matlab实验十七__牛顿迭代法
MATLAB计算方法迭代法牛顿法二分法实验报告

完美WORD格式姓名实验报告成绩评语:指导教师(签名)年月日说明:指导教师评分后,实验报告交院(系)办公室保存。
实验一 方程求根一、 实验目的用各种方法求任意实函数方程0)(=x f 在自变量区间[a ,b]上,或某一点附近的实根。
并比较方法的优劣。
二、 实验原理 (1)、二分法对方程0)(=x f 在[a ,b]内求根。
将所给区间二分,在分点2a b x -=判断是否0)(=x f ;若是,则有根2a b x -=。
否则,继续判断是否0)()(<∙x f a f ,若是,则令x b =,否则令x a =。
否则令x a =。
重复此过程直至求出方程0)(=x f 在[a,b]中的近似根为止。
(2)、迭代法将方程0)(=x f 等价变换为x =ψ(x )形式,并建立相应的迭代公式=+1k x ψ(x )。
(3)、牛顿法若已知方程 的一个近似根0x ,则函数在点0x 附近可用一阶泰勒多项式))((')()(0001x x x f x f x p -+=来近似,因此方程0)(=x f 可近似表示为+)(0x f 0))(('0=-x x x f 设0)('0≠x f ,则=x -0x )(')(00x f x f 。
取x 作为原方程新的近似根1x ,然后将1x 作为0x 代入上式。
迭代公式为:=+1k x -0x )(')(k k x f x f 。
三、 实验设备:MATLAB 7.0软件四、 结果预测(1)11x =0.09033 (2)5x =0.09052 (3)2x =0,09052 五、 实验内容(1)、在区间[0,1]上用二分法求方程0210=-+x e x 的近似根,要求误差不超过3105.0-⨯。
(2)、取初值00=x ,用迭代公式=+1k x -0x )(')(k k x f x f ,求方程0210=-+x e x的近似根。
要求误差不超过3105.0-⨯。
matlab牛顿迭代法求方程

一、引言在数值计算中,求解非线性方程是一项常见的任务。
牛顿迭代法是一种常用且有效的方法,它通过不断逼近函数的零点来求解方程。
而在MATLAB中,我们可以利用其强大的数值计算功能来实现牛顿迭代法,快速求解各种非线性方程。
二、牛顿迭代法原理与公式推导1. 牛顿迭代法原理牛顿迭代法是一种利用函数的导数信息不断逼近零点的方法。
其核心思想是利用当前点的切线与x轴的交点来更新下一次迭代的值,直至逼近方程的根。
2. 公式推导与迭代过程假设要求解方程f(x)=0,在初始值x0附近进行迭代。
根据泰勒展开,对f(x)进行一阶泰勒展开可得:f(x) ≈ f(x0) + f'(x0)(x - x0)令f(x)≈0,则有:x = x0 - f(x0)/f'(x0)将x带入f(x)的表达式中,即得到下一次迭代的值x1:x1 = x0 - f(x0)/f'(x0)重复以上过程,直至达到精度要求或者迭代次数上限。
三、MATLAB中的牛顿迭代法实现1. 编写函数在MATLAB中,我们可以编写一个函数来实现牛顿迭代法。
需要定义原方程f(x)的表达式,然后计算其一阶导数f'(x)的表达式。
按照上述推导的迭代公式,编写循环语句进行迭代计算,直至满足精度要求或者达到最大迭代次数。
2. 调用函数求解方程在编写好牛顿迭代法的函数之后,可以通过在MATLAB命令窗口中调用该函数来求解具体的方程。
传入初始值、精度要求和最大迭代次数等参数,即可得到方程的近似根。
四、牛顿迭代法在工程实践中的应用1. 求解非线性方程在工程领域,很多问题都可以转化为非线性方程的求解问题,比如电路分析、控制系统设计等。
利用牛顿迭代法可以高效地求解这些复杂方程,为工程实践提供了重要的数值计算手段。
2. 优化问题的求解除了求解非线性方程外,牛顿迭代法还可以应用于优化问题的求解。
通过求解目标函数的导数等于0的方程,可以找到函数的极值点,从而解决各种优化问题。
MATLAB计算方法迭代法牛顿法二分法实验报告

MATLAB计算方法迭代法牛顿法二分法实验报告实验报告一、引言计算方法是数学的一门重要应用学科,它研究如何用计算机来解决数学问题。
其中,迭代法、牛顿法和二分法是计算方法中常用的数值计算方法。
本实验通过使用MATLAB软件,对这三种方法进行实验研究,比较它们的收敛速度、计算精度等指标,以及它们在不同类型的问题中的适用性。
二、实验方法1.迭代法迭代法是通过不断逼近解的过程来求得方程的根。
在本实验中,我们选择一个一元方程f(x)=0来测试迭代法的效果。
首先,我们对给定的初始近似解x0进行计算,得到新的近似解x1,然后再以x1为初始近似解进行计算,得到新的近似解x2,以此类推。
直到两次计算得到的近似解之间的差值小于规定的误差阈值为止。
本实验将通过对复杂方程的迭代计算来评估迭代法的性能。
2.牛顿法牛顿法通过使用函数的一阶导数来逼近方程的根。
具体而言,对于给定的初始近似解x0,通过将f(x)在x0处展开成泰勒级数,并保留其中一阶导数的项,得到一个近似线性方程。
然后,通过求解这个近似线性方程的解x1,再以x1为初始近似解进行计算,得到新的近似解x2,以此类推,直到两次计算得到的近似解之间的差值小于规定的误差阈值为止。
本实验将通过对不同类型的方程进行牛顿法的求解,评估它的性能。
3.二分法二分法是通过将给定区间不断二分并判断根是否在区间内来求方程的根。
具体而言,对于给定的初始区间[a,b],首先计算区间[a,b]的中点c,并判断f(c)与0的大小关系。
如果f(c)大于0,说明解在区间[a,c]内,将新的区间定义为[a,c],再进行下一轮的计算。
如果f(c)小于0,说明解在区间[c,b]内,将新的区间定义为[c,b],再进行下一轮的计算。
直到新的区间的长度小于规定的误差阈值为止。
本实验将通过对复杂方程的二分计算来评估二分法的性能。
三、实验结果通过对一系列测试函数的计算,我们得到了迭代法、牛顿法和二分法的计算结果,并进行了比较。
matlab(迭代法_牛顿插值)

实验报告内容:一:不动点迭代法解方程二:牛顿插值法的MA TLAB实现完成日期:2012年6月21日星期四数学实验报告一日期:2012-6-21hold on>> fplot(g,[-2,2])>> fplot(f,[-2,2])>> hold off>> grid输出结果如下所示:所以,确定初值为x0=1二:不断迭代算法:第一步:将f(x0)赋值给x1第二步:确定x1-x0的绝对值大小,若小于给定的误差值,则将x1当做方程的解,否则回到第一步编写计算机程序:clearf=inline('0.5*sin(x)+0.4');x0=1;x1=f(x0);k=1;while abs(x1-x0)>=1.0e-6x0=x1;x1=f(x0);k=k+1;fprintf('k=%.0f,x0=%.9f,x1=%.9f\n',k,x0,x1)end显示结果如下:k=2,x0=0.820735492,x1=0.765823700k=3,x0=0.765823700,x1=0.746565483k=4,x0=0.746565483,x1=0.739560873k=5,x0=0.739560873,x1=0.736981783k=6,x0=0.736981783,x1=0.736027993k=7,x0=0.736027993,x1=0.735674699k=8,x0=0.735674699,x1=0.735543758k=9,x0=0.735543758,x1=0.735495216k=10,x0=0.735495216,x1=0.735477220k=11,x0=0.735477220,x1=0.735470548k=12,x0=0.735470548,x1=0.735468074k=13,x0=0.735468074,x1=0.735467157>>。
MATLAB牛顿迭代法

MATLAB牛顿迭代法牛顿迭代法是一种求解函数零点的迭代方法,它通过初始点附近的切线与x轴的交点来逼近函数零点。
在MATLAB中,可以使用以下代码实现牛顿迭代法:function [x, iter] = newton_raphson(f, df, x0, tol,max_iter)% f: 目标函数% df: 目标函数的导数% x0: 初始点% tol: 迭代精度% max_iter: 最大迭代次数x = x0; % 初始化xiter = 0; % 初始化迭代次数while abs(f(x)) > tol && iter < max_iterx = x - f(x)/df(x); % 迭代公式iter = iter + 1; % 迭代次数加1endend这个函数接受目标函数f和它的导数df,以及初始点x0、迭代精度tol和最大迭代次数max_iter作为输入。
该函数返回最终的近似解x和迭代次数iter。
让我们来看一个例子,要求解方程x^2 - 2 = 0,我们可以编写以下代码:f = @(x) x^2 - 2; % 目标函数df = @(x) 2*x; % 导数函数x0 = 1; % 初始点tol = 1e-6; % 迭代精度max_iter = 100; % 最大迭代次数[x, iter] = newton_raphson(f, df, x0, tol, max_iter);fprintf('The solution is %f, found in %d iterations.\n', x, iter);在运行上述代码后,将输出以下结果:The solution is 1.414214, found in 13 iterations.这意味着,我们找到了方程x^2 - 2 = 0的近似解为1.414214,迭代了13次。
需要注意的是,牛顿迭代法并不是总是收敛的,它的收敛性与初始点选择有关。
matlab实现牛顿迭代法求解非线性方程组

matlab实现牛顿迭代法求解非线性方程组已知非线性方程组如下3*x1-cos(x2*x3)-1/2=0x1^2-81*(x2+^2+sin(x3)+=0exp(-x1*x2)+20*x3+(10*pi-3)/3=0求解要求精度达到————————————————————————————————首先建立函数fun储存方程组编程如下将保存到工作路径中:function f=fun(x);%定义非线性方程组如下%变量x1 x2 x3%函数f1 f2 f3syms x1 x2 x3f1=3*x1-cos(x2*x3)-1/2;f2=x1^2-81*(x2+^2+sin(x3)+;f3=exp(-x1*x2)+20*x3+(10*pi-3)/3;f=[f1 f2 f3]; ————————————————————————————————建立函数dfun用来求方程组的雅克比矩阵将保存到工作路径中:function df=dfun(x);%用来求解方程组的雅克比矩阵储存在dfun中f=fun(x);df=[diff(f,'x1');diff(f,'x2');diff(f,'x3')];df=conj(df');————————————————————————————————编程牛顿法求解非线性方程组将保存到工作路径中:function x=newton(x0,eps,N);con=0;%其中x0为迭代初值eps为精度要求N为最大迭代步数con用来记录结果是否收敛for i=1:N;f=subs(fun(x0),{'x1' 'x2' 'x3'},{x0(1) x0(2) x0(3)});df=subs(dfun(x0),{'x1' 'x2' 'x3'},{x0(1) x0(2) x0(3)});x=x0-f/df;for j=1: length(x0);il(i,j)=x(j);endif norm(x-x0)<epscon=1;break;endx0=x;end%以下是将迭代过程写入txt文档文件名为fid=fopen('','w');fprintf(fid,'iteration');for j=1:length(x0)fprintf(fid,' x%d',j);endfor j=1:ifprintf(fid,'\n%6d ',j);for k=1:length(x0)fprintf(fid,' %',il(j,k));endendif con==1fprintf(fid,'\n计算结果收敛!');endif con==0fprintf(fid,'\n迭代步数过多可能不收敛!');endfclose(fid);————————————————————————————————运行程序在matlab中输入以下内容newton([ ],,20)————————————————————————————————输出结果——————————————————————————————————————————在iteration中查看迭代过程iteration x1 x2 x3.mulStablePoint用不动点迭代法求非线性方程组的一个根function [r,n]=mulStablePoint(F,x0,eps)%非线性方程组:f%初始解:a%解的精度:eps%求得的一组解:r%迭代步数:nif nargin==2eps=;endx0 = transpose(x0);n=1;tol=1;while tol>epsr= subs(F,findsym(F),x0);%迭代公式tol=norm(r-x0); %注意矩阵的误差求法,norm为矩阵的欧几里德范数n=n+1;x0=r;if(n>100000) %迭代步数控制disp('迭代步数太多,可能不收敛!');return;endendx0=[0 0 0];[r,n,data]=budong(x0);disp('不动点计算结果为')x1=[1 1 1];x2=[2 2 2];[x,n,data]=new_ton(x0);disp(’初始值为0,牛顿法计算结果为:’)[x,n,data]=new_ton(x1);disp('初始值为1,牛顿法计算结果为:')[x,n,data]=new_ton(x2);disp ('初始值为2,牛顿法计算结果为:')function[r,n,data]=budong(x0, tol)if nargin=-1tol=1e-3:endx1=budong fun(x0);n=1;while(norm(x1-x0))tol)&(n500)x0=x1;x1=budong_fun(x0);n=n+1:data(:,n)=x1;endr=x1:function [x,n,data]=new_ton(x0, tol)if nargin=-1tol=1e-8;endx1=x0-budong_fun(x0)/df1(x0);n=1;while (norm(x1-x0))tol)x0=x1;x1=x0-budong_fun(x0)/df1(x0);n=n+1;data(:,n)=x1;endx=x1;function f=budong_fun(x)f(1)=3* x(1)-cos(x(2)*x(3))-1/2;f(2)=x(1)^2-81*(x(2)+^2+sin(x(3))+;f(3)=exp(-x(1)*x(2))+20* x(3)+10* pi/3-1; f=[f(1)*f(2)*f(3)];function f=df1(x)f=[3sin(x(2)*x(3))*x(3) sin(x(2)*x(3))*x(2)2* x(1)-162*(x(2)+cos(x(3))exp(-x(1)*x(2))*(-x(2))exp(-x(1)*x(2))*(-x(1))20]; 结果:不动点计算结果为r=+012*NaN -Inf初始值为0,牛顿法计算结果为:x=初始值为1,牛顿法计算结果为:x=初始值为2,牛顿法计算结果为:x=。
matlab牛顿迭代法算重根

一、简介Matlab是一种十分常用的科学计算软件,其功能强大,可以进行各种数值计算、数据分析和可视化操作。
而牛顿迭代法是一种用于求解方程的数值算法,可以有效地计算出函数的根。
本文将重点介绍如何使用Matlab进行牛顿迭代法来计算重根。
二、牛顿迭代法原理1. 牛顿迭代法是一种迭代逼近的方法,通过不断迭代得到更接近函数零点的近似值。
其公式如下:X_{n+1} = X_n - \frac{f(X_n)}{f'(X_n)}其中,X_{n+1}为下一次迭代的近似值,X_n为当前的近似值,f(X)为函数值,f'(X)为函数的导数值。
2. 牛顿迭代法的优点是收敛速度快,而缺点是对初始值的选择敏感,可能会产生不收敛的情况。
三、在Matlab中使用牛顿迭代法1. 在Matlab中,可以使用内置的函数`fzero`来进行牛顿迭代法的计算。
其语法如下:x = fzero(fun,x0)其中,fun为要求解的函数句柄,x0为起始点的初始值,x为函数的根。
2. 需要注意的是,在使用`fzero`函数时,需要提供函数的句柄,即在Matlab中定义要求解的函数,并使用`(x)`符号来表示函数的自变量。
另外,还需要提供初始值x0,可以根据具体问题来选择较为合适的初始值。
3. 以下是一个简单的使用牛顿迭代法求解函数根的示例代码:```matlabf = (x) x^3 - 2*x - 5;x0 = 2;x = fzero(f, x0);disp(x);```四、示例接下来,我们将通过一个具体的示例来演示如何使用Matlab的牛顿迭代法来计算重根。
1. 问题描述假设有如下方程:f(x) = x^3 - 2x^2 + 3x - 6我们希望使用牛顿迭代法来计算函数f(x)的重根。
2. 解决过程在Matlab中定义函数f(x):```matlabf = (x) x^3 - 2*x^2 + 3*x - 6;```选择初始值x0,并利用`fzero`函数进行牛顿迭代法的计算:```matlabx0 = 2;x = fzero(f, x0);disp(x);```3. 结果分析经过计算,可以得到函数f(x)的一个重根为x=2.这样,我们就成功地使用Matlab的牛顿迭代法来计算重根。
matlab牛顿迭代法求多项式方程的根

matlab牛顿迭代法求多项式方程的根【主题】matlab牛顿迭代法求多项式方程的根1. 引言在数学和工程领域中,求解多项式方程的根是一项常见且重要的任务。
牛顿迭代法是一种有效的数值方法,可以用来逼近多项式方程的根。
本文将详细介绍如何利用matlab实现牛顿迭代法,以及该方法的应用和局限性。
2. 牛顿迭代法简介牛顿迭代法是一种基于导数的数值逼近方法,用于求解方程 f(x)=0 的根。
该方法的基本思想是从一个初始近似值开始,通过逐步改进来逼近方程的根。
牛顿迭代法的迭代公式为:\[x_{n+1}=x_n-\frac{f(x_n)}{f'(x_n)}\]其中,\(x_n\)是第n次迭代的近似根,f(x)是方程,\(f'(x)\)是f关于x的导数。
3. 在matlab中实现牛顿迭代法在matlab中,我们可以利用函数和循环结构来实现牛顿迭代法。
需要定义方程f(x)以及其导数f'(x)的函数表达式。
选择一个初始值作为近似根,通过迭代公式不断改进,直到满足预设的精度要求。
4. 应用实例我们将以一个具体的多项式方程为例,来演示如何利用matlab的牛顿迭代法来求解其根。
假设我们要求解方程\(x^2-2=0\)的根。
我们可以定义方程及其导数的matlab函数表达式,然后选择一个适当的初始值,进行迭代计算,最终得到方程的根。
5. 算法优化与局限性虽然牛顿迭代法在求解多项式方程的根上表现出色,但也存在一些局限性。
需要提前知道方程的导数表达式;初始值的选取可能影响迭代结果的精度等。
在实际应用中,需要根据具体情况灵活选择迭代算法,甚至进行一些优化来提高求解效率。
6. 结语通过matlab实现牛顿迭代法求解多项式方程的根,不仅可以帮助我们深入理解数值计算方法,也可以应用到实际工程问题中。
对于复杂的多项式方程,利用数值方法求解是一种有效的途径。
当然,在应用过程中需要注意算法的优化和局限性,以确保求解的准确性和稳定性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验十七牛顿迭代法
【实验目的】
1.了解牛顿迭代法的基本概念。
2.了解牛顿迭代法的收敛性和收敛速度。
3.学习、掌握MATLAB软件的有关命令。
【实验内容】
用牛顿迭代法求方程3210
x x x
10-。
++-=的近似根,误差不超过3【实验准备】
1.牛顿迭代法原理
2.牛顿迭代法的几何解析
3.牛顿迭代法的收敛性
4.牛顿迭代法的收敛速度
5.迭代过程的加速
6.迭代的MATLAB命令
MATLAB中主要用for,while等控制流命令实现迭代。
【实验重点】
1.牛顿迭代法的算法实现
2.牛顿迭代法收敛性和收敛速度
【实验难点】
1.牛顿迭代法收敛性和收敛速度
【实验方法与步骤】
练习1用牛顿迭代法求方程3210
++-=在x=0.5附近的近似
x x x
根,误差不超过310-。
牛顿迭代法的迭代函数为
322()1()()321
f x x x x
g x x x f x x x ++-=-=-'++ 相应的MATLAB 代码为
>>clear;
>>x=0.5;
>>for i=1:3
>>x=x-(x^3+x^2+x-1)/(3*x^2+2*x+1)
>>end
可算的迭代数列的前3项0.5455,0.5437,0.5437。
经三次迭代,就大大超过了精度要求。
练习2 用牛顿迭代法求方程2(0)x a a =>的近似正实根,由此建立一种求平方根的计算方法。
由计算可知,迭代格式为1()()2a g x x x =+,在实验12的练习4中已经进行了讨论。
【练习与思考】
1.用牛顿迭代法求方程ln 1x x =的近似根。
2.为求出方程310x x --=的根,在区间[1,2]内使用迭代函数进行迭代,纪录迭代数据,问迭代是否收敛?对迭代进行加速,对比加速前的数据,比较加速效果。
3.使用在不动点*x 的泰勒公式,证明牛顿迭代法收敛原理。