特征函数(CharacteristicFunction)地性质

特征函数(CharacteristicFunction)地性质
特征函数(CharacteristicFunction)地性质

特征函数(Characteristic Function )的性质 1.;1)0(|)(|=≤??t

).0(11|||||)(|??==≤≤=E e E Ee t itX itX

2. )()(t t ??=-.

)()(t Ee e E Ee t itX

itX itX ??====--. 3. 若Y=aX+b, 其中a 和b 为常数,则

).()(at e t X ibt Y

??= 4. 若X 的l 阶矩存在,则

.1,|)(0l k EX i t dt

d k

k t k k ≤≤==?

k

k t itX k k t itX k k t k k EX i e X E i Ee dt

d t dt d ======000|)(||)(?. 注意求导和期望可交换的条件. 可利用特征函数求随机变量的各阶矩. 5. 特征函数具有一致连续性. ?

><>?>?M

x dx x p t s M ||)(..,0,0εε

?∞

=-=-+|)()1(||)()(|x dF e e

t h t

itx

ihx

??

?

∞∞

--≤)(|1|x dF e ihx

??

->-+-=M

M

M

x ihx

ihx

x dF e

x dF e

||)(|1|)(|1|

|||2

sin |2)(||1|2

/2

/2

/hx hx

e

e

e e ihx ihx ihx ihx

≤=-=--

x hx

e

e

e

e

ihx ihx ihx ihx ?≤=-=--,2|2

sin |2)(||1|2

/2

/2

/

?

?

>-+≤-+M

x M

M

x dF x dF x h t h t ||)(2)(|||)()(|??

?-+≤+≤M M

hM x dF hM εε22)(.

取,/M εδ

=则 对

任意实数t ,和),0(δ∈h 有

.3|)()(|ε??≤-+t h t

所以,特征函数是一致连续的. 引理:狄利克雷积分

).

(2

1

21

00

02

1)sin(1)(0a sign a a a dt t at a I =???

?

???<-=>==?∞+π 证明:

?

=

sin )(1

)(dt t

t

a sign a I π

以下证明

?

+∞

=0

2

sin π

du u u .

?+∞-=0

1ds e u us ?

??

??-+∞+∞-==T

us T

T us

ududs

e ds e u du u

u 0

00

00sin sin sin ?

+-++-+=0

2

22)cos sin 11(ds e T

s T T T s s s

?

+∞-++-=

22cos sin 2

ds e T

s T T T s s

π

s s T e e T s T T T s T s T T T s --∞→<++=++|cos sin |,0cos sin lim 2

222 2

sin lim 0

π

=?

∞→T

T du u u 。

Th 4.1.3(逆转定理)

设F(x)和)(t ?分别为随机变量X 的分布函数和特征函数,则对F 的任意两个连续点x 1

.)(21

lim

)()(2

112?---∞→-=-T

T

itx itx T dt t it

e e x F x F ?π

证明:记 ?---=

-T

T itx itx T dt t it e e J )(212

1?π

’则

?----=T T itX

itx itx T dt e it

e e E J 21

21π ?------=T

T

x X it x X it dt it

e e E )

()

(2121π

?----+--=T

x X it x X it x X it x X it dt

it e e e e E 0)

()

()

()(221121πdt t

t x X t x X E T ?---=021)sin()sin(1π )]()([2

1

lim 21x X sign x X sign E J T T ---=∞→. 不妨设x 1

??

?

??<<==><=---212

12

121210)()(x

X x x X or x X x X or x X x X sign x X sign

.

2

)

0()(2)0()()()0()]()([2

1

lim 11221221-+--+=--+=+==→∞x F x F x F x F x F x F x X P x X P J T T 若x 1和x 2 是F(x)的连续点,则定理得证.

Th (唯一性定理)分布函数有特征函数唯一确定。

证明:将分布函数的连续点集记为)(F C ,设)(t ?是)(x F 的特征函数.当)(,1F C x x ∈时,由反演公式

.)(21

lim

)()(2

112?---→∞-=-T

T itx itx T dt t it e e x F x F ?π

令1x 在)(F C 中趋于∞-,则有对)(2F C x ∈?,)(2x F 由)(t ?唯一确定。当)(F C x ?时,可令2x 在)(F C 中单调减的趋于x ,由)(x F 的右连续性可知,)(x F 由)(t ?唯一确定。

Th. 若特征函数)(t ?绝对可积,即

?

-∞

则其对应的分布函数)(x F 为连续型,且密度函数为

.)(21

)(?

--=

dt e t x p itx ?π

证明:对R a ∈?,令a b n ↓,根据反演公式有

?∞

∞--≤-+-≤dt t a b a b F n n |)(|22)0F(F(a))(0?π

由定理条件可知,2

)

0F(F(a))(-+-a b F n 单调减的趋于0,而根

据)(x F 的右连续性可知)()(a F b F n →,故有

).0()(,02

)0F(F(a))(-==-+-a F a F a a F 即

亦即)(x F 处处连续。

对0,≠?∈?x R x ,根据反演公式得

?∞

∞-?+--?-=

?-?+dt t x it e e x x F x x F x x it itx )(21

)()()

(?π

令0→?x 得到

)()()(x p x

x F x x F →?-?+;

itx

x x it itx e x it e e -?+--→?-)( 所以,

.)(21

)(?

--=

dt e t x p itx

二.多元特征函数 若n 维随机变量T n X X X ),...,(1=的分布函数为),...,,(21n x x x F ,则定义

其特征函数为

?

?

-∞

-∑=

==),...,(...)(11

n x t i

X

it x x dF e

Ee

t n

k k

k T ?

其中,.),...,,(21T n t t t t =也称为是随机向量T n X X X ),...,(1=的联合特

征函数.

Th1. 由随机向量T n X X X

),...,(1=的联合特征函数可求出任意个子

向量的边缘特征函数.例如

).0,...,,(),();0,...,0,()(2121,112

11

t t t t t t X X

X ????==

性质:

;),...,(),...,(;1)0(|),...,(|111n n n t t t t f t t ???=--=≤

0,...,011...1`1

11

1

1|),...,(......==+-

???∑==n n n

n

j j

n t t n n

k k k k k k n

k t t t t i

X EX ? 反演公式

n

n c c n

j j

b it a it

c c c c n n dt dt t t it e e

b X a b X a P j

j j

j n n

n ...),...,(...)2(1

...),...,(111

2

n 1111

1

1lim lim ?π?∏

?-=---∞

→∞

→-=

≤<≤<

Th2. 随机变量X 和Y 相互独立的充要条件为

)()(),(2121,t t t t Y X Y X ???=

三.n 元正态分布

随机向量,),...,(1T n X X =X 定义

,),...,(1T n EX EX EX =

T EX X EX X E X ))(()cov(--=

1. 设),1,0(~,,...,1N iid X X n 则其联合密度为

n

n

n n n R x x x x x x x f ∈?

?????++-=

),...,(,)...(21ex p )2(1),...,(1222212/1πEX=0,cov(X)=I n 密度函数又可写成

}21ex p{)

2(1)(2

/Ix x x f T

n -=π

称之为标准n 元正态分布。

Def 如果A 是n 阶非奇异阵,μ是n 维实向量,而随机变量X 服从n 元标准正态分布,则将随机变量

μ+=AX Y

所服从的分布成为n 元正态分布.

易证:0)cov(,>==T

AA Y EY μ.记

,T AA =∑用记号 ),(~∑μN Y 表示Y 服从参数是∑,μ的正态分布.

TH, n

元正态分布),(∑μN 的概率密度为

)}()(2

1

ex p{|

|)

2(1)(12

/12

/μμπ-∑--∑=

-x x x f T n .

Th. n 元正态分布),(∑μN 的特征函数为

n T

T

R t t t t i t ∈?∑-=},2

1exp{)(μ?

证明:首先,对服从标准多元正态分布的随机向量X,其特征函数为

};

21exp{}21exp{)(}exp{)(121

t t t t X it E t T n j j n

j j X T

i -=-===∑∏==??根据多元正态分布的定义,存在矩阵A ,使得T AA =∑,故所求特征函数为

}.

2

1exp{}

2

1exp{)()

(t t it t AA t e

Ee

e

Ee

t T

T

T T it AX

it it AX it T T T ∑-=-===T +μ?μ

μ

μ

Th. n 元正态分布 ),(∑μN 的任一k 维的边缘分布都是k 元正态分布,其中n k <≤1. 证明:,),...,,(),,(~21T

i i i k n k X X X X N X

=∑μ k

X 的特征

函数可以通过在X 的特征函数中令},...,,{,021k j j i i i t t ??=得到.有令},...,{,0;),...,(11k j X

it n X i i j t Ee

t t T ??==?

.

),...,(,),

()0,...,,...,0,,0(11

T i i X X is i X k k k

T k

i t t s s Ee

t t ===其中??

又根据}2

1exp{)(t t it t T

T

X ∑-=μ?,得到

.

,...,,...,,),...,(},2

1exp{)(11***

*

1列形成的矩阵行和第的第是其中

k k T i i T T

X i i i i s s is s k k ∑∑=∑-=μμμμ?另外,还可以证明多元正态分布的各种形式的条件分布还是正态分布.

Th 设),(~,...,,21∑μn n N X X X ,则它们相互独立的充要条件是它们

两两互不相关.

证明:必要性是显然的.下证充分性.

若n X X X ,...,,21两两互不相关,则,,0),cov(j i X X j i ≠?=即

},...,,{2211nn diag σσσ=∑,所以

∏∏∑=-=-==n

k

k X n

k

kk k k k k k kk k T

n t t t i t t i t t k ).

(}

21

exp{}21exp{),...,(2121?σμσμ?

由多元特征函数的性质可知n X X X ,...,,21相互独立.

Th 对于n 维正态随机向量),(~),(21∑=μN X X X

T T

T

,对∑和μ作相应

的分块

???

? ??∑∑

∑∑=∑???? ??=2221121121,

μμμ 则),,(~),,(~22211111∑∑μμN X N X 且.01221=∑相互独立的充要条件是

和X X

Th 多元正态分布经过任意的线性变换后依然服从多元正态分

布.X C Y N X n m m n ?=∑),,(~μ即若,则

).,(~T mn C C C N Y ∑μ

推论:

.

,I),N(~X Y ,0),,(~.12/-12/-1分量相互独立的即则Y N X μμ∑∑=>∑∑

).,(~),,(~.222I A N AX Y A I N X σμσμ=是正交阵,则

Th ).,(~,),(~1

a a a N X a R a N X T

T T n n ∑∈??∑?μμ

正切函数图像及性质

第14讲 正切函数的性质与图像 第一部分 知识梳理 1. 正切函数的图像 2. 正切函数 的性质 3. 函数tan()y A x ω?=+的周期为T πω = 第二部分 精讲点拨 考点1 正切函数的图像的应用 (1 ) 直线y a =(a 为常数)与正切曲线tan y x =相交的相邻两点间的距离是( ) .A π .B 2 π .C 2π D 与a 值有关 y

[].1EX 解不等式tan 1x ≥- 考点2 正切函数性质应用 (2)不通过求值,比较下列各组中两个正切函数值的大小 ①0 tan167与0 tan173; ② 11tan 4π??- ???与13tan 5 π ?? - ??? (3)求函数tan 2y x =的定义域、值域和周期,并且求出它在区间[],ππ-内的图像 考点3 利用整理的思想求函数的单调区间和定义域 【例2】 求函数tan()3 y x π =+的定义域,并讨论它的单调性 [].1EX 求函数3tan(2)4 y x π =-的单调区间

考点4 正切函数综合应用 【例3】试判断函数tan 1 ()lg tan 1 x f x x +=-的奇偶性 【例4】已知3 4 x π π -≤≤ ,2 ()tan 2tan 2f x x x =++,求()f x 的最大值与最小值,并且 求相应x 的值 第三部分 检测达标 一、选择题 1.函数)4 tan(π - =x y 的定义域是 ( ) A.{x R x x 且,|∈}Z k k ∈+ ≠,4 2π π B. {x R x x 且,|∈}Z k k ∈+≠,43ππ C. {x R x x 且,|∈}Z k k ∈≠,π D. {x R x x 且,|∈}Z k k ∈±≠,4 2ππ 2.若 ,2 4 π απ < <则( ) A .αααtan cos sin >> B .αααsin tan cos >> C .αααcos tan sin >> D .αααcos sin tan >>

高中数学对数函数及其性质(一)

课题:对数函数及其性质(一) 课 型:新授课 教学目标: 通过具体实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型.能够用描点法画出对数函数的图象.能根据对数函数的图象和性质进行值的大小比较.培养学生数形结合的意识.用联系的观点分析问题. 教学重点:对数函数的图象和性质 教学难点:对数函数的图象和性质及应用 教学过程: 一、复习准备: 1. 画出2x y =、1 ()2 x y =的图像,并以这两个函数为例,说说指数函数的性质. 2. 讨论:t 与P 的关系?(对每一个碳14的含量P 的取值,通过对应关系log P =, 生物死亡年数t 都有唯一的值与之对应,从而t 是P 的函数) 二、讲授新课: 1.教学对数函数的图象和性质: ① 定义:一般地,当a >0且a ≠1时,函数a y=log x 叫做对数函数(logarithmic function). 自变量是x ; 函数的定义域是(0,+∞) ② 辨析: 对数函数定义与指数函数类似,都是形式定义,注意辨别,如:22log y x =,5log (5)y x = 都不是对数函数, 而只能称其为对数型函数;对数函数对底数的限制 0(>a ,且)1≠a . ③ 探究:你能类比前面讨论指数函数性质的思路,提出研究对数函数性质的内容和方法吗? 研究方法:画出函数的图象,结合图象研究函数的性质. 研究内容:定义域、值域、特殊点、单调性、最大(小)值、奇偶性. ④ 练习:同一坐标系中画出下列对数函数的图象 x y 2log =;0.5log y x = ⑤ 讨论:根据图象,你能归纳出对数函数的哪些性质? 列表归纳:分类 → 图象 → 由图象观察(定义域、值域、单调性、定点) 引申:图象的分布规律? 2、总结出的表格

正切函数的图像和性质-公开课教案

正切函数的图像和性质-公开课教案

1.4.2 正切函数的性质与图象 考纲要求:能画出y=tanx的图象,了解三角函数的周期性.,理解正切函数在 区间()的单调性. 教学目的 知识目标:了解利用正切线画出正切函数图象的方法; 了解正切曲线的特征,能利用正切曲线解决简单的问题; 掌握正切函数的性质。 能力目标:掌握正弦函数的周期性,奇 偶性,单调性,能利用正切 曲线解决简单的问题。 情感目标:在借鉴正弦函数的学习方法研究正切函数图象、性质的过程中体会类比的思想。 教学重点:正切函数的图象形状及其主要性质 教学难点:1、利用正切线得到正切函数的图象 2、对正切函数单调性的理解 教学方法:探究,启发式教学 教学过程 复习导入: 1. 正切函数的定义及几何表 示,正切函数tan 的定义域是什么? y x 2. 正弦曲线是怎样画的? 讲授新课: 思考1:能否类比正弦函数图象的作法,画出正切函数的图象呢?

画正切函数选取哪一段好呢? 画多长一段呢? 思考2:正切函数是不是周期函数?若 是,最小正周期是什么? 思考3. 诱导公式 体 现了正切函数的哪种性质? (一)作tan y x =,x ∈?? ? ? ?-2 ,2ππ的图象 说明: (1)根据正切函数的周期性,把上述图 象向左、右扩展,得到正切函数 R x x y ∈=tan ,且()z k k x ∈+≠ππ 2 的图象,称“正切曲线”。 tan()tan x x -=-

(2)由图象可以看出,正切曲线是由被相 互平行的直线()2x k k Z ππ=+∈所隔开的无穷多支曲线组成的。 (二)正切函数的性质 引导学生观察,共同获得: (1)定义域:? ?? ? ??∈+≠z k k x x ,2 |ππ; (2)周期性:π=T ; (3)奇偶性:由()x x tan tan -=-知,正切函数是奇函数; (4)单调性: 思考:正切函数在整个定义域内是增函数

必修4正弦函数和余弦函数的图像与性质

必修4正弦函数和余弦函数的图像与性质 例1 用五点法做出下列函数的图像 11(1)2sin ,[0,2];(2)cos(),[,]666 y x x y x x ππππ=-∈=+∈- 例2 求下列函数的定义域和值域 (1)lgsin ;(2)y x y == 练:求函数sin ()log (12cos )x f x x =+的定义域。 例3 已知函数()y f x =的定义域是1 [0,]4 ,求下列函数的定义域 221(1)(cos );(2)(sin )2 f x f x - 例4 求下列函数的最大值与最小值 22(1)2sin();(2)2cos 5sin 4;42(3)3cos 4cos 1,[,]33 y x y x x y x x π ππ=--=+-=-+∈

例5 设1 sin sin 3x y +=,求2sin cos M x y =-的最小值和最大值 例6 求下列函数的值域 2cos 2sin cos (1);(2)2cos 11sin x x x y y x x ==++ 例7已知a 是实数,则函数f (x )=1+asinax 的图象不可能是( ) A . B . C . D . 例8 求下列函数的周期。 (1)|sin ||cos |;(2)cos |2|(3)cos()6y x x y x y x π =+==-- 例9 判断函数7())2f x x π =+的奇偶性 例10 判断函数()lg(sin f x x =+的奇偶性

例11求函数1sin 2 x y π-=的单调区间 提升训练题 1.下列四个函数的图像中关于y 轴对称的是( ) .sin ;.cos ;.1sin ;.cos()2 A y x B y x C y x D y x π ==-=-=- 2.函数sin 2x y =的单调增区间是( ) 3.[2,2]();.[2,2]()2222 .[2,2]();.[2,2]()A k k k Z B k k k Z C k k k Z D k k k Z π πππππππππππππ- +∈++∈-∈+∈ 3.下列函数中是奇函数的是( ) .|sin |;.sin(||);.sin ||;.sin ||A y x B y x C y x D y x x =-=-== 4.sin()3y x π =-的单调减区间是( ) 55.[,]();[2,2]()666677.[,]();.[2,2]();6666A k k k Z B k k k Z C k k k Z D k k k Z ππππππππππππππππ-+ ∈-+∈--∈--∈ 5.函数2cos 3cos 2y x =-+的最小值为______________________ 6.函数|sin |2x y =的最小正周期____________________ 7.cos1,cos2,cos3的大小关系____________________ 8.函数3cos 1cos 2 x y x += +的值域是____________________

凸函数的性质与应用

学院数学与信息科学学院 专业数学与应用数学 年级2009级 姓名zym 论文题目凸函数的性质与应用 指导教师555职称副教授成绩 2011 年06月10日

目录 摘要 (2) 关键词 (2) Abstract (2) Keywords (2) 前言 (2) 1 凸函数的定义 (2) 2 凸函数的性质 (4) 2.1f为I上凸函数的充要条件 (4) 2.2 f为区间I上的可导函数的相关等价论断 (4) 3凸函数的应用 (6) 参考文献 (7)

函数的性质与应用 学生姓名: *** 学号: 20095031390 数学与信息科学学院 数学与应用数学 指导教师: *** 职称: 副教授 摘 要:本文从凸函数的定义出发,总结了凸函数的性质与应用 关键词:凸函数;性质;应用 The properties and application of convex function Abstract: From the definition of convex function, summarizes the convex function of the properties and application. Key word: the definition of convex function; properties; application 前言 我们已经熟悉函数()2f x x =和()f x =的图象,它们不同的特点是:曲线 2y x =上任意两点间的弧段总在这两点连线的下方;而曲线y 则相反,任意两点间的弧段总在这两点连线的下方.我们把具有前一种特性的曲线称为凸的,相应的函数称为凸函数;后一种曲线称为凹的,相应的函数称为凹函数.下面通过一些例子来讨论凸函数的性质及应用,利用凸函数判断不等式的大小. 1 凸函数的定义 定义 1 设f 为定义在区间I 上的函数,若对I 上任意两点1x ,2x 和任意实数 ()0,1λ∈总有 ()()()()()121211f x x f x f x λλλλ+-≤+-, ()1 则称f 为I 上的凸函数.反之,如果总有 ()()()()()121211f x x f x f x λλλλ+-≥+-, ()2 则称f 为I 上的凹函数. 如果若()1、()2中不等式改为严格不等式,则相应的函数称为严格凸函数和严格

对数函数及其性质经典练习题

对数函数及其性质(一) 班级_____________姓名_______________座号___________ 1.函数f (x )=lg(x -1)+4-x 的定义域为( ) A .(1,4] B .(1,4) C .[1,4] D .[1,4) 2.函数y =x |x | log 2|x |的大致图象是( ) 3.若log a 2<1,则实数a 的取值范围是( ) A .(1,2) B .(0,1)∪(2,+∞) C .(0,1)∪(1,2) D .(0,12 ) 4.设a =2log 3,b =2 1log 6,c =6log 5,则( ) A .a <c <b B .b <c <a C .a <b <c D .b <a <c 5.已知a >0且a ≠1,则函数y =a x 与y =log a (-x )的图象可能是( ) 6.函数y =log 2x 在[1,2]上的值域是( ) A .R B .[0,+∞) C .(-∞,1] D .[0,1] 7.函数y =log 12(x -1)的定义域是________. 8.若函数f (x )=log a x (0≤???x x x x 则g [g (1 3)]=________. 10.f (x )=log 21+x a -x 的图象关于原点对称,则实数a 的值为________. 11.函数f (x )=log 12 (3x 2-ax +5)在[-1,+∞)上是减函数,求实数a 的取值范围.

正切函数的图像和性质

课题:正切函数的图象和性质 教学目的:1.会用单位圆中的正切线画出正切函数的图象。 2.理解正切函数的性质。 3.会用数形结合的思想理解和处理有关问题。 教学重点:正切函数的图象和性质。 教学难点:用单位圆中的正切线作正切函数的图象。 教学方法:探索+讲练结合 学法指导:学会用单位圆中的正切线画出正切函数的图象,探索性质,并会用性质解决相关问题。 教学过程 1.设置情境 前面我们学习了正弦、余弦函数的图像和性质,正切函数是不同于正弦、余弦函数的又一三角函数,我们今天要学习的就是正切函数的图象和性质。板书课题。 2.复习 请同学们回忆一下,我们是怎样利用单位圆中的正弦线作出x y sin =图像的. 回答后联想画正切函数的图像的方法。 3.新知传授: (1)在直角坐标系中,如果角α满足:)(2 ,z k k R ∈+≠∈ππ αα,那么,角α的终边与单位圆交于 点),(b a P ,唯一确定比值 a b ,根据函数的定义,比值a b 是角α的函数,我们把它叫作角α的正切函数,记作αtam y =,其中)(2 ,z k k R ∈+≠ ∈ππ αα。 αααcos sin tan = ,)(2 ,z k k R ∈+≠∈ππ αα由此可知,正弦、余弦、正切都是以角为自变量,以比值为函数值的函数。我们统称为三角函数。 正切线:在直角坐标系中,设单位圆与x 轴的交点为:)0,1(A ,任意角α的终边与单位圆交于点P ,过点)0,1(A 作x 轴的垂线,与角的终边或终边的延长线相交于T 点。AT 为正切线。如下图, 正切线是AT .(注意A 点的位置) (2)正切函数x y tan =的图象:

正弦函数的图像和性质(一)

正弦函数的图像和性质(一) 【使用说明】1.课前认真完成预习学案的问题导学及例题、深化提高; 2.认真限时完成,规范书写,课上小组合作探讨,答疑解惑。 【重点难点】重点:正弦函数的图像 难点:图像的画法 一、学习目标 1.了解正弦曲线的画法,能用五点法画出正弦函数的图像; 2.能通过函数图像对函数的性质做简单分析; 3.通过从单位圆和图像两个不同的角度去观察和研究正弦函数的变化规律,培养学生从不同角度观察、研究问题的思维习惯。 二、问题导学 1、函数的图像的画法: 描点法 步骤:列表→描点→连线 补全上述表格,并根据表格中数据在直角坐标系中画出的图像。 几何法 阅读教材25—26页内容,试借助于单位圆,利用正弦函数的定义画出的图像。 五点法

观察的图像,发现有五个点起着关键的作用,它们是图像与轴的交点和图像的最高点及最低点: ______,________,_________,________,__________. 因此,在精度要求不高的情况下,我们通常在直角坐标系中描出这起关键作用的五个点,然后用光滑的曲线连接,做出图像的简图。 请同学们用五点法画出的图像。 2、 因为正弦函数是以为周期的周期函数,所以函数在区间上的图像与在区间上的图像形状完全一样,只是位置不同,因此我们只需将函数的图像向左、向右平行移动(每次移动个单位)就可以得到的图像,正弦函数的图像叫做___________ 请同学们在几何法做出的图像的基础上,画出正弦曲线。 3、 合作探究 例1、用五点法画出下列函数在区间上的简图。 (1) (2) 例2、在上,利用的图像求满足下列不等式的的取值范围。 (1) (2)

对数性凸函数的性质及应用解读

对数性凸函数的性质及应用 王传坚 (楚雄师范学院数学系2003级1班) 指导老师郎开禄 摘要:在本文中,得到了对数性凸函数的四个性质,并讨论了对数性凸函数的性质的应用。 关键词:凸函数;.对数性凸函数; 基本性质; 应用. The research and application on some properties of logarithmatic convex function Wang Chuanjian (Department of Math, Chu Xiong Normal University, Chu Xiong,Yun Nan ,675000) Abstract: In this paper, the author gives some properties of logarithmatic convex function by studying the fundamental properties, and give some application about the properties of logarithmatic. Key Words:Convex Function; Logarithmatic Convex Function; Fundamental Property; Application. 导师评语: 凸函数是一类重要的函数,它有许多很好的性质,并有广泛的应用.在文[1]( [1] 刘芳园,田宏 根. 对数性凸函数的一些性质[J].《新疆师范大学学报》,2006,25(3):22-25.)中,刘芳园,田宏根 引入对数性凸函数的概念,研究获得了对数性凸函数的若干基本性质,并讨论了对数性凸函数基本性 质的一些应用. 受文[1]的启发,在文[1]的基础上,王传坚同学的毕业论文<<对数性凸函数的性性质及其应用>>进一步研究了对数性凸函数性质,获得了对数性凸函数的两个性质(推论1,推论2)和四个基本结果(定理3, 定理4, 定理5, 定理6),并讨论了对数性凸函数的性质及其应用. 王传坚同学的毕业论文<<对数性凸函数的性质及其应用>>选题具有理论与实 际意义,通过研究所获结果具有理论与实际意义.该论文的完成需要较好的数学分析基础,主要结果 的证明有一定的技巧,论文的完成有一定的难度,是一篇创新型的毕业论文.论文语言流畅,打印行文 规范.该同学在撰写论文过程中,悟性好,独立性强.

对数函数及其性质(一)[

2.2.2 对数函数及其性质(1) 教学目标: 1、理解对数函数的概念; 2、掌握对数函数的性质,了解对数学函数初步应用; 3、通过师生间,学生与学生之间互相交流,使学生逐步学会共同学习; 4、通过探究、思考、培养学生思维迁移能力和主动参予能力。 教学重点: 1、对数函数的定义、图象和性质; 2、对数函数性质的初步应用。 教学难点: 底数a 对对数函数性质的影响 教具准备:多媒体课件、投影仪 教学过程: 一、创设情景,引入新课 古谚云:一尺之木,日截其半,万世不竭……若设木长为x ,则其与经过的天数y 存在着一种关系,这个关系应如何表示呢? (师):则x 与y 的关系式为x=(2 1)y …… 那能否根据(*)式把经过天数y 表示出来?(学生讨论并回答) (师):经过的天数y 可以表示为y=2 1log x 研究发现:在关系式y=2 1log x 中,把木长x 看作自变量,则每一个确定x 值,都有唯一一个经过的天数y 的值与之对应,由函数的定义,经过的天数y 就可以看作木长x 的函数,这样的函数称作为对数函数,即为本节课所要研究的内容。 (引入新课,书写课题:对数函数) 二、讲解新课 (一)对数函数的概念 问题1.1:由实例一我们是不否能得到对数函数的一般式吗? 问题1.2 :y=x a log 式中的底数a 有什么具体限制条件吗?请给合指数式给以解释。

问题1.3:你能否根据指数函数的定义给出对数函数的定义吗? (生交流,师结合学生回答总结、归纳并多媒体显示对数函数定义) 定义:一般地,函数y=x a log (a>0,且a ≠1)叫做对数函数,由对数概念可知,对数函数y=x a log 的定义域是(0,+∞),值域为R 。 问题1.4:为什么对数函数的定义域是(0,+∞)? 问题1.5:函数y=x a log 和函数y=x a log (a>0,a ≠1)的定义域,值域之间有什么关系? (二)对数函数的图象和性质 (1)讨论对数函数的图象 1、利用“几何画板4.03”软件在同一坐标系中画出下列两组函灵敏图象并观察图象,探究它们之间关系。 (1)y=2x (2)y=x a log (3)y=(21)x y=x 21log 2、当a>0、a ≠1时,函数y=a x 、y=x a log 的图象之间有何种关系? (多媒体函数图像,提示(1)(2)两组图象之间的关系,由老师引导,学生讨论总结。) Ⅱ对数函数的性质 分析两组函数的图象,对照指数函数的性质,总结归纳对数函数性质。 (老师引导,学生相互讨论交流总结、归纳)

正弦函数的图像和性质(一)

x y 等分圆 平移三角函数线作正弦函数的图像 三角函数线 圆 O O 正弦函数的图像和性质(一) 【使用说明】1.课前认真完成预习学案的问题导学及例题、深化提高; 2.认真限时完成,规范书写,课上小组合作探讨,答疑解惑。 【重点难点】重点:正弦函数的图像 难点:x y sin =图像的画法 一、学习目标 1.了解正弦曲线的画法,能用五点法画出正弦函数x y sin =的图像; 2.能通过函数图像对函数的性质做简单分析; 3.通过从单位圆和图像两个不同的角度去观察和研究正弦函数的变化规律,培养学生从不同 角度观察、研究问题的思维习惯。 二、问题导学 1、函数] 2,0[ sinπ ∈ =x x y,的图像的画法: 补全上述表格,并根据表格中数据在直角坐标系中画出] 2,0[ sinπ ∈ =x x y,的图像。 ②几何法阅读教材25—26页内容,试借助于单位圆,利用正弦函数的定义画出 ] 2,0[ sinπ ∈ =x x y,的图像。 ③五点法 观察] 2,0[ sinπ ∈ =x x y,的图像,发现有五个点起着关键的作用,它们是图像与x轴的 交点和图像的最高点及最低点:______,________,_________,________,__________. 因此,在精度要求不高的情况下,我们通常在直角坐标系中描出这起关键作用的五个点,然 后用光滑的曲线连接,做出图像的简图。 请同学们用五点法画出] 2,0[ sinπ ∈ =x x y,的图像。 2、因为正弦函数是以π2为周期的周期函数,所以函数x y sin =在区间 )0 ] )1 2, 2[≠ ∈ +k Z k k k且 ( (π π上的图像与在区间] 2,0[π上的图像形状完全一样,只是位置 不同,因此我们只需将函数] 2,0[ sinπ ∈ =x x y,的图像向左、向右平行移动(每次移动π2 个单位)就可以得到R sin∈ =x x y,的图像,正弦函数的图像叫做___________ 请同学们在几何法做出的图像的基础上,画出正弦曲线。 三、合作探究 例1、用五点法画出下列函数在区间] 2,0[π上的简图。 (1)x y sin 3 =(2)x y sin -1 =

凸函数的性质及其在证明不等式中的应用

凸函数的性质及其在证明不等式中的应用 https://www.360docs.net/doc/6b10000189.html,work Information Technology Company.2020YEAR

凸函数的性质及其在证明不等式中的应用 数学计算机科学学院 摘要:凸函数是一类重要的函数.凸函数在不等式的研究中尤为重要,而不等式 最终归结为研究函数的特性,这就需要来研究凸函数了.本篇文章论述了凸函数、对数凸函数的定义、引理、定理和性质及其常用的一些判别方法(根据凸函数,对数凸函数的已知的定理、定义、性质,Jensen不等式等一些方法来判断函数是否是凸函数);本文还试就凸函数的等价定义、性质和在证明不等式中的应用等问题作一初步的探讨,以便进一步了解凸函数的性质及其在证明不等式时的作用;并浅谈了一下凸函数在不等式证明中的一些应用(如上述利用凸函数以及对数凸函数的定理,定义,性质,Jensen不等式来证明一些不等式),推广并证明了一些不等式(三角不等式,Jensen不等式等),得到了新的结果. 关键词:凸函数;对数凸函数;Jensen不等式;Hadamard不等式;应用 Nature of Convex Function and its Application in Proving Inequalities Chen Huifei, College of Mathematics and Computer Science Abstract : Convex function is a kind of important function. Convex function is particularly important in the study of the inequality, and the study of the inequality is reduced to study the characteristics of the convex function,which makes it necessary to study convex functions.We discuss definition, lemma, theorem and the nature of some commonly used discriminant methods of the convex function and the logarithmic convex function in this paper(According to known theorems, definitions, nature, Jensen inequality and other methods of convex function and the logarithmic convex function to recognize whether the function is a convex function); In this paper we also try to discuss the equivalent definition and nature of the convex function and the issue of its application in demonstration inequalities of convex function in order to have a better understanding of the nature and role of the convex function in proving inequalities; we also try to discuss some applications of convex function in proving inequalities(Convex function and the use of these convex function theorem, definition, nature, Jensen inequality to prove Inequality).

对数函数及其性质(1)

对数函数及其性质(1) (万宁中学吴刚) 一、教材分析 本小节选自《普通高中课程标准数学教科书-数学必修(一)》(人教A版)第二章基本初等函数(1)2.2.2对数函数及其性质(第一课时),主要内容是学习对数函数的定义、图象、性质及初步应用。对数函数是继指数函数之后的又一个重要初等函数,无论从知识或思想方法的角度对数函数与指数函数都有许多类似之处。与指数函数相比,对数函数所涉及的知识更丰富、方法更灵活,能力要求也更高。学习对数函数是对指数函数知识和方法的巩固、深化和提高,也为解决函数综合问题及其在实际上的应用奠定良好的基础。 二、学生学习情况分析 刚从初中升入高一的学生,仍保留着初中生许多学习特点,能力发展正处于形象思维向抽象思维转折阶段,但更注重形象思维。由于函数概念十分抽象,又以对数运算为基础,同时,初中函数教学要求降低,初中生运算能力有所下降,这双重问题增加了对数函数教学的难度。教师必须认识到这一点,教学中要控制要求的拔高,关注学习过程。 三、设计理念 本节课以建构主义基本理论为指导,以新课标基本理念为依据进行设计的,针对学生的学习背景,对数函数的教学首先要挖掘其知识背景贴近学生实际,其次,激发学生的学习热情,把学习的主动权交给学生,为他们提供自主探究、合作交流的机会,确实改变学生的学习方式。 四、教学目标 1.知识目标:使学生理解对数函数的定义并了解其图象的特征及对应函数性质; 2.能力目标:培养学生动手操作的能力以及自主探究数学问题的素养; 3.情感目标:构造和谐的教学氛围,增加互动,促进师生情感交流。 五、教学重点与难点 教学重点:掌握对数函数的图象和性质; 教学难点:是底数对对数函数值变化的影响。 六、教学准备 教师:将整个教学内容用几何画板制成课件。 学生:2~4人分成一组;科学计算器。 七、教学过程设计 教学流程:背景材料→引出课题→函数图象→函数性质→问题解决→归纳小结

正弦函数和余弦函数图像与性质

6、1正弦函数与余弦函数的图像与性质 一、复习引入 1、复习 (1)函数的概念 在某个变化过程中有两个变量x 、y ,若对于x 在某个实数集合D 内的每一个确定的值,按照某个对应法则f ,y 都有唯一确定的实数值与它对应,则y 就就是x 的函数,记作 ()x f y =,D x ∈。 (2)三角函数线 设任意角α的顶点在原点O ,始边与x 轴的非负半轴重合,终边与单位圆相交于点(,)P x y ,过P 作x 轴的垂线,垂足为M ;过点(1,0)A 作单位圆的切线,设它与角α的终边(当α在第一、四象限角时)或其反向延长线(当α为第二、三象限角时)相交于T 、 规定:当OM 与x 轴同向时为正值,当OM 与x 轴反向时为负值; 当MP 与y 轴同向时为正值,当MP 与y 轴反向时为负值; 当AT 与y 轴同向时为正值,当AT 与y 轴反向时为负值; 根据上面规定,则,OM x MP y ==, 由正弦、余弦、正切三角比的定义有: sin 1 y y y MP r α====; cos 1 x x x OM r α= ===; tan y MP AT AT x OM OA α= ===; 这几条与单位圆有关的有向线段,,MP OM AT 叫做角α的正弦线、余弦线、正切线。 二、讲授新课 【问题驱动1】——结合我们刚学过的三角比,就以正弦(或余弦)为例,对于每一个给定的 角与它的正弦值(或余弦值)之间就是否也存在一种函数关系?若存在,请对这种函数关系下一个定义;若不存在,请说明理由. 1、正弦函数、余弦函数的定义 (1)正弦函数:R x x y ∈=,sin ; (2)余弦函数:R x x y ∈=,cos 【问题驱动2】——如何作出正弦函数R x x y ∈=,sin 、余弦函数R x x y ∈=,cos 的函数 图象? 2、正弦函数R x x y ∈=,sin 的图像 (1)[]π2,0,sin ∈=x x y 的图像 【方案1】——几何描点法 步骤1:等分、作正弦线——将单位圆等分,作三角函数线(正弦线)得三角函数值; 步骤2:描点——平移定点,即描点()x x sin ,; 步骤3:连线——用光滑的曲线顺次连结各个点 小结:几何描点法作图精确,但过程比较繁。 【方案2】——五点法 步骤1:列表——列出对图象形状起关键作用的五点坐标;

凸函数的性质及其应用

摘要 高等数学的重点研究对象凸函数是数学学科中的一个最基本的概念。凸函数的许多良好性质在数学中都有着非常重要的作用。凸函数在数学,对策论,运筹学,经济学以及最优控制论等学科都有非常广泛的应用,现在已经成为了这些学科的重要理论基础和强有力的工具。 同时,凸函数也有一些局限性,因为在实际的运用中大量的函数并不是凸函数的形式,这给凸函数的运用造成了不便。为了突破其局限性并加强凸函数在实际中的运用,于是在60年代中期便产生了凸分析。 本文主要是研究凸函数在数学和经济学方面的应用,在数学方面,文主要探究了不等式的证明,看看它与传统方法比较哪个更为简洁;在经济学方面,主要介绍了凸函数的一些新的发展,即最优问题,该问题在投资决策中起到了非常重要的作用;最后简单的介绍了一下经济学中的有关Arrow-pratt风险厌恶度量的知识。 关键词:凸函数;不等式;经济学;最优化问题

Abstract Convex function, the main study object of higher mathematics, is one of the most fundamental concepts in mathematics. Many good properties of convex function have a very important role in mathematics. Convex function has a very wide range of applications in mathematics, game theory, operations research, economics and optimal control theory, and now has become the most important theoretical basis and the most powerful tool of these disciplines. Convex function has some limitations at the same time, because large numbers of functions are not convex functions in the practical application, which has caused inconvenience to the use of convex functions. In order to break its limitations and strengthen the use of convex function in practice, convex analysis was produced in the mid 60's. The paper is mainly study the applications of convex function in mathematics and economics. In mathematics, the paper mainly discusses the poof of inequality to see which is more simple compared with the traditional method. In the aspect of economics, the paper mainly introduces some new developments of convex functions, namely, optimal problems, which play an important role in the investment decision. Finally, the paper introduces the related knowledge of the Arrow-pratt risk aversion measure in economics simply. Key words:Convex function;Inequality;Economics;Optimization problem

对数函数及其性质知识点总结经典讲义

对数函数及其性质 相关知识点总结: 1.对数的概念 一般地,如果a x=N(a>0,且a≠1),那么数x叫做以a为底N 的对数,记作x=log a N.a叫做对数的底数,N叫做真数. 2. 对数与指数间的关系 3.对数的基本性质 (1)负数和零没有对数.(2)log a1=0(a>0,a≠1). (3)log a a=1(a>0,a≠1). 10.对数的基本运算性质 (1)log a(M·N)=log a M+log a N.(2)log a M N =log a M- log a N. (3)log a M n=n log a M(n∈R).

4.换底公式 (1)log a b=log c b log c a (a>0,且a≠1;c>0,且c≠1,b> 0).(2) 5.对数函数的定义 一般地,我们把函数y=log a x(a>0,且a≠1)叫做对数函数,其中x是自变量,函数的定义域是(0,+∞). 6.对数函数的图象和性质 a>10<a<1 图 象 性质 定义域(0,+∞) 值域 R 过定点(1,0),即当x=1时,y=0

单调性 在(0,+∞)上是增函数 在(0,+∞)上是减函数 奇偶性 非奇非偶函数 7.反函数 对数函数y =log a x (a >0且a ≠1)和指数函数y =a x (a >0且 a ≠1)互为反函数. 基础练习: 1.将下列指数式与对数式互化: (1)2 -2 =1 4 ; (2)102=100; (3)e a =16; (4)64-13=1 4 ; 2. 若log 3x =3,则x =_________ 3.计算: (1); (2) ; (3)2 4.(1) log 29 log 23 =________. (2)

凸函数的性质及其在证明不等式中的应用

凸函数的性质及其在证明不等式中的应用 数学计算机科学学院 摘要:凸函数是一类重要的函数.凸函数在不等式的研究中尤为重要,而不等式最终归结为研究函数的特性,这就需要来研究凸函数了.本篇文章论述了凸函数、对数凸函数的定义、引理、定理和性质及其常用的一些判别方法(根据凸函数,对数凸函数的已知的定理、定义、性质,Jensen不等式等一些方法来判断函数是否是凸函数);本文还试就凸函数的等价定义、性质和在证明不等式中的应用等问题作一初步的探讨,以便进一步了解凸函数的性质及其在证明不等式时的作用;并浅谈了一下凸函数在不等式证明中的一些应用(如上述利用凸函数以及对数凸函数的定理,定义,性质,Jensen不等式来证明一些不等式),推广并证明了一些不等式(三角不等式,Jensen不等式等),得到了新的结果. 关键词:凸函数;对数凸函数;Jensen不等式;Hadamard不等式;应用 Nature of Convex Function and its Application in Proving Inequalities Chen Huifei, College of Mathematics and Computer Science Abstract : Convex function is a kind of important function. Convex function is particularly important in the study of the inequality, and the study of the inequality is reduced to study the characteristics of the convex function,which

2.2.2 对数函数及其性质(1)

2.2.2对数函数及其性质(1) 教学目标 (一) 教学知识点 1. 对数函数的概念; 2. 对数函数的图像与性质. (二) 能力训练要求 1. 理解对数函数的概念; 2. 掌握对数函数的图像、性质; 3. 培养学生数形结合的意识. (三)德育渗透目标 1.认识事物之间的普遍联系与相互转化; 2.用联系的观点看问题; 3.了解对数函数在生产生活中的简单应用. 教学重点 对数函数的图像、性质. 教学难点 对数函数的图像与指数函数的关系. 教学过程 一、复习引入: 1、指对数互化关系: b N N a a b =?=log 2、 )10(≠>=a a a y x 且的图像和性质. 我们研究指数函数时,曾经讨论过细胞分裂问题,某种细胞分裂时,得到的细胞的个 数y 是分裂次数x 的函数,这个函数可以用指数函数y =x 2表示. 现在,我们来研究相反的问题,如果要求这种细胞经过多少次分裂,大约可以得到1万个,10万个……细胞,那么,分裂次数x 就是要得到的细胞个数y 的函数.根据对数的定义,这个函数可以写成对数的形式就是y x 2log =.

如果用x 表示自变量,y 表示函数,这个函数就是x y 2log =. 引出新课--对数函数. 二、新授内容: 1.对数函数的定义: 函数x y a log =)10(≠>a a 且叫做对数函数,定义域为),0(+∞,值域为),(+∞-∞. 例1. 求下列函数的定义域: (1)2log x y a =; (2))4(log x y a -=; (3))9(log 2x y a -=. 分析:此题主要利用对数函数x y a log =的定义域(0,+∞)求解. 解:(1)由2 x >0得0≠x ,∴函数2log x y a =的定义域是{}0|≠x x ; (2)由04>-x 得4-x 得-33<

相关文档
最新文档