奇数偶数质数和合数_知识点整理

合集下载

因数倍数质数合数奇数偶数知识点

因数倍数质数合数奇数偶数知识点

因数倍数质数合数奇数偶数知识点
嘿,朋友们!今天咱要来好好聊聊因数、倍数、质数、合数、奇数、偶数这些知识点,可有意思啦!
先来说说因数吧,就像搭积木一样,每个数都可以拆分成一些数相乘。

比如说 6,它就可以分成 2 和 3 相乘,那 2 和 3 就是 6 的因数啦!就像你有一堆玩具,你可以把它们分成不同的组合,每个组合里的那些玩具就是整体的因数呀!
倍数呢,就是某个数不断乘以整数得到的啦。

比如 2 的倍数有 2 呀、4 呀、6 呀等等。

嘿,这不就像你收集的邮票,一套套的,不断增加嘛!
然后是质数,那可是很特别的哟!质数只有 1 和它本身两个因数。

就像一颗闪闪发光的宝石,独特又珍贵!像 7 就是质数,多牛呀!
合数呢,和质数相反,它可有不止两个因数哦。

可以说它是个丰富多样的小世界!比如说 8,它就有 1 、2 、4 、8 这么多因数呢,是不是很神奇?
奇数偶数就更好理解啦,奇数就是个位上是 1、3、5、7、9 的数,偶数就是个位上是 0、2、4、6、8 的数呗。

这就好比是白天和黑夜,奇数像白天充满活力,偶数像夜晚那么安静。

“哎呀,这么讲我一下子就明白了!”这时候小伙伴小明惊叹道。

“可不是嘛!”我回应道,“这些知识点其实超有趣的!”
我觉得呀,这些知识点就像我们生活中的各种小细节一样,看似简单,实则蕴含着无尽的奥秘和乐趣。

它们让我们更加了解数字的世界,也让我们在数学的海洋里畅游得更开心。

所以呀,大家可一定要好好掌握它们哟!。

合数质数因数奇数偶数有关概念汇总

合数质数因数奇数偶数有关概念汇总

在数学领域,合数、质数、因数、奇数和偶数是比较基础的概念,对于建立数学思维和解决实际问题都有着重要的作用。

本文将从这些概念的定义、特性和应用方面进行深入探讨,帮助读者更好地理解这些数学概念。

1. 合数合数是指除了1和它本身之外,还有其他正整数因数的自然数。

如果一个数能够被除了1和它本身之外的其他数整除,那么它就是合数。

比如6是合数,因为它可以被2和3整除,而8、9、10等也都是合数。

合数的特性之一是,它可以分解为几个质数的乘积。

这一点对于数字的因数分解和素因数分解非常重要。

而在实际应用中,对合数的研究也有着重要的意义,比如在密码学中的加密算法中,大素数的运用。

2. 质数质数是只能被1和它本身整除的自然数。

如果一个数除了1和它本身之外没有其他因数,那么它就是质数。

比如2、3、5、7、11、13等都是质数。

质数的特性之一是,任何一个大于1的整数,都可以唯一地分解为若干个质数的乘积。

这就是素因数分解定理。

质数在数论、密码学、因式分解等方面都有着重要的应用。

3. 因数因数是指能够整除给定的数的数。

比如6的因数有1、2、3和6。

在因数分解中,我们要找到所有能够整除给定数的质数因数,这在实际运用中有着重要的作用。

4. 奇数和偶数奇数是指个位数是1、3、5、7、9的整数,而偶数是指能够被2整除的整数。

奇数和偶数在数学运算中有着不同的性质,比如偶数相加一定是偶数,奇数相加一定是偶数。

在概率统计和排列组合问题中,奇数和偶数也有着不同的应用。

总结来说,合数、质数、因数、奇数和偶数是数学中常见且基础的概念,对于培养数学思维和解决实际问题都有着重要的作用。

在实际生活中,我们可以通过学习这些概念,提高自己的数学素养,丰富自己的数学知识,提高解决问题的能力。

在我看来,这些数学概念不仅仅是理论上的概念,更是我们生活中思维的体现。

通过深入理解这些概念,我们可以更好地把握事物的本质,发现问题的本质,从而更好地解决实际问题,提高自己的综合素质。

奇数偶数质数和合数_知识点整理

奇数偶数质数和合数_知识点整理

奇数偶数质数和合数_知识点整理【奇数.偶数.质数.合数知识点归纳】奇数和偶数知识要点::1.偶数:自然数中,能被2整除的数叫做偶数。

2.奇数:自然数中,不能被2整除的数叫做奇数。

3.0也是偶数。

4.一个整数是偶数还是奇数,是这个整数自身的一种性质,这种性质,叫做奇偶性。

5.在这一讲中,我们向大家介绍奇数和偶数的三个最常见的性质:性质1:任何一个奇数一定不等于任何一个偶数。

性质2:相邻的两个自然数总是一奇一偶。

性质3:有趣的运算规律:(1)偶数±偶数=偶数(2)奇数±奇数=偶数(3)偶数±奇数=奇数(4)偶数×偶数=偶数(5)偶数×奇数=偶数(6)奇数×奇数=奇数★以上性质可以推广到“多个整数”的运算:(1)任意个偶数之和或差,结果必是偶数;(2)奇数个奇数之和或差,结果必是奇数;(3)偶数个奇数之和或差,结果必是偶数;(4)任意个奇数之积必是奇数;(5)在连乘中,有一个或一个以上因数是偶数,其积必为偶数。

质数和合数知识要点1、自然数按因数的个数来分:质数、合数、1、0四类.(1)、质数(或素数):只有1和它本身两个因数。

(2)、合数:除了1和它本身还有别的因数(至少有三个因数:1、它本身、别的因数)。

(3)、1:只有1个因数。

“1”既不是质数,也不是合数。

注:①最小的质数是2,最小的合数是4,连续的两个质数是2、3。

②每个合数都可以由几个质数相乘得到,质数相乘一定得合数。

③ 20以内的质数:有8个(2、3、5、7、11、13、17、19)④ 100以内的质数有25个:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97 2、100以内找质数、合数的技巧:看是否是2、3、5、7、11、13…的倍数,是的就是合数,不是的就是质数。

关系:奇数×奇数=奇数质数×质数=合数3、常见最大、最小A的最小因数是:1;最小的奇数是:1;A的最大因数是:本身;最小的偶数是:0;A的最小倍数是:本身;最小的质数是:2;4、用短除法分解质因数(一个合数写成几个质数相乘的形式)。

偶数奇数质数和数知识点总结

偶数奇数质数和数知识点总结

偶数奇数质数和数知识点总结
好的,以下是一篇满足你要求的关于“偶数奇数质数和数知识点总结”的文稿:
前言:嘿,朋友们!今天咱要来聊聊数学里超有意思的偶数、奇数、质数和合数呀!这可真是一个奇妙的世界,充满了各种好玩的规律和特点,准备好了吗?
正文:先来说说偶数吧!像2、4、6 这些能被2 整除的数就是偶数呀。

比如说,咱家里的筷子一般都是偶数双的,一双两双,这就很直观嘛!奇数呢,就是那些除以 2 有余数的数,像 3、5、7 等等。

哎呀,就好比你走在
路上,奇数步总是感觉有点特别呢!接下来是质数,这可就厉害了,它只有1 和它本身两个因数。

比如说 5 就是质数,相当独特是不是?就像咱们班里那个总是特立独行的同学一样!合数呢,就更有趣了,除了 1 和它本身还有别的因数。

好比一个团队,成员可多啦!像 6 呀,它除了 1 和 6 还能分解
成 2 和 3 呢,这不就是合数的特点嘛!
结尾:哇塞,偶数奇数质数合数,数学的世界就是这么神奇呀!好好去发现它们吧,你会觉得超好玩的!难道不是吗?。

质数与合数知识点总结

质数与合数知识点总结

一、质数的定义和特性1. 质数的定义:质数,又称素数,是指只能被1和本身整除的自然数。

换句话说,质数是只有1和它本身两个因子的自然数。

2. 质数的特性:(1)所有大于1的质数,都是奇数。

因为偶数除了2以外都有其他的因子,不符合质数的定义。

(2)质数的个数是无穷的,即质数是无限的。

(3)任何一个大于1的整数都可以唯一地分解成质数的乘积。

3. 质数的性质:(1)质数的乘积还是质数:如果p和q都是质数,则p*q也是质数。

(2)任何一个大于1的正整数都可以唯一地分解成一些质数的乘积。

二、合数的定义和特性1. 合数的定义:除了1和本身外,还有其他正整数能够整除它的自然数称为合数。

2. 合数的特性:(1)0和1既不是质数也不是合数。

(2)任何一个合数都可以唯一地分解成若干个质数的乘积。

三、质数和合数的判断方法1. 判断一个数是否为质数的方法:(1)试除法:用小于这个数的所有质数来试除这个数,如果都不能整除,则这个数为质数。

(2)埃氏筛法:埃氏筛法是一种简单的找质数的方法,算法的核心思想是从小到大枚举每个数,如果这个数是质数,就标记它的倍数为合数。

2. 判断一个数是否为合数的方法:通常通过试除法判断一个数是否为合数。

即用除数从2开始逐一试除,如果能整除,则是合数,否则为质数。

1. 质数和合数在密码学中的应用:质数和合数在密码学中有着重要的应用,比如RSA加密算法。

RSA算法的核心就是利用两个大素数相乘的结果,来保证加密的安全性。

2. 质数和合数在因子、约数、公因数的求解中的应用:在因子、约数、公因数等问题的求解中,质数和合数的性质是不可或缺的。

3. 质数和合数在数学分解中的应用:在数学分解中,质数和合数的性质也是至关重要的。

在实际应用中,质数和合数的性质不仅仅体现在数论问题中,还涉及到了计算机科学、密码学等领域。

因此对于质数和合数的研究和应用具有重要的意义。

五、质数与合数的相关定理和推论1. 质数定理:质数定理是指对于任意一个正自然数n,当n足够大时,不大于n的质数个数约为n/ln(n)。

质数与合数的性质与判断知识点总结

质数与合数的性质与判断知识点总结

质数与合数的性质与判断知识点总结在数学中,质数和合数是基础概念,了解它们的性质与判断方法对于进一步学习和探索数学有着重要的作用。

本文将对质数与合数的性质以及判断方法进行总结。

一、质数的性质:1. 定义:质数是指大于1且只能被1和自身整除的自然数。

2. 质数只有两个因数:1和它本身。

3. 除了2以外,质数都是奇数,因为偶数可以被2整除。

二、合数的性质:1. 定义:合数是指大于1且能够被除了1和自身以外的数整除的自然数。

2. 合数有至少三个因数:1、它本身以及其他能够整除它的数。

3. 所有偶数都是合数,因为可以被2整除。

4. 任何大于等于4的数字都可以表示为两个以上的质数相乘的形式。

三、质数与合数的判断方法:1. 判断质数的方法:- 试除法:对于一个大于1的自然数n,用小于n的自然数依次除以n,如果n不能被任何小于n的数整除,则n为质数。

- 利用开方:若一个大于1的自然数n,如果在2到√n的范围内找不到能整除n的数,则n为质数。

这是因为,如果n不是质数,它的一个因子必然落在√n上方,而另一个必然落在√n下方。

2. 判断合数的方法:- 除了使用质数判断法外,可以利用因数分解的方法,将一个数分解成质数相乘的形式。

如果一个大于1的自然数至少有三个不同的因子,则它是合数。

- 特殊情况下,如果一个大于1的自然数是一个完全平方数(即可以表示为某个自然数的平方),则它也是合数。

四、质数与合数的应用:1. 密码学:质数在密码学中扮演着重要的角色。

一些加密算法的安全性依赖于质数的特性,因为质数的因数分解十分困难。

2. 数学研究:质数和合数的性质是数论研究的核心内容,深入研究这些性质可以推动数学知识的发展。

3. 整除性问题:质数和合数的概念对整数的整除性问题有着重要的指导作用,可以帮助我们更好地理解整数的性质和规律。

综上所述,质数和合数是数学中基础的概念,掌握它们的性质与判断方法对于数学学习至关重要。

通过本文对质数与合数的性质与判断方法的总结,相信读者们能够更好地理解和应用这些知识点。

质数和合数知识点整理

质数和合数知识要点1、自然数按因数的个数来分:质数、合数、1、0四类.1、质数或素数:只有1和它本身两个因数..2、合数:除了1和它本身还有别的因数至少有三个因数:1、它本身、别的因数..3、1:只有1个因数..“1”既不是质数;也不是合数..注:①最小的质数是2;最小的合数是4;连续的两个质数是2、3..②每个合数都可以由几个质数相乘得到;质数相乘一定得合数..③ 20以内的质数:有8个2、3、5、7、11、13、17、19④ 100以内的质数有25个:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、972、100以内找质数、合数的技巧:看是否是2、3、5、7、11、13…的倍数;是的就是合数;不是的就是质数..关系:奇数×奇数=奇数质数×质数=合数3、常见最大、最小A的最小因数是:1;最小的奇数是:1;A的最大因数是:本身;最小的偶数是:0;A的最小倍数是:本身;最小的质数是:2;最小的自然数是:0;最小的合数是:4;4、分解质因数:把一个合数分解成多个质数相乘的形式..树状图例:分析:先把36写成两个因数相乘的形式;如果两个因数都是质数就不再进行分解了;如果两个因数中海油合数;那我们继续分解;一直分解到全部因数都是质数为止..把36分解质因数是:36=2×2×3×35、用短除法分解质因数一个合数写成几个质数相乘的形式..例:分析:看上面两个例子;分别是用短除法对18;30分解质因数;左边的数字表示“商”;竖折下面的表示余数;要注意步骤..具体步骤是:6、互质数:公因数只有1的两个数;叫做互质数..两个质数的互质数:5和7两个合数的互质数:8和9一质一合的互质数:7和87、两数互质的特殊情况:⑴1和任何自然数互质;⑵相邻两个自然数互质;⑶两个质数一定互质;⑷2和所有奇数互质;⑸质数与比它小的合数互质;三、经验之谈:书写分解质因数的结果时不能把质因数相乘写在等号左边;把合数写在右边;比如36=2×2×3×3就不能写成2×2×3×3=36;短除法是除法一种简化;利用短除法分解质因数时;除数和商都不能是1;因为1不是质数一、填空..1、最小的自然数是 ;最小的质数是 ;最小的合数是 ;最小的奇数是 ..2、20以内的质数有 ;20以内的偶数有 ;20以内的奇数有 ..3、20以内的数中不是偶数的合数有 ;不是奇数的质数有 ..4、三个连续奇数的和是87;这三个连续的奇数分别是、、 ..二、判断题;对的在括号里写“√”;错的写“×”..1任何一个自然数;不是质数就是合数.. 2偶数都是合数;奇数都是质数.. 37的倍数都是合数.. 420以内最大的质数乘以10以内最大的奇数;积是171.. 5只有两个约数的数;一定是质数.. 6两个质数的积;一定是质数.. 72是偶数也是合数..81是最小的自然数;也是最小的质数.. 9除2以外;所有的偶数都是合数.. 10最小的自然数;最小的质数;最小的合数的和是7.. 111既不是质数也不是合数.. 12个位上是3的数一定是3的倍数..13所有的偶数都是合数.. 14所有的质数都是奇数.. 15两个数相乘的积一定是合数..三、下面的数中;哪些是合数;哪些是质数..1、13、24、29、41、57、63、79、87合数有:质数有:四写出两个都是质数的连续自然数 ..五写出两个既是奇数;又是合数的数 ..六在内填入适当的质数..10=+ 10=× 20=++8=× ×七两个质数的和是18;积是65;这两个质数分别是多少八一个两位质数;交换个位与十位上的数字;所得的两位数仍是质数;这个数是 ..九用10以内的质数组成一个三位数;使它能同时被3、5整除;这个数最小是 ;最大是 ..。

质数与合数的认识知识点总结

质数与合数的认识知识点总结质数和合数是数学中的两个重要概念。

质数是指只能被1和自身整除的正整数,而合数则是除了1和自身外还能被其他数字整除的正整数。

在数论中,了解质数和合数的性质和特点对于解决数学问题和应用领域具有重要意义。

本文将对质数和合数的认识进行知识点总结。

一、质数的特点质数是大于1的自然数中,除了1和自身外没有其它正因数的数。

以下是质数的一些特点:1. 质数只有两个因数,即1和自身。

2. 2是质数中唯一的偶数,其他质数都是奇数。

3. 质数不能被其他数整除,即在质数的倍数中无法找到其他质数。

二、合数的特点合数是大于1的自然数中,除了1和自身外还可以被其他正整数整除的数。

以下是合数的一些特点:1. 合数有至少三个因数,包括1、自身和其他正因数。

2. 合数可以分解成两个或多个较小的数的乘积。

3. 合数可以被质数或其他合数整除。

三、质数与合数的关系质数和合数是数论中的两个重要概念,它们之间存在一定的关系:1. 除了1之外,所有的数字都可以归类为质数或合数。

2. 质数与合数是互斥的,即一个数要么是质数,要么是合数,不会同时具备两种性质。

3. 所有的合数都可以被质数分解为若干个质数的乘积。

四、质数与合数的应用质数和合数在数学和实际应用中具有广泛的应用,以下是一些常见的应用领域:1. 密码学:质数的特性被广泛用于加密算法,保护数据的安全性。

2. 网络通信:质数的特点被应用于生成公钥和私钥,用于加密和解密网络通信。

3. 数学证明:质数和合数的性质被广泛应用于数学证明和推断,解决一些数论问题。

4. 数据分析:质数和合数可以用于数据分析中的分组和分类,帮助整理数据。

总结:质数和合数是数学中的两个重要概念,质数是只能被1和自身整除的正整数,合数是除了1和自身外还能被其他数字整除的正整数。

质数和合数之间存在着互斥的关系,所有的合数都可以被质数分解为若干个质数的乘积。

质数和合数在密码学、网络通信、数学证明和数据分析等领域具有广泛的应用。

五年级下册数学讲练-第2讲 质数和合数、奇数和偶数(同步复习)人教版

【本节知识框架】知识点一:2、3、5的倍数的特征知识点二:4、8、25、125的倍数的特征知识点三:质数和合数(重点)知识点四:奇数和偶数【新课内容】知识点一:2、3、5的倍数的特征知识点:2的倍数尾数一般为:0、2、4、6、8 ;5的倍数尾数一般为:0、5知识点:将这个数的各个位上的数字相加,如果所得的和正好是3的倍数,则这个数是3的倍数;否则如果所得的和不是3的倍数,则这个数不是3的倍数。

例题1填一填:1、在23、12、56、15、21、79、30、106、69、38、48、57、92、24、96这些数中,是3的倍数的有()。

2、判断一个数是不是2的倍数或5的倍数,只要看它的()位上的数,判断一个数是不是3的倍数,要看这个数的各个位上的数的()。

【变式练习】1、在18、29、45、30、17、72、58、43、75、100中,2的倍数有();3的倍数有();5的倍数有( ),既是2的倍数又是5的倍数有(),既是3 的倍数又是5的倍数有()。

2、用5、6、7这三个数字,组成是5的倍数的三位数是();组成一个是3的倍数的最小三位数是()。

【随堂练习】1、填空题(1)写出三个2的倍数的两位数:______________________。

(2)写出三个5的倍数:一位数__________,两位数__________,三位数__________。

2、判断题。

(1)既是2的倍数,又是5的倍数,个位上一定是0。

()(2)5的倍数都是奇数。

()(3)2.5×4=10,所以10是4的倍数,4是10的因数。

()(4)一个数的因数一定小于这个数的倍数。

()(5)一个数如果是9的倍数,就一定是3的倍数。

()3、选择题。

(1)既是2的倍数,又是5的倍数的最大两位数是()A.98B.95C.90(2)同时是2、3、5的倍数的数是()。

A、18B、120C、75D、830能力提升:1、用6、0、5三张数字卡片组成不同的三位数,分别满足一下条件,把这些数写出来。

小学质数和数知识点总结

小学质数和数知识点总结在小学的数学学习中,质数和数是一个重要的知识点,对于学生的数学基础建设至关重要。

下面将对小学生质数和数的知识点进行总结,以便对该知识点有一个更全面的了解。

一、质数的概念和性质1. 质数的概念质数是指除了1和它本身之外没有其他因数的正整数。

换句话说,如果一个数只能被1和自身整除,那么它就是质数。

2. 质数的性质(1)每一个大于1的整数,要么本身是质数,要么能够分解成几个质数的乘积。

(2)质数是无限多的,即质数之间没有规律可循。

(3)任何一个大于1的整数,都可以被唯一地分解成若干个质数的乘积。

二、数的整除性和质因数分解1. 整除性(1)整数a能被整数b整除,称a是b的倍数。

(2)如果一个数能够被另一个数整除,那么它是后者的倍数。

(3)如果一个数a能够被另一个数b整除,则称a能够被b整除,记作b|a。

2. 质因数分解(1)任何一个大于1的整数都可以唯一地分解成若干个质数的乘积。

(2)将一个数分解成若干个质数的乘积的过程称为质因数分解。

(3)对于一个合数而言,它的质因数分解是该合数的一个重要性质,质因数分解可以帮助我们更直观地了解一个数的性质。

三、常见的数和质数1. 奇数和偶数(1)奇数是指不能被2整除的数,它们的末位数字一定是1、3、5、7或9。

(2)偶数是指能够被2整除的数,它们的末位数字一定是0、2、4、6或8。

2. 质数和合数(1)质数只能被1和自身整除的正整数,例如2、3、5、7等。

(2)合数是除了1和其本身外,还有其他因数的正整数,例如4、6、8、9等。

四、如何判断一个数是不是质数1. 质数的判定(1)如果一个数n大于1且除了1和本身外,没有其他因数,那么它就是质数。

(2)要判断一个数是不是质数,只需要用这个数去除以小于它的所有质数,如果都不能整除,则它就是质数。

2. 举例:(1)判断7是不是质数,只需用7除以2、3、5,都不能整除,所以7是质数。

(2)判断10是不是质数,用10除以2、3、5,都能整除,所以10不是质数,是合数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【奇数.偶数.质数.合数知识点归纳】奇数和偶数知识要点::
1.偶数:自然数中,能被2整除的数叫做偶数。

2.奇数:自然数中,不能被2整除的数叫做奇数。

3.0也是偶数。

4.一个整数是偶数还是奇数,是这个整数自身的一种性质,这种性质,叫做奇偶
性。

5.在这一讲中,我们向大家介绍奇数和偶数的三个最常见的性质:
性质1:任何一个奇数一定不等于任何一个偶数。

性质2:相邻的两个自然数总是一奇一偶。

性质3:有趣的运算规律:
(1)偶数±偶数=偶数(2)奇数±奇数=偶数(3)偶数±奇数=奇数(4)偶数×偶数=偶数(5)偶数×奇数=偶数(6)奇数×奇数=奇数
★以上性质可以推广到“多个整数”的运算:
(1)任意个偶数之和或差,结果必是偶数;
(2)奇数个奇数之和或差,结果必是奇数;
(3)偶数个奇数之和或差,结果必是偶数;
(4)任意个奇数之积必是奇数;
(5)在连乘中,有一个或一个以上因数是偶数,其积必为偶数。

质数和合数知识要点
1、自然数按因数的个数来分:质数、合数、1、0四类.
(1)、质数(或素数):只有1和它本身两个因数。

(2)、合数:除了1和它本身还有别的因数(至少有三个因数:1、它本身、别的因数)。

(3)、1:只有1个因数。

“1”既不是质数,也不是合数。

注:①最小的质数是2,最小的合数是4,连续的两个质数是2、3。

②每个合数都可以由几个质数相乘得到,质数相乘一定得合数。

③ 20以内的质数:有8个(2、3、5、7、11、13、17、19)
④ 100以内的质数有25个:2、3、5、7、11、13、17、19、23、29、31、
37、41、
43、47、53、59、61、67、71、73、79、83、89、97
2、100以内找质数、合数的技巧:
看是否是2、3、5、7、11、13…的倍数,是的就是合数,不是的就是质数。

关系:奇数×奇数=奇数质数×质数=合数
3、常见最大、最小
A的最小因数是:1;最小的奇数是:1;
A的最大因数是:本身;最小的偶数是:0;
A的最小倍数是:本身;最小的质数是:2;
4、用短除法分解质因数(一个合数写成几个质数相乘的形式)。

例:
5、互质数:公因数只有1的两个数,叫做互质数。

两个质数的互质数:5和7
两个合数的互质数:8和9
一质一合的互质数:7和8
6、两数互质的特殊情况:
精品文档
⑴1和任何自然数互质;
⑵相邻两个自然数互质;
⑶两个质数一定互质;
⑷2和所有奇数互质;
⑸质数与比它小的合数互质;
一、填空。

1、最小的自然数是(),最小的质数是(),最小的合数是(),最小的奇数是()。

2、20以内的质数有(),20以内的偶数有(),20以内的奇数有()。

3、20以内的数中不是偶数的合数有(),不是奇数的质数有()。

4、三个连续奇数的和是87,这三个连续的奇数分别是()、()、()。

二、判断题,对的在括号里写“√”,错的写“×”。

(1)任何一个自然数,不是质数就是合数。

()(2)偶数都是合数,奇数都是质数。

()(3)7的倍数都是合数。

()(4)20以内最大的质数乘以10以内最大的奇数,积是171。

()(5)只有两个约数的数,一定是质数。

()(6)两个质数的积,一定是质数。

()(7)2是偶数也是合数。

()(8)1是最小的自然数,也是最小的质数。

()(9)除2以外,所有的偶数都是合数。

()(10)最小的自然数,最小的质数,最小的合数的和是7。

()(11)1既不是质数也不是合数。

()(12)个位上是3的数一定是3的倍数。

()(13)所有的偶数都是合数。

()(14)所有的质数都是奇数。

((15)两个数相乘的积一定是合数。


三、下面的数中,哪些是合数,哪些是质数。

1、13、24、29、41、57、63、79、87合数有:质数有:
四)写出两个都是质数的连续自然数。

五)写出两个既是奇数,又是合数的数。

六)在()内填入适当的质数。

10=()+()10=()×()20=()+()+()8=()×()×()
七)两个质数的和是18,积是65,这两个质数分别是多少?
八)一个两位质数,交换个位与十位上的数字,所得的两位数仍是质数,这个数是()。

九)用10以内的质数组成一个三位数,使它能同时被3、5整除,这个数最小是(),最大是()。

精品文档。

相关文档
最新文档