f x f x -=,故函数的图象关于直线1x =对称; (2)(2)f x f x +=-,则()()4f x f x +=,故函数的周期为4;12,[1,3]x x ∈ 时,1212()[()()]0x x f x f x -->,故函数在[]1,3上为增函数;故()()20193f f =,()()()202002f f f ==,()()20211f f =, 而()()()321f f f >>,所以(2019)(2020)(2021)f f f >>. 故选:B. 【点睛】本题考查函数的基本性质的应用,考查函数的对称性、周期性和利用函数的单调性比较大小,考查化简能力和转化思想.针对练习六 由抽象函数周期性与对称性求函数值26.已知()f x 是定义域为(),-∞+∞的偶函数,且满足()()2f x f x +=-,()01f =,则()()()()1232018f f f f ++++= ( )A .1-B .0C .1D .2018【答案】A【解析】【分析】 首先求得函数()f x 为周期函数,周期为4,故()()()()()()()()()()1232018504123412f f f f f f f f f f ⎡⎤++++=+++++⎣⎦,分别求得()()()()1,2,3,4f f f f ,问题得解.【详解】解:因为()()2f x f x +=-,()()()()()222,42,f x f x f x f x f x ++=-++=-+=则 所以函数()f x 为周期函数,且周期为4,所以()()()()1232018f f f f ++++()()()()()()504123412f f f f f f ⎡⎤=+++++⎣⎦.因为()f x 是定义域为(),-∞+∞的偶函数,且()01f =,所以()()401f f ==,当1x =-时,()()()111f f f =--=-,所以()10f =,当0x =时,()()201f f =-=-,当1x =时,()()310f f =-=,所以()()()()12340f f f f +++=,所以()()()()1232018f f f f ++++()()()()()()504123412f f f f f f ⎡⎤=+++++⎣⎦1=-. 故选A .【点睛】本题考查函数的周期性以及奇偶性,比较基础.27.已知函数()f x 是R 上的奇函数,且对任意x ∈R 有()1f x +是偶函数,且()11f -=,则()()20202021f f +=.A .1-B .0C .1D .2 【答案】A【解析】根据题意,由函数奇偶性的定义分析可得()()()2f x f x f x +=-=-,进而可得()()()42f x f x f x +=-+=,即可得()f x 是周期为4的周期函数,据此求出()()20202021f f +的值,相加即可得答案.【详解】解:根据题意,()1f x +是偶函数,则()()11f x f x -+=+,变形可得()()2f x f x +=-.又由()f x 是R 上的奇函数,则()()()2f x f x f x +=-=-,变形可得()()()42f x f x f x +=-+=,所以()f x 是周期为4得周期函数.因为()f x 是R 上的奇函数,所以()00f =,则()()()20200505400f f f =+⨯=;()()()()202115054111f f f f =+⨯==--=-.故()()202020211f f +=-.故选:A.【点睛】本题考查函数的奇偶性与周期性的应用,关键是分析函数的周期性,属于基础题. 28.已知()f x 是定义在R 上的奇函数,()1f x -为偶函数,且函数()f x 与直线y x =有一个交点()()1,1f ,则()()()()()12320182019f f f f f +++++=( ) A .2-B .0C .1-D .1【答案】B【解析】推导出函数()y f x =是以4为周期的周期函数,并求出()()()()1234f f f f +++以及()2020f 值,结合周期性可求得所求代数式的值.【详解】因为函数()y f x =为奇函数,()1f x -为偶函数,所以()()()111f x f x f x -+=--=-,则()()()311f x f x f x +=-+=-,所以函数()y f x =是周期为4的周期函数.因为奇函数()y f x =的定义域为R ,所以()00f =.因为函数()y f x =与直线y x =有一个交点()()1,1f ,所以()11f =.所以()()200f f =-=,()()311f f =-=-,()()400f f ==.所以()()()()()410120130f f f f =++++++-=.故()()()()()12320182019f f f f f +++++=()()()()()()()()123201820192020202002020000f f f f f f f f ++++++-=-=-=. 故选:B.【点睛】本题考查抽象函数值的计算,涉及函数对称性的应用,推导出函数的周期性是解答的关键,考查分析问题和解决问题的能力,属于中等题.29.设定义在R 上的函数()f x 满足()(2)13f x f x ⋅+=,若(1)2f =,则(99)f = A .132 B .134 C .2 D .4【答案】A【解析】先由题意推出函数()f x 为周期函数且周期为4,则有()(99)3f f =,然后由()(2)13f x f x ⋅+=和(1)2f =解得13(3)2f =,即可得出答案. 【详解】由题意定义在R 上的函数()f x 满足()(2)13f x f x ⋅+=,则有(2)(4)13f x f x +⋅+=,联立解得()(4)f x f x =+,则得函数()f x 为周期函数且周期为4,则有()()(99)42433f f f =⨯+=;又因(1)2f =,则由(1)(3)13f f ⋅=解得13(3)2f =,所以可得13(99)2f =. 故选:A.【点睛】本题考查了函数周期性的判断与求解,考查了函数周期性的应用,属于一般难度的题.30.已知函数()f x 对任意的R x ∈都有()()()21f x f x f +-=.若函数()2y f x =+的图象关于2x =-对称,且()08f =,则()()99100f f +=( )A .0B .4C .5D .8 【答案】D【解析】【分析】由函数()2y f x =+的图象关于2x =-对称,可得()f x 为偶函数,再对()()()21f x f x f +-=赋值1x =-可得()10f =,从而可得()()+2f x f x =,即()f x 的最小正周期为2,从而可得()()()()9910010f f f f +=+.【详解】因为()+2=y f x 的图象关于直线2x =-对称,所以()y f x =的图象关于直线0x =对称,即()f x 为偶函数.因为()()()+21-=f x f x f ,所以()()()1211f f f -+--=,又()()11f f -=,所以()10f =,可得()()+2f x f x =,所以()f x 的最小正周期为2,所以(99)(1)0f f ==,(100)(0)8f f ==,所以(99)(100)8f f +=.故选:D.【点睛】本题主要考查利用函数的奇偶性及周期性,求抽象函数的值,同时考查函数的图象的平移变换,属于中档题.。

相关文档
最新文档