汽车动力系统讲解
车辆系统动力学【可编辑全文】

可编辑修改精选全文完整版车辆系统动力学车辆系统动力学是一门涉及汽车系统的动力性研究的学科,旨在分析和模拟汽车的动力性能。
它是由应用力学和流体力学原理来研究动态特性,从而为汽车开发工程人员提供关键性信息和支持,以实现车辆系统的有效运行。
车辆系统动力学的研究分为两个主要方面:静动力学和结构动力学。
静动力学是研究汽车静力学和动力学系统,以及它们之间的相互作用。
静动力学的研究内容包括汽车的刚性构件的静力学计算,汽车转矩和加速度的动态测定,车辆悬架系统的构造、测量和控制,动力性能的行驶特性测定,以及汽车的操纵和漂移特性的研究。
结构动力学包括研究汽车结构,如悬架、底盘和发动机,以及这些系统的动态特性测定。
车辆系统动力学的研究可以分为三个主要领域:实验动力学、分析动力学和仿真动力学。
实验动力学主要负责试验机械结构以及机械系统的动力特性测定。
它可以分析出机械系统的动力特性,以及机械系统和动力学分析模型之间的关系。
分析动力学是通过数学分析的方法,计算和分析汽车的动力特性。
仿真动力学则使用计算机模拟技术,模拟汽车在不同行驶条件下的性能,并进行动力学和控制分析。
车辆系统动力学是一个复杂的研究领域,需要广泛的原理、理论和技术来支持。
它为车辆开发工程人员提供关键的研究信息,以便更好地了解汽车的动力性能,从而更好地解决汽车发动机、悬架和底盘等系统的限制问题,实现更低排放、更安全的汽车运行。
车辆系统动力学的研究目标是提高汽车的动力性能:提高燃油经济性、排放控制效果,降低汽车维护成本,延长汽车使用寿命,减少汽车故障发生率,并提高汽车在不同地形环境下的行驶质量。
未来,随着新技术的发展,车辆系统动力学的研究将不断进步,为汽车的改进和开发提供可靠的技术支持。
从而,车辆系统动力学是一门跨学科领域的非常重要的研究领域,它不仅涉及传统的汽车工程学科,还涉及力学、控制、物理、流体、电子、计算机等学科,是一门复杂而又有应用前景的学科。
因此,车辆系统动力学是汽车研发、维护和诊断的重要基础,也是汽车系统安全、经济、高效运行的关键。
纯电车动力系统原理

纯电车动力系统原理纯电车动力系统原理随着环保意识的提高,纯电车成为了新能源汽车市场上的主流之一。
与传统汽车不同,纯电车取消了内燃机和燃油系统,采用了电力驱动,因此具有零排放和低噪音的特点。
本文将从工作原理、主要部件等方面详细介绍纯电车动力系统原理。
工作原理纯电车动力系统的基本原理是通过电池组为车辆提供能量,经控制器控制电能流向电动机,从而实现车辆驱动。
电池组充电时,将外部电源的能量转化为电能存储在电池内;车辆行驶时,电池组将电能通过控制器输出给电动机,电动机转动车轮,驱动车辆行驶。
主要部件纯电车动力系统的主要部件包括电池组、电机和控制器。
其中,电池组是纯电车最核心的部件,它决定了车辆的续航能力和性能表现。
现阶段普遍采用的是锂离子电池,具有轻量化、高能量密度和长寿命等优点。
电机的作用是将电能转换为机械能,再传递到车轮,从而带动车辆运动。
纯电车常采用直流无刷电机,它具有高效率、低噪音、长寿命和易维护等特点。
控制器是纯电车动力系统的调度中心,它负责从电池组控制电能流向电机,以及控制电机的转速、转矩和制动等功能。
优缺点相对于传统汽车,纯电车具有诸多优点。
首先是零排放和低噪音,减少了环境污染和噪声干扰,更符合现代化都市发展的需要。
其次是高效节能,采用电能驱动远比燃油效率更高。
接着是运行成本低,电能价格相对稳定,保养、维护成本也比较低。
但是,纯电车也存在一些不足之处,主要表现为续航里程不够、充电时间长、电池寿命不尽人意等问题。
总结纯电车动力系统原理是以新能源汽车为代表的未来发展方向之一。
纯电车的广泛应用将促进社会经济的可持续发展,也需要各方共同努力解决其存在的问题。
动力系统

一、文章1总结1..纯电动车的动力系统主要包括动力电池、驱动电机以及传动系统。
动力电池:是电动汽车唯一的能量来源,同时也为电动汽车上其它电力装置提供电能。
驱动电机:是将动力电池的电能转化为机械能的装置。
传动系统:是将驱动电机的动力传送给车轮,从而使电动汽车运行。
2.电机的峰值功率选择::首先需要分别计算出电动汽车的最高车速、最大爬坡度以及加速时间三者所对应的功率,然后取最大值即为驱动电机的峰值功率。
表1 电机技术参数3.动力电池选择:动力电池的容量:电动汽车的续驶里程确定电池组容量。
电池组的总电压要大于等于电动机的额定电压。
二、文章2总结图1整车控制结构图图2:增程式纯电动车(混合动力汽车)动力系统工作模式(a)EV 模式:在电池电量充足时,发动发电机组不参与工作,车辆以动力电池组消耗能量的形式行驶,此时电池组的电量在不断消耗,即SOC 不断减少。
在这种运行模式下,车辆具有不可比拟的零排放性能和驾驶平顺性。
(b)串联驱动模式:在电池电量不足时,为了保证车辆性能和电池组的安全性,进入电量保持模式,发动机驱动整车行驶,当发动机不足以单独驱动车辆行驶时,动力电池提供功率需求不足的部分。
这种工作模式经常出现在高速行驶或中低速加速时。
(c)发电机组驱动行车发电模式:这种情况下,发动机单独驱动车辆行驶,发动机输出功率超出车辆需求的部分向动力电池充电,以此提高发动机工作效率和整车能量利用率。
(d)制动能量回收模式:当驾驶员踩下制动踏板或猛抬加速踏板时,整车进入制动能量回收模式,驱动电机进入发电状态,给动力电池组充电。
这种模式下,电制动和机械制动联合作用,二者的分配比例由整车行驶状态决定。
三、文章3总结电动车动力系统主要由驱动电机、动力电池、发电机和发动机组成。
驱动电机通过主减速器直接驱动车轮。
动力电池:是电动汽车唯一的能量来源,同时也为电动汽车上其它电力装置提供电能。
发动机和发电机组成APU 系统则为整车提供动力电池之外的能量需求。
汽车的整体结构及动力系统(PPT62页)

转向系 行驶系
传动系
制动系
3.车身 车身是驾驶员工作的场所,也是装载乘客和货物的场所。车身应为驾驶员提供方
便的操作条件,以及为乘客提供舒适安全的环境或保证货物完好无损。客车和轿车 是整体车身;普通货车车身由驾驶室和货箱组成。
4.电器设备 由电源和用电设备组成,包括发电机、蓄电池、起动系、点火系以及汽车
1、发动机放置以前后轴划分:
发动机整体在前轮轴前面的称为“前置发动机”(常用英文”F”表示),绝 大部分轿车都是前置发动机。
发动机整体在前后轴之间的称为“中置发动机”(常用英文”M”表示),很 多双座的超级跑车均采用这种布置方式,例如:兰博基尼LP640,法拉利F430等。
发动机整体在后轮轴后面的称为“后置发动机”(常用英文”R”表示),这 类车型比较少,典型代表车型就是保时捷911。
菲亚特500 前置发动机
布加迪威龙 中置发动机
保时捷911 后置发动机
前置发动机
• 前置发动机,即发动机位车前轮轴之前。前置发动机的优点是简化了
车子变速器与驱动桥的结构,特别是对于占绝对主流的前轮驱动车型 而言,发动机将动力直接输送到前轮上,省略了长长的传动轴,不但 减少了功率传递损耗,也大大降低了动力传动机构的复杂性和故障率。
1、汽车的整体结构 2、汽车动力系统
学习目标
1、认识汽车的整体结构 2、了解汽车各组成部分所处位置及作用 3、了解汽车动力装置的构造及原理 4、了解大学生方程式赛车动力系统设计要求
汽车通常由发动机、底盘、车身、电器设备四个部分组成
汽车四大组成部分
1、发动机
一
般
意
2、底 盘
义 四大基本组成部分
的 汽
(2)V型发动机 将所有汽缸分成两组,把相邻汽缸以一定夹角布置一起,使两组汽缸形成有一个夹角的平面,
汽车构造—动力系统

本
节
1、汽车动力性能指标五要素;
重
2、五要素对汽车有什么影响。
点
动力系统
汽车动力源—发动机
汽汽车车动动力力源源
发动机是汽车的“心脏”
≈
动力是操控性的根本,有了强劲、流畅的 动力输出,车辆才有资格谈操控性。
具体解释见备注
动力系统
汽车动力源
动力是如何传到车轮上滴……?
发动机 离合器 变速器 半轴 车轮
课 1、评价汽车动力性能指标有哪些呢? 后 作 2、爬坡度对汽车的越野性能是如何影响呢? 业 3、为什么同等排量柴油车要比汽油车动力好?
动力系统
柴油发动机
柴油发动机
福特2016款 2.2T 柴油手动 宝马X52017款 xDrive30d
动力系统
柴油发动机
柴油发动机
为什么同等排量柴油车要比汽油车动力好?
具体解释见备注
课 后 小 结
1、发动机是汽车的动力源; 2、汽车动力性能指标有:发动机气缸的数量、排量、马力、 扭矩、爬坡度 ; 3、汽车发动机常用气缸的数目为3、4、5、6、8、12和16。 其中般家用轿车发动机采用4缸,而8缸及以上的发动机则是被中 大型豪华轿车和超级跑车采用; 4、发动机的新技术主要有VVT-i、TSI等。目前纯电动汽车 属于新能源类,正处发展期间。
具体解释见备注
动力系统
排量
汽车动力性能指标
பைடு நூலகம்1.6L的排量
2.0L的排量
动力系统 汽车动力性能指标
排量
一汽大众速腾1.8TSI
T:是指涡轮增压
1.8T是多大排 量呢??
实际排量=1.8+1.8x0.3L,实际排量约等于2.4L。
电动汽车动力传动系的结构与工作原理

电动汽车动力传动系的结构与工作原理
电动汽车的动力传动系统由电动机、电池组和电控系统组成。
其工作原理如下:
1. 电动机:电动汽车采用交流电动机或者直流电动机作为动力源。
电动机通过
电能转化为机械能,驱动车辆前进。
电动机有多种类型,包括永磁同步电动机、异步电动机等。
2. 电池组:电池组是电动汽车的能量存储装置,通常采用锂离子电池或者镍氢
电池。
电池组将电能储存起来,供电给电动机使用。
电池组的电能储存能力决定了电动汽车的续航里程。
3. 电控系统:电控系统负责控制电动汽车的动力传递和能量管理。
它包括机电
控制器、电池管理系统、驱动控制系统等。
电控系统根据车辆的需求,控制电动机的输出功率和转速,以及管理电池组的充放电过程。
工作过程如下:
1. 驱动控制系统接收驾驶员的指令,包括加速、减速、停车等操作。
2. 驱动控制系统根据指令调节电动机的输出功率和转速。
通过改变电动机的电
流和电压,控制电动机的转矩和转速。
3. 电动机将电能转化为机械能,通过传动系统传递给车轮,驱动车辆前进。
4. 电池组提供电能给电动机。
当电池组的电能不足时,电动汽车需要进行充电,将电能存储到电池组中。
总之,电动汽车的动力传动系统通过电能转化为机械能,驱动车辆前进。
电池
组提供电能,机电控制器控制电动机的输出功率和转速。
电控系统实现对电动汽车的动力传递和能量管理的控制。
车辆系统动力学

2. 系统具有整体性
系统虽是由多种元素组成,但系统的性能不 是各元素性能的简单组合,而是相互影响的,所 以这种组合使系统的整体功能获得新的内容,具 有更高的价值。例如一辆汽车是由发动机、传动 系、车轮、车身、操纵系统组成。单有发动机只 能发出动力,不会自己行走,但当发动机装在具 有车轮的汽车底盘上,就成为可以行走的汽车, 成为一种交通工具,其功能就与一台发动机大不 相同。由此可见,研究系统特性应从整体的观点 来看。系统的性能是由其整体性能为代表,而不 是由某一个元素所能代替的。
4. 系统具有功能共性
系统中存在着物质、能量和信息的流动, 并与外界(环境)进行物质、能量和信息的交 流,既可以从外界环境向系统输入或从系统向 外界环境输出物质、能量和信息。这是任何系 统都具有的功能,称为系统的功能共性。如汽 车系统中把燃料的燃烧热能转换为汽车的行驶 动能,在这一过程中,发动机吸收氧气,而排 除废气。这一过程有能量的交流,也有物质的 交流。
第一章 绪论
• 1.1 系统与系统动力学的概念 • 1.2 汽车系统动力学的研究内容和特点 • 1.3 汽车系统动力学的研究方法
1.1 系统与系统动力学的概念
在我们真实的大千世界中,存在着许多由一组物 件构成,以一定规律相互联系起来的实体,这就是系 统,自然界就有太阳系、银河系这样的大系统,这种 系统是脱离人的影响而自然存在,称为自然系统,还 有如生物、原子内部也构成了自然系统,还有一种系 统是通过人的设计而形成的系统,称为人工系统,如 生产系统、交通运输系统、通信系统;人工组合和自 然合成的组合系统,如导航系统。 本文主要是研究人工的物理系统及其特性。 如果把汽车的构成看成是一大系统,那么这一系 统应表示为(如图1-1):
一个系统可能由若干个环节组成,画出各环节的 方框图,然后将这些方框图联系起来,就构成了系 统的方框图。因此,方框图是数学模型-传递函数 的图解化 。
新能源汽车的动力系统设计与优化

新能源汽车的动力系统设计与优化新能源汽车是未来汽车发展的趋势,因其环保、节能的特点,已成为汽车行业的热门领域。
而新能源汽车的核心技术之一即为动力系统。
新能源汽车的动力系统与悠久的汽车历史有着不同的设计理念和技术路线。
在这篇文章中,我们将探讨新能源汽车的动力系统设计和优化。
一、新能源汽车动力系统的特点新能源汽车的动力系统主要由电机、电池、电控系统组成,与传统燃油汽车的动力系统有很大的区别。
新能源汽车的动力系统的特点如下:1. 电动机功率高,马力强大。
相比传统汽车的发动机,电动机的功率更高,马力更大。
2. 电池续航能力强。
新能源汽车中的电池可以提供更长时间的驾驶里程,且可以快速充电,提高车主的使用便利性。
3. 动力系统工作效率高。
新能源汽车的动力系统通过优化的设计,可以提高动力系统的效率,减少能源的浪费,达到更佳的节能效果。
二、新能源汽车动力系统设计的关键1. 电池容量电池是新能源汽车最为重要的组成部分之一。
电池的容量越大,车辆的续航能力越强。
因此,在设计新能源汽车动力系统时,需要根据车辆的用途、车型和车重等因素综合考虑电池容量。
2. 电机功率电机是新能源汽车动力系统的重要组成部分,同时也是车辆提供动力的唯一来源。
电机功率的大小决定了车辆的加速性能和最高车速等关键指标。
在设计电机功率时,需要根据车辆的用途和性能需求,选择合适的电机类型和功率。
3. 电控系统设计电控系统是新能源汽车动力系统中至关重要的部件之一,它掌控整个动力系统的工作。
在电控系统的设计过程中,需要考虑到电机的功率、电池的容量、车辆的用途等因素,以确保整个动力系统的正常工作。
三、新能源汽车动力系统优化的措施新能源汽车动力系统的优化可以从以下几个方面入手:1. 电机转子材料选用电机转子是电机的重要组成部分之一,选用材料对电机性能的影响很大。
新材料的引入可以提高电机的效率和功率,从而提高整个动力系统的工作效率。
2. 电池技术提升随着科技的不断发展,新能源汽车的电池技术也在不断地提升。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.控制阀的结构与工作原理 2.控制阀的检修 3.控制阀的控制内容
1.控制阀的结构与工作原理
结 构:步进电动机型怠速
控制阀的结构结构如图a 所示,步进电机主要由转 子和定子组成,丝杠机构 将步进电机的旋转运动转 变为直线运动,使阀心作 轴向移动,改变阀心与阀座 之间的间隙。安装在节气 门上。
五、占空比控制电磁阀型怠速控制阀
1.控制阀的结构与工作原理 2.控制阀的控制内容 3.控制阀的检修
1.控制阀的结构与工作原理
结构如图,主要由控制阀、 阀杆、线圈和弹簧等组成。
工作原理:控制阀的开度
取决于线圈产生的电磁力大 小,与旋转阀型怠速控制阀 相同,ECU是通过控制输入 线圈脉冲信号的占空比来控 制电场强度,以调节控制阀 的开度,从而实现怠速空气 量的控制。
教学情境6 福特福克斯汽车发动机维护与检修
一、怠速控制系统的功能与组成 二、节气门直动式怠速控制器 三、步进电动机型怠速控制阀 四、旋转电磁阀型怠速控制阀 五、占空比控制电磁阀型怠速控制阀 六、开关型怠速控制阀
一、怠速控制系统的功能与组成
1.怠速控制系统的功能: 用高怠速实现发动机起动后 的快速暖机过程;自动维持发动 机怠速在目标转速下稳定运转。
A)节气门直动式 b)旁通空气式
1、节气门 2、进气管 3、节气门操纵臂 4、执行元件5、怠速空气道
二、节气门直动式怠速控制器
结构如图,主要由直流电动机、减速齿轮机构、 丝杠机构和传动轴等组成。
a)外形图
b)结构图
1、节气门操纵臂 2、怠速控制器 3、节气门体 4、喷油器 5、燃油压力调节器 6、节气门 7、防转六角孔 8、弹簧 9、直流电动机 10、11、13 、齿轮 12、传动轴 14、丝杠
2.控制阀的检修
(1)拆下控制阀线束连接器,点火开关置“ON”,不起动 发动机,分别检测B1和B2与搭铁间的电压,为蓄电池电压;
(2)发动发动机后在熄火。2~3s内在怠速控制阀附近应能
听到内部发出的“嗡嗡”响声;
(3)拆下控制阀线束连接器,测量B1与S1和S3、B2与S2
和S4之间的电阻,应为10~30Ω。
步进电动机的结构如图b
所示,主要由用永久磁铁
a)
制成有16个(8对)磁极的 1、控制阀 2、前轴爪 3、后轴承 转子和两个定子铁心组成 。46、 、密 线封 束圈 连接5器、丝8、杠转机构子 7、定子
b) 1 、 2— 线 圈 3— 爪 极 4.6—定子5—转子
工作原理
a)输入脉冲
b)工作过程
步进电动机的工作原理工作原理 如图,当ECU控制使步进电机的 线圈按1-2-3-4顺序依次搭铁时, 定子磁场瞬时针转动,由于与转 子磁场间的相互作用,使转子随 定子磁场同步转动。同理,步进 电动机的线圈按相反的顺序通电 时,转子则随定子磁场同步反转。 定子有32个爪级,步进电动机每 转一步为1/32圈,工作范围为0~ 125个步进级。
工作原理:
ECU控制旋转电磁阀型怠速控制阀工作时,控制 阀的开度是通过控制两个线圈的平均通电时间(占空 比)来实现的。
2.控制内容
包括起动控制、暖机控制、怠速稳定控制、怠 速预测控制和学习控制。
3.控制阀的检修
(1)拆下控制阀线束连接器,点火开关置“ON”,不起动发 动机,分别检测电源端子与搭铁间的电压,为蓄电池电压;
(2)发动机达到正常工作温度、变速器处于空挡位置时,使 发动机维持怠速运转,用专用短接线接故障诊断座上的TE1与E1 端子,发动机转速应保持在1000~1200r/min,5s后转速下降约 为200 r/min。
(3)拆下怠速控制阀上的三端子线束连接器,在控制阀侧分 别测量中间端子(+B)与两侧端子(ISC1和ISC2)的电阻应为 18.8 Ω ~22.8Ω。
下一页
原理:
当直流电动机通电转动时,经减速 齿轮机构减速增扭后,再由丝杠机构将 其旋转运动转换为传动轴的直线运动。 传动轴顶靠在节气门最小开度限制器上, 发动机怠速运转时,ECU根据各传感器 的信号,控制直流电动机的正反转和转 动量,以改变节气门最小开度限制器的 位置,从而控制节气门的最小开度,实 现对怠速进气量进行控制的目的。
四、旋转电磁阀型怠速控制阀
1.控制阀的结构与工作原理 2.控制阀的控制内容 3.控制阀的检修
1.控制阀的结构与工作原理
结构图
位置涂
原理图
1、控制阀 2、双金属片 3、冷却液腔 4、阀体 5、7、线圈6、永久磁 铁 8、阀轴 9、怠速空气口 10、固定销 11、挡块12、阀轴限位杆
结构如左图, ECU控制两个线 圈的通电或断开, 改变两个线圈产 生的磁场,两线 圈产生的磁场与 永久磁铁形成的 磁场相互作用, 可改变控制阀的 位置,从而调节 怠速空气口的开 度,以实现怠速 控制。
下一页
步进电动机型怠速控制阀电路(日本丰田皇冠3.0轿车)如图
所示。主继电器触点闭合后,蓄电池电源经主继电器到达怠速控 制阀的B1和B2端子、ECU的+B和+B1端子,B1端子向步进电动 机的1、3相两个线圈供电,B2端子向2、4相两个线圈供电。4个线 圈的分别通过端子S1、S2、S3和S4与ECU端子ISC1、ISC2、ISC3 和ISC4相连,ECU控制各线圈的搭铁回路,以控制怠速控制阀的 工作。
(4)拆下怠速电磁阀,将蓄电池正极接至B1和B2端子,负
极按顺序依次接通S1—S2—S3—S4端子时,随步进电动机的旋
转,控制阀应向外伸出,如图;若负极按反方向接通S4—S3—
S2—S1端子,则控制阀应向内缩回。
下一页
a)接蓄电池正极
b)接蓄电池负极
3.控制阀的控制内容
起动初始位置的设定 起动控制 暖机控制 怠速稳定控制 怠速预测控制 电器负荷增多时的怠速控制 学习控制
2.怠速控制系统的组成: 如图,主要由传感器、ECU、 和执行元件三部分组成。
1、冷却液温度信号 2、A/C开关信号3、空挡位 置开关信号 4、转速信号5、节气门位置信号 6、车速信号 7、执行元件
下一页
3.怠速控制的方法
怠速控制也就是对怠 速工况下的进气量进行控 制。控制基本类型有节气 门直动式和旁通空气式。 如右图