物化实验报告_纯液体饱及蒸气压的测定

物化实验报告_纯液体饱及蒸气压的测定
物化实验报告_纯液体饱及蒸气压的测定

一、实验目的

1.明确纯液体饱和蒸汽压和蒸汽压的概念及其与温度的关系,加深对劳修斯-克拉贝龙(Clausius-Clapeyron)方程式的理解。

2.掌握静态法测定纯液体饱和蒸汽压的原理及方法,并学会用图解法求纯液体的平均并学会由图解法求其平均摩尔气化热和正常沸点。

3.了解数字式低真空侧压仪=,熟悉常用的气压计的使用及校正的方法,初步掌握真空实验技术。

二、实验原理

在一定温度下(距离临界温度较远时),纯液体与其蒸气达平衡时的蒸气压称为该温度下液体的饱和蒸气压,简称为蒸气压。蒸发一摩尔液体所吸收的热量称为该温度下液体的摩尔气化热。液体的饱和蒸气压与温度的关系用克劳修斯-克拉贝龙方程式表示:

式中,R为摩尔气体常数;T为热力学温度;Δvap H m为在温度T时纯液体的摩尔气化热。

在温度变化范围不大时,Δvap H m可以近似作为常数,积分上得:

由此式可以看出,以ln p对作图,应为一直线,直线的斜率为m= ,由

斜率可求算液体的Δvap H m=-Rm

当液体的饱和蒸汽压登月外界压力时,液体沸腾,此时的温度即为该液体的沸点,当外压为1atm(1.01325kPa)时,液体的沸点成为正常沸点。

测定液体饱和蒸气压的方法很多。本实验采用静态法,是指在某一温度下,直接测量饱和蒸气压,此法一般适用于蒸气压比较大的液体。实验所用仪器是纯液体饱和蒸气压测定装置,如图Ⅲ-3-1所示。

平衡管由A球和U型管B、C组成。平衡管上接一冷凝管5,以橡皮管与压力计相连。A 内装待测液体,当A球的液面上纯粹是待测液体的蒸气,而B管与C管的液面处于同一水平时,则表示B管液面上的(即A球液面上的蒸气压)与加在C管液面上的外压相等。此时,体系气液两相平衡的温度称为液体在此外压下的沸点。用当时的大气压减去压力计两水银面的高度差,即为该温度下液体的饱和蒸气压。

四、实验步骤

1.将纯水倒入等压计中

(这部分已由老师装置完毕)

检查U形管两边处于同一水平,水面接近B球底部位置。

2.系统气密性检查

关闭直通活塞,旋转三通活塞使系统与真空泵连通,开动真空泵,抽气减压至汞压力计两臂汞面压差为-53.3kPa(400mmHg)时,关闭三通活塞,使系统与真空泵、大气皆不通。观察压力计示数,如果在3分钟内示数维持不变,则表明系统不漏气。否则应逐段检查装置每个部分,消除漏气原因。

3.排除管内的空气

先将恒温槽温度调至40o C接通冷凝水,抽气降压至液体轻微沸腾,此时弯管内的空气不断随蒸气管逸出(速度不宜过快,若过快可适当打开漏入空气,但不应使空气倒灌),如此沸腾3分钟,可认为空气被排除干净。

4.饱和蒸气压的测定

当空气被排除干净,且体系温度恒定后,打开直通活塞缓缓放入空气(切不可太快,以免空气倒灌入弯管中,如果发生空气倒灌,则须重新排除空气),直至B管、C管中液面平齐,关闭直通活塞,立即记录此时的温度与压力差(如果放入空气过多,C管中液面低于B 管的液面,须再缓慢抽气,再调平齐)。

然后,将恒温槽温度升高5℃,因温度升高后,液体的饱和蒸气压增大,液体会不断沸腾。为了避免B、C管中液体大量蒸发,应随时打开直通活塞缓缓放入少量空气,保持 C管中液面相对平静。当体系温度恒定后,再次放入空气使B、C管液面平齐,记录温度和压差。然后依次每升高5℃,测定一次压差,总共测7个值。

五、实验记录和数据处理

1、记录:将测得数据计计算结果列表:

室温:24.4o C 气压计读数:102.600kPa 校正后压强102.217kPa

次数温度t/℃1/T 压强差△p/kPa压强p/kPa lnp

1 40.1 0.003192338 -94.35 7.867 2.062676795

2 45.08 0.003142381 -92.22 9.997 2.302285048

3 50.15 0.003093102 -89.57 12.647 2.537420033

4 55.06 0.00304683 -86.33 15.887 2.765501165

5 60.09 0.00300084 -82.11 20.107 3.001068013

6 65.18 0.002955694 -77.1 25.11

7 3.223544908

7 70.09 0.002913413 -71.1 31.117 3.437754294 2、根据实验数据作出lgP—1/T图,根据斜率求出摩尔汽化热△vap H与正常沸点。

纯水的正常沸点为在一个大气压下,(101.3kPa)下的沸点。由上面的回归方程可知,T正常=374.10K=100.95o C

△vap H m=-Rm=41.04KJ

3、计算T正常、△vap H m的相对误差,并对数据结果进行讨论。

T正常相对误差E t=(374.10-373.15)/373.15×100%=0.25%

△vap H m相对误差E t=(41.04-40.63)/40.63×100%=1.01%

六、讨论与思考

1、根据测量数据,将校正压力p取对数值lnp作为纵坐标,以开氏温度倒数1/T作为横坐标,绘制散点图。由出lnp-1/T关系图可以看出,直线相关性较高,线性较好,因而斜

率m较为准确,可以用于进行平均摩尔汽化热△vap H m与正常沸点T正常的代入计算。通过计

算结果,并与参考文献数值比较,相对误差比较小,因此实验数据较为完好。

2、实验过程中,进行了两次。第一次实验相对失败,由于在空气漏入时没有控制得当,导致U形管中过多的水倒灌入A球,以至于U形管液面过低难以读数,且空气进入馆内,气密性受到影响,实验不能进行下去。

3、在更换了仪器之后,重新开始进行实验。后续进行较为顺利。但在U形管调节过程中,难以控制恰好两边平衡,且平衡后因A球内水继续沸腾液面依然会出现差值。故实验中在调节时适当预留液面差,待A球内沸腾后渐渐平衡液面差,则左右液面恰好接近持平。通过多次实验总结经验,掌握了该方法后实验速度较快提高。

4、参见数据。纯水的平均摩尔汽化热比文献值要略高,主要原因为该参数是温度的函数,随着温度变化而变化。实验平均温度约55.1℃,比原定平均温度55℃,因此比文献值略高。而正常沸点是在101.325kPa下,而本次实验的大气压校正后较标准大气压偏大,因此测得沸点较文献值高。

六、提问与思考

1、什么是液体的饱和蒸汽压?什么叫正常沸点?液体的沸点与外压有何关系?

在密闭条件中,在一定温度下,与固体或液体处于相平衡的蒸气所具有的压力称为饱和蒸气压;在外压为一个大气压的时候液体的沸点称为正常沸点;液体沸点随着外压增大而增大。

2、本实验方法能否用于测定其它溶液的蒸汽压?为什么?

视具体情况而定,一般不可以。因为溶液浓度随着溶剂的蒸发而增大,蒸汽压也因此变化,故难以测量准确。

3、等压计U形管液体有什么作用?冷凝器有什么作用?

U形管中液体可以用于指示管内蒸汽压与外压平衡的指标,用于等效测量管内气压;用于冷凝蒸汽,防止蒸汽被抽入真空泵中。

4、怎样从数字式低真空测压仪示数得出纯液体饱和蒸汽压?

通过U形管两边持平,等效地读出外压即等于液体饱和蒸汽压。

5、能否在加热情况下检查是否漏气?

不能。加热过程中温度不能恒定,气-液两相不能达到平衡,压力也不恒定

6、实验中为什么要防止空气倒灌?

若发生倒灌则管内不再是纯液体的蒸汽,测量的将不是纯液体蒸汽压。

7、实验时抽气和漏入空气的速度应如何控制?为什么?

不论抽气还是漏入空气都应该尽可能地慢,防止气压变化过大在管中变化过于明显,导致出现倒灌或者爆沸的现象

8、实验时大烧杯中的水为什么一定要淹没等压计的U形管?

保证整个体系处于同一恒温状态,使得U形管左右两边温度相等,才能用外压等效处理为U

形管内饱和蒸汽压强。

雷诺校正:消除体系与环境间存在热交换造成的对体系温度变化的影响。

五、数据记录

1. 室温、样品质量和剩余燃烧丝质量

室温: 25.50°C 大气压: 101.200Kpa

物质点火丝/g 点火丝+样品/g 样品/g 总剩余/g 剩余点火丝/g

苯甲酸(1) 0.0116 0.6542 0.6426 0.0077 0.0077 萘0.0112 0.7059 0.6947 0.0053 0.0053 苯甲酸(2) 0.0123 0.5167 0.5044 0.0036 0.0036

2、热计常数C计算

由图得:苯甲酸(1) △T=1.083533℃苯甲酸(2) △T=0.7907℃

苯甲酸恒容摩尔燃烧热为-3226.9kj/mol Δn=7-15/2=-0.5mol

由Qv=Qp-ΔnRT => Qv=-3.2256*10^3kJ/mol

再由 -nQv,m - m’点Q点 = CΔT =>

,

nQ

-

T

m

Q

m

v

C

?

?

-

=

分别代入苯甲酸(1)及苯甲酸(2)的Δt解出C求出平均值

C1=15.68394845 C2=16.89593527

∴C= 16.28994186 kJ/℃

3、萘的恒容燃烧热Qv,m及恒压燃烧热Qp,m计算

同理由 -nQv,m - m’点Q点 = CΔT => Qv,m = -( CΔT - m’点Q点)/n

解得 Qv = -5190.669045 KJ/mol

由Qp = Qv +ΔnRT

Qp =-5195.644641 KJ/mol

文献值Qp = -5153.8 KJ/mol

故相对误差为: 0.812%

七、分析与讨论

1、本次实验中,氧弹卡计绝热性能一般,经过雷诺校正后校正值与测量值有较大差别。而雷诺校正使用的方法为图解法,很大部分的数值通过观察所得,因此即使保证较为准确的情况下依然存在较大误差。此为仪器造成的误差以及校正方法上的误差,难以消除。

2、在实验过程中,尤其在进行苯甲酸的压片过程,由于苯甲酸晶体结构较为难以压实,有相当部分脱落,导致称量实际样品质量相对不足。尤其第三组数据中,由于苯甲酸的量过少,反应中温度升高较少,导致进行水的热计常数C测量误差较大,也是本次实验误差较大的一个主要原因之一。在舍弃第三组数据后,热计常数误差相对变小,但仍然较大,出于实验的严谨性,故保留第三组数据。

3、本次实验测得恒压摩尔燃烧热(即反应焓)的数据偏高,主要因为测量前面提及的水的

热计常数偏大(原因已在前面分析),导致最终结果偏高。

4、其它实验因素,如点火丝部分氧化、充气放气不充分等原因导致燃烧不充分,氧弹卡计密封性不足(在密闭之后浸泡入水中有漏气现象),导致测试结果中出现误差,由于原因过多且复杂,因此不逐一分析。

八、思考题

1、什么是燃烧热?它在化学计算中有何应用?

在101 kPa时,1 mol可燃物完全燃烧生成稳定的化合物时所放出的热量,叫做该物质的燃烧热.单位为kJ/mol。反应热中ΔH为负,则为放热反应;为正,则为吸热反应,燃烧热为反应热的一种,其ΔH为负值含相同碳原子数的烷烃异构体中,直链烷烃的燃烧热最大,支链越多燃烧热越小。

2、什么是卡计和水的热当量?如何测得?

卡计和水当量就是量热仪内筒水温每升高一度所吸收的热量。单位是:焦耳/度测法:用已知燃烧焓的物质,放在量热计中燃烧,测量其始、末温度,经雷诺校正后,按下式:-nQv,m - m’点Q点 = CΔT即可求出。

3、测量燃烧热两个关键要求是什么?如何保证达到这两个要求?

实验关键:点火成功、试样完全燃烧是实验成败关键,

可以考虑以下几项技术措施:

(1)试样应进行磨细、烘干、干燥器恒重等前处理,潮湿样品不易燃烧且有误差。压片紧

实度:一般硬到表面有较细密的光洁度,棱角无粗粒。

(2)点火丝与电极接触电阻要尽可能小,注意电极松动和铁丝碰杯短路问题。

(3)充足氧(1-1.5MPa)并保证氧弹不漏氧,保证充分燃烧。

(4)注意点火前才将二电极插上氧弹再按点火钮,否则因仪器未设互锁功能,极易发生(按

搅拌钮或置0时)误点火,样品先已燃烧的事故。

4、实验测量到的温度差值为何要雷诺作图法校正,还有哪些误差来源会影响测量的结果?

实际上,热量计与周围环境的热交换无法完全避免,它对温度测量值的影响可用雷诺温度校正图校正。

还可能带来误差的可能有:

(1)实验过程中的系统误差;

(2)可能与当天的温度和气压有关;

(3)样品可能受潮使称量时产生误差;

(4)样品可能中

可能含有杂

质。

氯化钾(3)

m=4.1791g

t=22.80℃

校正后

△T=1.2079℃硝

酸钾(1)

m=5.6662g

t=22.20℃

校正后

△T=2.3020℃

六、数据记录

1# 2# 3# 4#

0.602 0.388 0.214 0.162

0.606 0.396 0.211 0.158

0.604 0.394 0.21 0.162

0.604 0.393 0.212 0.161

六、数据处理与讨论

条件:恒温27.1℃氢离子浓度0.15mol/L 总离子强度I=0.7 波长λ=450nm 项目1# 2# 3# 4# 消光度E1(平均)0.604 0.392666667 0.211666667 0.160666667 Ei/E1 1 0.650110375 0.350441501 0.266004415 [FeCNS2+]1,e0.0002 0.000130022 7.00883E-05 5.32009E-05

[Fe3+] 0.0498 0.009869978 0.002929912 0.001946799 [CNS-]i,e0 6.99779E-05 0.000129912 0.000146799 Kc N/A 188.2521094 184.1377069 186.1548076 Kc平均值N/A 186.1815413

相对误差N/A 0.011121232 -0.010977643 -0.000143589 通过实验数据,在不同浓度的溶液下,[Fe3+]与[CNS-]在水溶液中生[FeCNS2+]反应的平衡常数基本维持于186附近,相对误差非常少,处于可以接受范围内。与参考文献数值K=1.9953(lgK1=2.3 北师大无机化学4版附录)接近,总体符合实验要求。

七、提问与思考

1、当[Fe3+]与[CNS-]浓度较大时,将不再能够用公式[FeCNS2+]1,e=E1/E1[CNS-]0计算[FeCNS2+]反应的平衡常数,因为当[CNS-]浓度较大时,则[FeCNS2+]1,e≠[CNS-]0 则E1≠K[CNS-]0,因此该等式将不再成立。

2、经实验验证结果,平衡常数与反应各个时候的浓度均无关系。

3、由于Fe3+离子在水溶液中,存在水解平衡,所以Fe3+离子与SCN-离子的实际反应很复杂,其机理为:

当达到平衡时,整理得到

由上式可见,平衡常数受氢离子的影响。因此,实验只能在同一pH值下进行。本实验为离子平衡反应,离子强度必然对平衡常数有很大影响。所以,在各被测

溶液中离子强度应保持一致。

4、为了消除除了测量物质外溶剂中有其它吸光物质对该波长的光有吸收而造成误差,因此必须使用除被测物质外其它组分完全一致的溶液作为空白对比液,在722型分光光度计中进行调100设置,确保抵消误差。

【实验目的】

①测定环己烷的凝固点降低值,计算萘的分子量。

②掌握溶液凝固点的测定技术。

③技能要求:掌握冰点降低测定管、数字温差仪的使用方法,实验数据的作图处理方法。

【实验原理】

1、凝固点降低法测分子量的原理

化合物的分子量是一个重要的物理化学参数。用凝固点降低法测定物质的分子量是一种简单而又比较准确的方法。稀溶液有依数性,凝固点降低是依数性的一种表现。稀溶液的凝固点降低(对析出物是纯溶剂的体系)与溶液中物质的摩尔分数的关系式为:

ΔT f = T f *

- T f = K f m B (1)

*式中,T f *

为纯溶剂的凝固点,T f 为溶液的凝固点,m B 为溶液中溶质B 的质量摩尔浓度,K f 为溶剂的质量摩尔凝固点降低常数,它的数值仅与溶剂的性质有关。 已知某溶剂的凝固点降低常数K f,并测得溶液的凝固点降低值ΔT ,若称取一定量的溶质W B (g)和溶剂W A (g),配成稀溶液,则此溶液的质量摩尔浓度m B 为:

3A

B B

B 10W M W m ?=

mol/kg (2)

将(2)式代入(1)式,则:

3A

f B

f B 10W T W K M ??=

g/mol (3)

2、凝固点测量原理

纯溶剂的凝固点是它的液相和固相共存时的平衡温度。若将纯溶剂缓慢冷却,理论上得到它的步冷曲线如图中的 A , 但但实际的过程往往会发生过冷现象,液体的温度会下降到凝固点以下,待固体析出后会慢慢放出凝固热使体系的温度回到平衡温度,待液体全部凝固之后,温度逐渐下降,如图中的B 。 图中平行于横坐标的CD 线所对应的温度值即为纯溶剂的凝固点 T f*。溶液的凝固点是该溶液的液相与纯溶剂的固相平衡共存的温度。溶液的凝固点很难精确测量,当溶液逐渐冷却时,其步冷曲线与纯溶剂不同,如图中III 、IV 。由于有部分溶剂凝固析出,使剩余溶液的浓度增大,因而剩余溶液与溶剂固相的平衡温度也在下降,冷却曲线不会出现“平阶”,而是出现一转折点,该点所对应的温度即为凝固点(III 曲线的形状)。当出现过冷时,则出现图IV 的形状,此时可以将温度回升的最高值近似的作为溶液的凝固点。

3、测量过程中过冷的影响

在测量过程中,析出的固体越少越好,以减少溶液浓度的变化,才能准确测定溶液的凝固点。若过冷太甚,溶剂凝固越多,溶液的浓度变化太大,就会出现图中 V 曲线的形状,使测量值偏低。在过程中可通过加速搅拌、控制过冷温度,加入晶种等控制冷,同时需要按照图中曲线V 所示的方法校正。

【实验步骤】

1、接好传感器, 插入电源。

2、打开电源开关,温度显示为实时温度,温差显示为以20度为基准的差值(但在10度以下显示的是实际温度)。

3、锁定基温选择量程:将传感器插入水浴槽,调节寒剂温度低于测定溶液凝固点的2-3度,此实验寒剂温度为3.5-4.5度,然后将空气套管插入槽中,按下锁定键。

4、用20ml移液管准确移取20ml 环己烷加入凝固点测定试管中,橡胶塞塞紧,插入传感器。

5、将凝固点试管直接插入寒剂槽中,观察温差,直至温度显示稳定不变,此时温度就是环己烷的初测凝固点。

6、取出凝固点测定试管,用掌心加热使环己烷熔化,再次插入寒剂槽中,缓慢搅拌,当温度降低到高于初测凝固点的0.5度时,迅速将试管取出、擦干,插入空气套管中,记录温度显示数值。每15秒记录一次温度。

* 搅拌速度调节:刚开始缓慢搅拌,在温度低于初测凝固点时,加速搅拌,待温度上升时,又恢复缓慢搅拌。

7、重复第6步平行再做2次。

8、溶液凝固点测定:称取0.15-0.20 g 萘片加入凝固点测定试管,待完全溶解后,重复以上6、7、8步骤。

9、实验结束,拔掉电源插头。

【注意事项】

1、在测量过程中,析出的固体越少越好,以减少溶液浓度的变化,才能准确测定溶液的凝固点。若过冷太甚,溶剂凝固越多,溶液的浓度变化太大,使测量值偏低。在过程中可通过加速搅拌、控制过冷温度,加入晶种等控制过冷度。

2、搅拌速度的控制和温度温差仪的粗细调的固定是做好本实验的关键,每次测定应按要求的速度搅拌,并且测溶剂与溶液凝固点时搅拌条件要完全一致。温度-温差仪的粗细调一经确定,整个实验过程中不能再变。

3、纯水过冷度约0.7℃~1℃(视搅拌快慢),为了减少过冷度,而加入少量晶种,每

次加入晶种大小应尽量一致。

4、冷却温度对实验结果也有很大影响,过高会导致冷却太慢,过低则测不出正确的凝固点。

5、凝固点的确定较为困难。先测一个近似凝固点,精确测量时,在接近近似凝固点时,降温速度要减慢,到凝固点时快速搅拌。

6、千万不要过冷,若过冷太甚,凝固的溶剂过多,溶液的浓度变化过大,所得凝固点偏低。

7、溶液的冷却曲线与纯溶剂的冷却曲线不同,不出现平台,只出现拐点,即当析出固相,温度回升到平衡温度后,不能保持一定值,因为部分溶剂凝固后,剩余溶液的浓度逐渐增大,平衡温度要逐渐下降。

8、用凝固点降低法测相对分子质量只适用于非挥发性溶质且非电解质的稀溶液。

9、插入贝克曼温度计不要碰壁与触底。

【实验数据与处理】

[实验数据的记录]

①大气压:1014.0 Hpa 温度:25.5 ℃

干度:27.3 ℃ 湿度:25.0 ℃ 相对湿度:79.6 %

②粗测环己烷近似凝固点:6.547 ℃

③称量的萘的质量:m=0.1925g

[实验数据的处理]

①由环己烷的密度,计算所取环己烷的重量W A 。

室温 t时环己烷密度计算公式为∶ρt/g·cm-3=0.7971-0.8879×10-3 t/℃。

则:室温为25.5℃时,环己烷的密度为:

ρt=0.7971-0.8879 g·cm-3×10-3 t=0.7971-0.8879×10-3×25.5=0.7745 g·cm-3

∴环己烷质量为:W A=V ×ρt =20.00×0.7745=15.49 g

②将实验数据列入表2中

表 2 —凝固点降低实验数据

物质质量/ g

凝固点/℃凝固点降低值

/℃

测量值平均值

环己烷15.49 g 6.544

6.575

2.022 6.607

萘0.1925 g 4.501

4.553 4.605

③根据式(3),由所得数据计算萘的分子量,并计算与理论值的相对误差。K f=20 K·kg/mol

3

A

f B

f B 10W T W K M ??=

g = =122.92 g/mol

查文献可得:萘的相对分子质量为128.18 相对误差为 4.1%。

④根据四组数据作出的冷却曲线图。

【实验结果与讨论】

本实验结果的相对误差为 4.1%。主要原因可能有:

1、系统误差:实验仪器的误差:因为该实验需要用到的温度是纯的环己烷溶液的凝固点与环己烷的萘溶液的凝固点的差值,如果本身仪器的读数与环境实际温度存在单向的偏差,而我们在做实验的时候没有校正,就会带来偏差,又由于计算的过程用的是两次凝固点的差值,所以偏差就可以相互抵消,从而没有造成太大的影响。因此,实验时,可让测定仪的探头与冰浴接触,得到一个读数,同时在冰浴槽中放入一支温度计,对比两者的温度差值,就可以得到该仪器的温度偏差读数,最后在处理实验数据时,就可以对实验数据进行校正,以确保实验数据的科学性。

2、随机误差:

①本实验测量的成败关键是控制过冷程度和搅拌速度。理论上,在恒压条件下纯溶剂体系只要两相平衡共存就可达到平衡温度。但实际上只有固相充分分散到液相中,也就是固液两相的接触面相当大时,平衡才能达到。如凝固点管置于空气套管中,温度不断降低达到凝固点后,由于固相是逐渐析出的,此时若凝固热放出速度小于冷却所吸收的热量,则体系温度将不断降低,产生过冷现象。这时应控制过冷程度,采取突然搅拌的方式,使骤然析出的大量微小结晶得以保证两相的充分接触,从而测得固液两相共存的平衡温度。为判断过冷程度,本实验先测近似凝固点;为使过冷状况下大量微晶析出,实验中应规定一定的搅拌方式。对于两组分的溶液体系,由于凝固的溶剂量多少会直接影响溶液的浓度,因此控制过冷程度和确定搅拌速度就更为重要。本实验由于仪器固定了搅拌速度,对实验的结果可能产生一定误差; ②冰槽的很难控制在理想的温度。过高会导致冷却太慢,过低则测不出正确的凝固点,导致实验也产生误差。

【实验评注与拓展】

(1)本实验成功的关键点: 1、搅拌速率。

2、冰水浴寒剂温度控制,测环己烷控制在4.5-3.5 度左右,要搅拌,温度均匀;测环己烷+萘,寒剂控制在2.5-1.5 度左右,搅拌均匀。

3、精测的开始温度控制在粗测凝固点以上的0.5 度左右。如7.1度,5.0度开始。

4、每15秒测定一次温度数据,大概测定时间在10分钟以内。

5、每个凝固点测定3次,共6次,凝固点求平均值,再求凝固点的降低。 (2)拓展

凝固点降低是稀溶液的依数性之一,降低值的多少直接反映溶液中溶质有效质点的数

目。如果溶质在溶液中有解离、缔合、溶剂化和生成络合物等情况,均影响溶质在溶剂中的表观分子量。因此,凝固点降低法还可用来测定弱电解质的电离度、溶质的缔合度、活度及活度系数等。

另外,利用凝固点降低这个性质,在科研中还可用来鉴定物质的纯度及求物质的熔化热,在冶金领域还可配制低熔点合金。

【提问与思考】

①为什么要先测近似凝固点?

答:因为凝固点的确定比较困难,先测一个近似凝固点,精确测量时,在接近近似凝固点时,降温速度要减慢,到凝固点时快速搅拌。先测近似凝固点,可以在测后面凝固点时减小误差,使误差范围小于0.006℃以内,保证测定值得精确

②根据什么原则考虑加入溶质的量?太多或太少影响如何?

答:根据稀溶液依数性范围确定,太多不符合稀溶液,太少凝固点下不明显。

③测凝固点时,纯溶剂温度回升后有一恒定阶段,而溶液则没有,为什么?

答:从相律分析,溶剂与溶液的冷却曲线不同。对纯溶剂两相共存时,自由度f =1-2+1=0.

冷却曲线出现水平线段。对溶液两相共存时,自由度 f =2-2+1=1,温度仍可下降,但由于溶剂凝固时放出凝固热,使温度回升,但回升到最高点又开始下降,所以冷却曲线不出现水平线段。

④影响凝固点精确测量的因素有哪些?

答:溶液过冷程度控制;冰水浴温度控制在3。50C左右;搅拌速度控制,温度升高,快速搅拌;溶剂溶质精确测量,浓度不能太高。

⑤当溶质在溶液中有离解、缔合和生成配合的情况时,对其摩尔质量的测定值有何影响?

答:由于凝固点下降公式是对于理想溶液和浓度很小的稀溶液,要求溶质在溶剂中只存在一种形式,如果溶质有解离,缔和,溶剂化和形成配合物时,那么溶液中溶质的浓度就变了,公式中溶质的质量摩尔浓度也变了,必然影响测定结果。一般解离使结果变大,缔和使结果变小,由于溶质出现这种情况,凝固点下降公式已不适用,所以测定结果没有意义。

液体饱和蒸气压的测定_物化实验报告

物理化学实验(B) 实验报告 【实验名称】B.5 液体饱和蒸气压的测定 【】J.N 【班级】第4小组 【学号】 【组编号】5号 【实验日期】2015年5月11日 【室温】24.1 ℃ 【大气压】100.11 kPa 【摘要】 本实验通过静态法测得CCl4的lg(p pθ )与T的关系为 lg(p p )=?1709.9 T +4.9078,平均摩尔汽化热为3.274×104 J?mol?1, 气化熵为93.87 J?mol?1?K?1。通过动态法测得水的lg(p p ) 与T的关系为lg(p pθ)=?2078.7 T +5.5792,平均摩尔汽化热为3.980× 104 J?mol?1,气化熵为106.7 J?mol?1?K?1。温度读数的不准确对实验的误差极小,实验误差的主要是由于静态法中肉眼判断液面平衡的不准确性以及动态法中金属测温探头在沸腾过程中并非一端位于液面下一端位于液面上等因素所引起的。

一、实验部分 1.主要仪器药品和设备 1.1 主要药品 CCl4、二次水等 1.2 主要仪器 数字式温度-压力测定仪,循环水流泵,1/10刻度温度计,电磁搅拌器,电加热器,两口圆底烧瓶,真空缓冲瓶,安全瓶,直形冷凝管,搅拌磁子,真空脂,冷凝水循环系统 2.实验步骤 2.1 静态法测定饱和蒸气压 2.1.1 仪器装置 1-盛水大烧杯, 2-温度计,3-搅拌, 4-平衡管,5-冷凝管, 6-开口U型水银压 力计,7-缓冲瓶,8- 进气活塞,9-抽气活 塞,10-放空活塞, 11-安全瓶,12、13- 橡皮管,14-三通活 塞。 实际仪器略有 差异,压力温度数值 从温度-压力测定仪 中读出。 平衡管中加入 CCL4至容量的2/3. 2.1.2 检验气密性 打开油泵,再开缓冲瓶上连接油泵的活塞,使体系压力减少50 kPa。关闭活塞,若5 min压强变化少于0.3 kPa,则装置气密性良好。 2.1.3 测大气压下沸点 使体系与大气相通,水浴加热至78 ℃,停止加热不断搅拌。当b、c液面达到同一水平时,立即记下此时的温度和大气压力。重复测定,若连续两次测定沸点差小于0.05 ℃,则空气已排净,此时温度即为大气压下沸点。 2.1.4 测定不同压强下沸点 关闭通往大气的活塞。先开由泵,再开连油泵的活塞,使体系减压约6.7 kPa。关闭接油泵活塞,搅拌,至b、c液面达到同一水平时,立即记下此时的温度和大气压力。继续减压,测定其沸点。至压力差为50 kPa,结束实验,读大气压力。2.1.5 整理仪器 打开所有活塞,关闭搅拌器、温度-压力测定仪、冷凝水进出口及油泵开关,

传感器实验报告 (2)

传感器实验报告(二) 自动化1204班蔡华轩 U201113712 吴昊 U201214545 实验七: 一、实验目的:了解电容式传感器结构及其特点。 二、基本原理:利用平板电容C=εA/d 和其它结构的关系式通过相应的结 构和测量电路可以选择ε、A、d 中三个参数中,保持二个参数不变,而 只改变其中一个参数,则可以有测谷物干燥度(ε变)测微小位移(变d)和测量液位(变A)等多种电容传感器。 三、需用器件与单元:电容传感器、电容传感器实验模板、测微头、相敏 检波、滤波模板、数显单元、直流稳压源。 四、实验步骤: 1、按图6-4 安装示意图将电容传感器装于电容传感器实验模板上。 2、将电容传感器连线插入电容传感器实验模板,实验线路见图7-1。图 7-1 电容传感器位移实验接线图 3、将电容传感器实验模板的输出端V01 与数显表单元Vi 相接(插入主控 箱Vi 孔),Rw 调节到中间位置。 4、接入±15V 电源,旋动测微头推进电容传感器动极板位置,每间隔0.2mm 图(7-1) 五、思考题: 试设计利用ε的变化测谷物湿度的传感器原理及结构,并叙述一 下在此设计中应考虑哪些因素? 答:原理:通过湿度对介电常数的影响从而影响电容的大小通过电压表现出来,建立起电压变化与湿度的关系从而起到湿度传感器的作用;结构:与电容传感器的结构答大体相同不同之处在于电容面板的面积应适当增大使测量灵敏度更好;设计时应考虑的因素还应包括测量误差,温度对测量的影响等

六:实验数据处理 由excle处理后得图线可知:系统灵敏度S=58.179 非线性误差δf=21.053/353=6.1% 实验八直流激励时霍尔式传感器位移特性实验 一、实验目的:了解霍尔式传感器原理与应用。 二、基本原理:霍尔式传感器是一种磁敏传感器,基于霍尔效应原理工作。 它将被测量的磁场变化(或以磁场为媒体)转换成电动势输出。 根据霍尔效应,霍尔电势UH=KHIB,当霍尔元件处在梯度磁场中 运动时,它就可以进行位移测量。图8-1 霍尔效应原理 三、需用器件与单元:霍尔传感器实验模板、霍尔传感器、直流源±4V、± 15V、测微头、数显单元。 四、实验步骤: 1、将霍尔传感器按图8-2 安装。霍尔传感器与实验模板的连接 按图8-3 进行。1、3 为电源±4V,2、4 为输出。图8-2 霍尔 传感器安装示意图 2、开启电源,调节测微头使霍尔片在磁钢中间位置再调节RW2 使数显表指示为零。

饱和蒸气压测定实验报告要求-20161114

液体饱和蒸汽压的测定 学号:20145051214 姓名:高雪蔓 班级:2014级化学二班 一、实验目的 (1)明确纯液体饱和蒸气压的定义和气液两相平衡的概念,深入了解纯液体饱和蒸气压和温度的关系——克劳修斯-克拉贝龙方程式 (2)用数字式真空计测定不同温度下环己烷的饱和蒸气压。初步掌握真空实验技术; (3)学会用图解法求被测液体在实验温度范围内的平均摩尔汽化热与正常沸点。 二、实验原理 在一定温度下,与纯液体处于平衡状态时的蒸气压力,称为该温度下该液体的饱和蒸气压,这里的平衡状态是指动态平衡。在某一温度下,被测液体处于密闭真空容器中,液体分子从表面逃逸成蒸气,同时蒸气分子因碰撞而凝结成液相,当两者的速率相同时,就达到了动态平衡,此时气相中的蒸气密度不在改变,因而具有一定的饱和蒸气压。 纯液体的蒸气压是随温度变化而变化的,它们之间的关系可用克劳修斯-克拉贝龙方程式表示: RT H dT p d m vap 2ln ?= ○ 1 如果温度的变化范围不大,△vap H m 常数,可当作平均摩尔汽化热,将○ 1式积分得: c RT H p m vap +?-= ln ○2 由 ○ 2式可知,在一定温度范围内,测定不同温度下的饱和蒸气压,以lnp 对1/T 作图,可得一直线。由该直线的斜率可求得实验温度范围内液体的平均摩尔汽化热m vap H ?。当外压为101.325kPa 时,液体的蒸气压与外压相等时的温度称为该液体的正常沸点。从图中也可求得其正常沸点。 本实验采用静态法,即将被测物质放在一个密闭的体系中,在不同温度下直接测量其饱和蒸气压,在不同外压下测量相应的沸点。 三、实验仪器、试剂 试剂: 异丙醇 仪器: 蒸气压测定装置 1套 真空泵 1台 数字式气压计 1台 恒温水浴槽 1台 装置图:(附图一) 四、实验步骤 1、读取室温及大气压 室温:19.1℃ 气压:100.24KPa

物理化学实验报告-溶解热的测定

物理化学实验报告 溶解热的测定 实验时间:2018年4月日 姓名:刘双 班级: 学号: 1.实验目的 (1)了解电热补偿法测量热效应的基本原理。 (2)用电热补偿法测定硝酸钾在水中的积分溶解热,通过计算或者作图求出硝酸钾在水中的微分溶解热、积分冲淡热和微分冲淡热。 (3)掌握微机采集数据、处理数据的实验方法和实验技术。 2.实验原理 物质溶解于溶剂过程的热效应称为溶解热,物质溶解过程包括晶体点阵的破坏、离子或分子的溶剂化、分子电离(对电解质而言)等过程,这些过程热效应的代数和就是溶解过程的热效应,溶解热包括积分(或变浓)溶解热和微分(或定浓)溶解热。把溶剂加到溶液中使之稀释,其热效应称为冲淡热。包括积分(或变浓)冲淡热和微分(或定浓)冲淡热。 溶解热Q:在恒温、恒压下,物质的量为n2的溶质溶于物质的量为n1的溶剂(或溶于某浓度的溶液)中产生的热效应。 积分溶解热Qs:在恒温、恒压下,1mol溶质溶于物质的量为n1的溶剂中产生的热效应。 微分溶解热(eQ en2)n 1 :在恒温、恒压下,1mol溶质溶于某一确定浓度的无限量的溶液中 的热效应。 冲淡热:在恒温、恒压下,物质的量为n1的溶剂加入到某浓度的溶液中产生的热效应。 积分冲淡热Q d:在恒温、恒压下,把原含1mol溶质和n02mol溶剂的溶液冲淡到含溶剂为n01mol时的热效应,为某两浓度的积分溶解热之差。 微分冲淡热eQ en1n 2或eQ S en0n 2 :在恒温、恒压下,1mol溶剂加入到某一确定浓度的无限 量的溶液中产生的热效应。 它们之间的关系可表示为:

dQ=eQ 1n 2 dn1+ eQ 2n 1 dn2 上式在比值n1 n2 恒定下积分,得: Q=eQ en1 n2 n1+ eQ en2 n1 n2 Q n2=Q s,令:n1 n2 =n0,则有: ?Q ?n1 = ?(n2Q s ?n2n0 =( ?Q s ?n0 ) Q d=Q s n01?Q s n02 其中积分溶解热Q s可以直接由实验测定,其他三种可以由Q s?n0曲线求得。 欲求溶解过程中的各种热效应,应先测量各种浓度下的的积分溶解热。可采用累加的方法,先在纯溶剂中加入溶质,测出热效应,然后再这溶液中再加入溶质,测出热效应,根据先后加入的溶质的总量可计算出n0,而各次热效应总和即为该浓度下的溶解热。本实验测量硝酸钾溶解在水中的溶解热,是一个溶解过程中温度随反应的进行而降低的吸热反应,故采用电热补偿法测定。先测定体系的初始温度T,当反应进行后温度不断降低时,由电加热法使体系复原到起始温度,根据所耗电能求出热效应Q。 3.仪器和试剂 反应热测量数据采集接口装置: NDRH-1型,温度测量范围0~40℃,温度测量分辨率0.001℃,电压测量范围0~20V,电压测量分辨率0.01V,电流测量范围0~2A,电流测量分辨率0.01A。 精密稳流电源:YP-2B型。 微机、打印机。 量热计(包括杜瓦瓶,搅拌器,加热器,搅拌子)。 称量瓶8只,毛笔,研钵。 硝酸钾(A.R.) 4.实验操作 (1)取8个称量瓶,分别编号。 (2)取KNO3于研钵中,研磨充分。 (3)分别称量约 2.5、1.5、2.5、3.0、3.5、4.0、4.0、4.5g 研磨后的硝酸钾,放入 8 个称量瓶中,并精确称量瓶子与药品的总质量。记录下所称量的数据。 (4)使用0.1g精度的天平称量216.2g的去离子水,放入杜瓦瓶中,将杜瓦瓶放在磁力搅

介电常数测试仪的设计与制作实验报告

实验题目: 简易介电常数测试仪的设计与制作 实验目的: 了解多种测量介电常数的方法及其特点和适用范围,掌握替代法, 比较法和谐振法测固体电介质介电常数的原理和方法,用自己设计与制作的介电常数测试仪,测量压电陶瓷的介电常数。 实验原理: 介电体(又称电介质)最基本的物理性质是它的介电性,对介电性的研究不但在电介质材料的应用上具有重要意义,而且也是了解电介质的分子结构和激化机理的重要分析手段之一,探索高介电常数的电介质材料,对电子工业元器件的小型化有着重要的意义。介电常数(又称电容率)是反映材料特性的重要参量,电介质极化能力越强,其介电常数就越大。测量介电常数的方法很多,常用的有比较法,替代法,电桥法,谐振法,Q 表法,直流测量法和微波测量法等。各种方法各有特点和适用范围,因而要根据材料的性能,样品的形状和尺寸大小及所需测量的频率范围等选择适当的测量方法。 介质材料的介电常数一般采用相对介电常数r ε来表示,通常采用测量样品的电容量,经过计算求出r ε,它们满足如下关系: S Cd r 00εεεε== 式中ε为绝对介电常数,0ε为真空介电常数,m F /10 85.812 0-?=ε,S 为 样品的有效面积,d 为样品的厚度,C 为被测样品的电容量,通常取频率为kHz 1时的电容量C 。 一、替代法 替代法电路图如下所示,将待测电容X C (图中X R 是待测电容的介电损耗电

阻),限流电阻0R (取Ωk 1)、安培计与信号源组成一简单串联电路。合上开关1K ,调节信号源的频率和电压及限流电阻0R ,使安培计的读数在毫安范围恒定(并保持仪器最高的有效位数),记录读数X I 。将开关2K 打到B 点,让标准电容箱S C 和交流电阻箱S R 替代X C ,调节S C 和S R 值,使S I 接近X I 。多次变换开关2K 的位置(A , B 位),反复调节S C 和S R ,使X S I I =。假定X C 上的介电损耗电阻X R 与标准电容箱的介电损耗电阻S R 相接近(S X R R ≈),则有S X C C =。 二、比较法 比较法的电路图如下所示,假定S C 上的S R 与X R 接近(S X R R ≈),则测量X C 和S C 上的电压比 X S V V 即可求得X C : X S S X V V C C ?=(此时X V 可以不等于S V ) 三、谐振法

介电常数的测量

《大学物理》实验报告 学院: 专业: 姓名: 学号: 实验题目:介电常数的测量 实验目的:1.掌握固体、液体电介质相对介电常数的测量原理及方法 2.学习减小系统误差的实验方法 3.学习用线性回归处理数据的方法。 实验原理:用两块平行放置的金属电极构成一个平行板电容器,其电容量为: D S C ε= D 为极板间距,S 为极板面积,ε即为介电常数。材料不同ε也不同。在真空中的介电常数为 0ε,m F /1085.8120-?=ε。 考察一种电介质的介电常数,通常是看相对介电常数,即与真空介电常数相比的比值r ε。 如能测出平行板电容器在真空里的电容量C 1及充满介质时的电容量C 2,则介质的相对介电常数即为 1 2 r C C ε= 然而C 1、C 2的值很小,此时电极的边界效应、测量用的引线等引起的分布电容已不可忽略,这些因素将会引起很大的误差,该误差属系统误差。本实验用电桥法和频率法分别测出固体和液体的相对介电常数,并消除实验中的系统误差。 1. 用电桥法测量固体电介质相对介电常数 将平行板电容器与数字式交流电桥相连接,测出空气中的电容C 1和放入固体电介质后的电容C 2。 1101C C C C 分边++= 222C C C C 分边串++= 其中C 0是电极间以空气为介质、样品的面积为S 而计算出的电容量: D S C 00ε= C 边为样品面积以外电极间的电容量和边界电容之和,C 分为测量引线及测量系统等引起的分

布电容之和,放入样品时,样品没有充满电极之间,样品面积比极板面积小,厚度也比极板的间距小,因此由样品面积内介质层和空气层组成串联电容而成C 串,根据电容串联公式有: (D-t) εt S εεt S εεt D S εt S ε εD-t S εC r r r r +=+-? =0 0000串 当两次测量中电极间距D 为一定值,系统状态保持不变,则有21C C 边边=、21C C 分分=。 得:012C C C C +-=串 最终得固体介质相对介电常数:t) (D C S εt C ε r --?= 串0串 该结果中不再包含分布电容和边缘电容,也就是说运用该实验方法消除了由分布电容和边缘效应引入的系统误差。 2. 线性回归法测真空介电常数0ε 上述测量装置在不考虑边界效应的情况下,系统的总电容为:分0 0C D S εC += 保持系统分布电容不变,改变电容器的极板间距D ,不同的D 值,对应测出两极板间充满空气时的电容量C 。与线性函数的标准式BX A Y +=对比可得:C Y =,分C A =, 00S B ε=,D 1 X = ,其中S 0为平行板电容极板面积。用最小二乘法进行线性回归,求得分布电容C 分和真空介电常数0ε(空εε≈0)。 3.用频率法测定液体电介质的相对介电常数 所用电极是两个容量不相等并组合在一起的空气电容,电极在空气中的电容量分别为C 01和C 02,通过一个开关与测试仪相连,可分别接入电路中。测试仪中的电感L 与电极电容和分布电容等构成LC 振荡回路。振荡频率为: LC 2π1 f =,或 22 2 241f k Lf C ==π 其中分C C C 0+=。测试仪中电感L 一定,即式中k 为常数,则频率仅随电容C 的变 化而变化。当电极在空气中时接入电容C 01,相应的振荡频率为f 01 ,得:2012 01f k C C =+分, 接入电容C 02,相应的振荡频率为f 02 ,得:202 2 02f k C C =+分

凝固点-物化实验报告

实验7 凝固点降低法测定摩尔质量 姓名:憨家豪;学号:2012012026;班级:材23班;同组实验人员:赵晓慧 实验日期:2014-3-8;提交报告日期:2014-3-15 带实验的助教姓名:袁斌 1. 引言 1.1 实验目的 1.用凝固点降低法测定尿素的摩尔质量。 2.学会用步冷曲线对溶液凝固点进行校正。 3.通过本实验加深对稀溶液依数性的认识。 1.2 实验原理 稀溶液具有依数性,凝固点降低是依数性的一种表现,它与溶液质量摩尔浓度的关系为: *×f f f f B T T T K b ?=-= 式中:f T ?为凝固点降低值,* f T 、f T 分别为纯溶剂、溶液的凝固点,B b 为溶液质量摩尔浓度,f K 为凝固点降低常数,它只与所用溶剂的特性有关。如果稀溶液是由质量为B m 的溶质溶于质量为A m 的溶剂中而构成,则上式可写为: 1000× ×B f f A m T K M m ?= 即 310B f f A m M K T m =? 式中: f K 为溶剂的凝固点降低常数(单位为K ·kg ·mol -1 );M 为溶质的摩尔质量(单位为g ·mol -1 )。 如果已知溶液的f K 值,则可通过实验测出溶液的凝固点降低值 f T ?,利用上式即可求出溶质的摩尔质量。 常用溶剂的f K 值见下表1。 表1 常用溶剂的f K 值

实验中,要测量溶剂和溶液的凝固点之差。对于纯溶剂如图1所示,将溶剂逐渐降低至过冷(由于新相形成需要一定的能量,故结晶并不析出),温度降低至一定值时出现结晶,当晶体生成时,放出的热量使体系温度回升,而后温度保持相对恒定。对于纯溶剂来说,在一定压力下,凝固点是固定不变的,直到全部液体凝固成固体后才会下降。相对恒定的温度即为凝固点。 对于溶液来说,除温度外还有溶液浓度的影响。当溶液温度回升后,由于不断析出溶剂晶体,所以溶液的浓度逐渐增大,凝固点会逐渐降低。因此,凝固点不是一个恒定的值。如把回升的最高点温度作为凝固点,这时由于已有溶剂晶体析出,所以溶液浓度已不是起始浓度,而大于起始浓度,这时的凝固点不是原浓度溶液的凝固点。要精确测量,应测出步冷曲线,按图1(b )所示方法,外推至f T 校正。 图1 溶剂和溶液的步冷曲线 2. 实验操作 2.1 实验用品、仪器型号及测试装置示意图 SWC-IID 精密数字温度温差仪、冷阱、大试管、移液管(25 mL )、85-2型恒温磁力搅拌器、DC-2010节能型智能恒温槽、分析天平。 去离子水,尿素(分析纯)。 测试装置示意图(如下)

实验报告--液体的饱和蒸汽压的测定--韩飞 陈海星 何跃辉 邱雪辉正式版

For the things that have been done in a certain period, the general inspection of the system is also a specific general analysis to find out the shortcomings and deficiencies 实验报告--液体的饱和蒸汽压的测定--韩飞陈海星何跃辉邱雪辉正式 版

实验报告--液体的饱和蒸汽压的测定--韩飞陈海星何跃辉邱雪辉正式版 下载提示:此报告资料适用于某一时期已经做过的事情,进行一次全面系统的总检查、总评价,同时 也是一次具体的总分析、总研究,找出成绩、缺点和不足,并找出可提升点和教训记录成文,为以后遇 到同类事项提供借鉴的经验。文档可以直接使用,也可根据实际需要修订后使用。 实验者:韩飞陈海星何跃辉邱雪辉 实验三、液体的饱和蒸汽压的测定 实验者:陈海星.韩飞实验时间: 2000/5/29 气温: 22.4 ℃ 大气压: 100.923 kpa 一、实验目的及要求: 1、明确纯液体饱和蒸气压的定义和气液两相平衡的概念,深入了解纯液体饱和蒸气压和温度的关系?克劳修斯-克拉贝龙方程式。 2、用等压计测定不同温度下苯的饱和蒸气压.。初步掌握真空试验技术。

3、学会用图解法求被测液体在实验温度范围内的平均摩尔汽化热与正常沸点 二、仪器与试剂: 蒸汽压力测定仪 旋片式真空泵 精密温度计 玻璃恒温水浴一套 苯 三、数据记录及其处理: 纯液体饱和蒸汽压的测量 实验者 韩飞 实验时间 5月15日 室温℃

材料的介电常数和磁导率的测量

无机材料的介电常数及磁导率的测定 一、实验目的 1. 掌握无机材料介电常数及磁导率的测试原理及测试方法。 2. 学会使用Agilent4991A 射频阻抗分析仪的各种功能及操作方法。 3. 分析影响介电常数和磁导率的的因素。 二、实验原理 1.介电性能 介电材料(又称电介质)是一类具有电极化能力的功能材料,它是以正负电荷重心不重合的电极化方式来传递和储存电的作用。极化指在外加电场作用下,构成电介质材料的内部微观粒子,如原子,离子和分子这些微观粒子的正负电荷中心发生分离,并沿着外部电场的方向在一定的范围内做短距离移动,从而形成偶极子的过程。极化现象和频率密切相关,在特定的的频率范围主要有四种极化机制:电子极化 (electronic polarization ,1015Hz),离子极化 (ionic polarization ,1012~1013Hz),转向极化 (orientation polarization ,1011~1012Hz)和空间电荷极化 (space charge polarization ,103Hz)。这些极化的基本形式又分为位移极化和松弛极化,位移极化是弹性的,不需要消耗时间,也无能量消耗,如电子位移极化和离子位移极化。而松弛极化与质点的热运动密切相关,极化的建立需要消耗一定的时间,也通常伴随有能量的消耗,如电子松弛极化和离子松弛极化。 相对介电常数(ε),简称为介电常数,是表征电介质材料介电性能的最重要的基本参数,它反映了电介质材料在电场作用下的极化程度。ε的数值等于以该材料为介质所作的电容器的电容量与以真空为介质所作的同样形状的电容器的电容量之比值。表达式如下: A Cd C C ?==001εε (1) 式中C 为含有电介质材料的电容器的电容量;C 0为相同情况下真空电容器的电容量;A 为电极极板面积;d 为电极间距离;ε0为真空介电常数,等于8.85×10-12 F/m 。 另外一个表征材料的介电性能的重要参数是介电损耗,一般用损耗角的正切(tanδ)表示。它是指材料在电场作用下,由于介质电导和介质极化的滞后效应

大学物理化学实验报告---液体饱和蒸汽压的测定

纯液体饱和蒸汽压的测量 目的要求 一、 明确纯液体饱和蒸气压的定义和汽液两相平衡的概念,深入了解纯液体饱 和蒸气压与温度的关系公式——克劳修斯-克拉贝龙方程式。 二、 用数字式真空计测量不同温度下环己烷的饱和蒸气压。初步掌握真空实验 技术。 三、 学会用图解法求被测液体在实验温度范围内的平均摩尔气化热与正常沸 点。 实验原理 通常温度下(距离临界温度较远时),纯液体与其蒸气达平衡时的蒸气压称为该温度下液体的饱和蒸气压,简称为蒸气压。蒸发1mol 液体所吸收的热量称为该温度下液体的摩尔气化热。 液体的蒸气压随温度而变化,温度升高时,蒸气压增大;温度降低时,蒸气压降低,这主要与分子的动能有关。当蒸气压等于外界压力时,液体便沸腾,此时的温度称为沸点,外压不同时,液体沸点将相应改变,当外压为1atm (101.325kPa )时,液体的沸点称为该液体的正常沸点。 液体的饱和蒸气压与温度的关系用克劳修斯-克拉贝龙方程式表示: 2 m vap d ln d RT H T p ?= (1) 式中,R 为摩尔气体常数;T 为热力学温度;Δvap H m 为在温度T 时纯液体的摩尔 气化热。 假定Δvap H m 与温度无关,或因温度范围较小,Δvap H m 可以近似作为常数,积分上式,得: C T R H p +??-=1 ln m vap (2) 其中C 为积分常数。由此式可以看出,以ln p 对1/T 作图,应为一直线,直线的斜率为 R H m vap ?- ,由斜率可求算液体的Δvap H m 。 静态法测定液体饱和蒸气压,是指在某一温度下,直接测量饱和蒸气压,此 法一般适用于蒸气压比较大的液体。静态法测量不同温度下纯液体饱和蒸气压,有升温法和降温法二种。本次实验采用升温法测定不同温度下纯液体的饱和蒸气压,所用仪器是纯液体饱和蒸气压测定装置,如图1所示: 平衡管由A 球和U 型管B 、C 组成。平衡管上接一冷凝管,以橡皮管与压

饱和蒸气压的测量实验报告

饱和蒸气压的测量 09111601班1120162086 原野 一、实验目的。 测量水在不同温度下的饱和蒸气压,并求出所测温度范围内的水的平均摩尔气化焓。 二、实验原理。 饱和蒸气压:在真空容器中,液体与其蒸气建立动态平衡时(蒸气分子向液面凝结和液体分子从表面逃逸的速率相等)液面上的蒸气压力为饱和蒸气压。温度升高,分子运动加剧,单位时间内从液面逸出的分子数增多,所以蒸气压增大。饱和蒸气压与温度的关系服从克劳休斯克拉贝农方程。液体蒸发时要吸收热量,温度T下,1mol液体蒸发所吸收的热量为该物质的摩尔气化焓。沸点:蒸气压等于外压的温度。显然液体沸点随外压而变,101.325kPa下液体的沸点称正常沸点。对包括气相的纯物质两相平衡系统,因Vm(g)?Vm(l),故△Vm≈Vm(g)。若气体视理想气体,则克劳休斯-克拉贝农方程式为: d[ln(p/Pa)]/dT=ΔvapH*m/RT^2。 因温度范围小时,ΔvapH*m可以近似作为常数,将上式积分得: ln(p/Pa)=ΔvapH*m/RT+C。 作图,得一直线,斜率为ΔvapH*m/R由斜率可求算液体的ΔvapH*m。 本实验采用升温差压法测量。平衡管如图B,待测物质置于球管A 内,U型管中夜放置被测物质,将平衡管和抽气系统、压力计连接,在一定温度

下,当U形管中的液面在同一水平时,记下此时的温度和压力,则压力计示值就是该液体的饱和蒸汽压和大气压的差值。 三、实验步骤: 1、从气压计读取大气压,并记录。 2、装样:从加样口加无水乙醇,并在U型管内装入一定体积的无水乙醇。打开数字压力计电源开关,预热5 min。使饱和蒸汽压测定教学试验仪通大气,按下“清零”键。 3、检查系统是否漏气。将进气阀、阀2打开,阀1关闭。抽气减压至压力计显示压差为-80KPa时关闭进气阀和阀2,如压力计示数能在3-5min内维持不变,则系统不漏气。 4、恒温槽温度调至45℃,控制阀门1和阀门3,使bc两管液面相平。 5、当b、c两管的液面到达同一水平面时,立即记录此时的压力,关闭阀门3和阀门1,调高2℃,等待温度到达指定温度,重复测量。注:每次使系统提升2℃,重复上述操作,测至少8组数据。实验结束后,先将系统通大气,然后关闭真空泵。 四、实验数据记录及处理。 见附表。 五、结果分析。 在本次试验结果中,出现较大的气化焓和沸点与实际值的差异,有以下几方面的原因:

物理化学实验报告.

《大学化学基础实验2》实验报告 课程:物理化学实验 专业:环境科学 班级: 学号: 学生姓名:邓丁 指导教师:谭蕾 实验日期:5月24日

实验一、溶解焓的测定 一、实验名称:溶解焓的测定。 二、目的要求:(1)学会用量热法测定盐类的积分溶解焓。 (2)掌握作图外推法求真实温差的方法。 三、基本原理: 盐类的溶解通常包含两个同时进行的过程:一是晶格的破坏,为吸热过程;二是离子的溶剂化,即离子的水合作用,为放热过程。溶解焓则是这两个过程热效应的总和,因此,盐类的溶解过程最终是吸热还是放热,是由这两个热效应的相应大小所决定的。影响溶解焓的主要因素有温度、压力、溶质的性质以及用量等。热平衡式: △sol H m=-[(m1C1+m2C2)+C]△TM/m2 式中, sol H m 为盐在溶液温度及浓度下的积分溶解焓, J·mol , m1 , m2 分别为水和溶质的质量, M 为溶质的摩尔质量,kg·mol -1 ;C1 ,C 2 分别为溶剂水, kg; 溶质的比热容,J·kg -1;T 为溶解过程中的真实温差,K;C 为量热计的热容, J·K- 1 ,也称热量计常数.本实验通过测定已知积分溶解焓的标准物质 KCl 的 T ,标定出量热计热容 C 的值. 四、实验主要仪器名称: NDRH-2S型溶解焓测定实验装置1套(包括数字式温度温差测量仪1台、300mL简单量热计1只、电磁搅拌器1台);250mL容量瓶1个;秒表1快;电子 ;蒸馏水 天平1台;KCl;KNO 3 五、实验步骤: (1)量热计热容 C 的测定 ( 1 ) 将仪器打开 , 预热 . 准确称量 5.147g 研磨好的 KCl , 待用 . n KCl : n水 = 1: 200 (2)在干净并干燥的量热计中准确放入 250mL 温室下的蒸馏水,然后将温度传感器的探头插入量热计的液体中.打开搅拌器开关,保持一定的搅拌速度,待温差变化基本稳定后,读取水的温度 T1 ,作为基温. (3)同时, 每隔30s就记录一次温差值,连续记录8 次后, 将称量好的 5.174g KCl 经漏斗全部迅速倒入量热计中,盖好.10s记录一次温度值,至温度基本稳定不变,再每隔 30s记录一次温度的数值,记录 8 次即可停止. (4)测出量热计中溶液的温度,记作 T2 .计算 T1 , T2 平均值,作为体系的温度.倒出溶液,取出搅拌子,用蒸馏水洗净量热计. KNO3 熔解热的测定:标准称量 3.513g KNO3 ,代替 KCl 重复上述操作.

3.静电实验研究 实验报告

静电实验研究实验报告 【实验目的】 1、掌握静电的特点分析静电演示实验成功的关键。 2、掌握静电学的主要实验的演示方法掌握韦氏起电机和范德格拉夫起电机的构 造及使用方法。 3、加深对静电现象及其原理的理解。 【实验器材】静电计 韦氏起电机、范德格拉夫起电机、验电器、验电羽、金属网、尖形布电器、平行板电容器、枕形导体、球形导体、起点盘及静电除尘装置、绝缘体等。 【仪器介绍】一、验电器 验电器是用来检验物质是否带电的仪器。验 电器的结构如图1所示 验电器的工作原理是当带电物质接触金属球 时就会有很少的带电粒子传到验电器上面金属箔 就会张开。验电器金属箔张开的角度和物质带电 量的大小成正比。 利用验电器判断物质所带电量正负的方法很简单先将一个物体与球接触再将另一个物体与 球接触张角变大表明两物体带同种电荷张角变小或张角先变小后变大表明两物体带异号电荷。 二、静电计 将验电器装上刻度盘与金属底座就构成了一个静电计静电计的示意图如右图 静电计可以测量

带点物质的电势。将带点物质连接到小球上显示的就是对于地面的电势。将两个物体分别接于金属球和底座测得的就是两物体的电势差。 三、 起电机 1、 韦氏起电机韦氏起电机是实验室常用的起电 机示意图如下 图 1 验电器示意图 图 2 静电计 图 3 韦氏起电机示意图

韦氏起电机是利用静电感应原理制作的它靠莱顿瓶积累电荷。当积累的电荷达到一定的数量两个金属球就会放电。 2、范德格拉夫起电机 图4 范德格拉夫起电机 范德格拉夫起电机是利用橡胶皮带将负电荷从内部不断的运送到电极上使电机所带的电荷越来越多电势也越来越高。理论上对地电位可以达到无穷大。 【实验内容】 实验一演示感应起电 1、摩擦起电 两种物质相互摩擦电子在力的作用下会从一个物体转移到另一个物体两个物体就会带异号电荷。 丝绸摩擦玻璃棒带正电。毛皮摩擦橡胶棒带负电。 带电玻璃棒接触验电器验电器有张角。带电橡胶棒接触验电器张角闭合。 可见两个带异号电荷。 2、感应起电 将带电物体靠近导体由于同性相斥异性相吸导体靠近带点物质的部分会带异号电荷远离的部分带同种电荷。 将带电玻璃棒靠近验电器验电器有张角可见感应起电。将一个接地的导线接触验电器验电器的张角闭合。将导线离开验电器玻璃棒也远离验电器验电器又有张角表明验电器带电。接地的导线使验电器上与玻璃棒同号的电荷传到地上验电器上就只有与玻璃棒异号的电荷。这时拿带电橡胶棒接触验电器验电器张角闭合。

饱和蒸汽压实验报告

饱和蒸汽压实验报告

北京理工大学 物理化学实验报告 液体饱和蒸气压测定 班 级 : 9 1

1 1 1 0 1 实验日期: 2 0 1 3 -5 -2 1

一、实验目的 1、测定乙酸乙酯在不同温度下的饱和蒸气压。 2、求出所测温度范围内乙酸乙酯的平均摩尔气化焓。 二、实验原理 在一定温度下,纯物质语气气相达到平衡时的蒸气压为纯物质的饱和蒸气压。纯物质的饱和蒸气压与温度有关。将气相视为理想 气体时,对有气相的两相平衡(气-液、气-固),可用 Clausius-Clapeyron方程表示为: dln(p/Pa) dT = ?vap H m RT2 如果温度范围变化小?vap H m可近似看做常数,对上式积分得: ln?(p/pa)=??vap H m RT +C 由上式可知,ln?(p/Pa)与1 T 为直线关系:由实验测出p、T值,以ln?(p/Pa)对1/T作图得一直线,从直线斜率可求出所测温度范围内液体的平均摩尔气化焓。 本实验使用等压计来直接测定液体在不同温度下的饱和蒸气压。 等压计是由相互联通的三管组成。A管及B,C管下部为待测样品的液体,C管上部接冷凝管并与真空系 统和压力计相通。将A,B管上部的空气驱 除干净,使A,B管上部全部为待测样品的 蒸气,则A,B管上部的蒸气压为待测样品 的饱和蒸气压。当B,C两管的液面相平时,A,B管上部与C管上 图一等压计

部压力相等。由压力计直接测出C管上部的压力,等于A,B管上 部的压力,求得该温度下液体的饱和蒸气压。 三、实验仪器及药剂 数字式温差计、玻璃缸恒温槽、真空泵、缓冲罐、 等压计、大气压计、乙酸乙酯(分析纯) 图二纯液体饱和蒸气压测量示意图 四、实验步骤 1、熟悉实验仪器和装置,按上图所示组装仪器,水浴锅中去离子水 不能低于刻度线,冷阱中加入冰水。 2、打开三通阀使得真空泵接大气,打开真空泵电源。 3、检漏:压力计上的冷凝管通冷却水。打开三通阀并通大气,打开 真空泵。关阀1,开阀2、3,使系统同大气,待差压计示数稳定后按 置零按钮,示数变为零。关阀3,真空泵与系统相通,缓慢开阀1, 系统减压。当压力表读数为-40 ~-50kPa时,关阀1,封闭系统。观

燃烧热物化实验报告

燃烧热的测定 姓名:憨家豪学号:2012012026 班级:材23 同组人:赵晓慧 实验日期:2014年4月19日提交报告日期:2014年4月20日 实验老师姓名:郭勋 1 引言 1.1实验目的 (1)熟悉弹式量热计的原理、构造及使用方法; (2)明确恒压燃烧热与恒容燃烧热的差别及相互关系; (3)掌握温差测量的实验原理和技术; (4)学会用雷诺图解法校正温度改变值; 1.2实验原理 在指定温度及一定压力下,1 mol物质完全燃烧时的定压反应热,称为该物质在此温度下的摩尔燃烧热,记作△c H m。通常,完全燃烧是指C→CO2(g),H2→H2O(l),S→SO2(g),而N、卤素、银等元素变为游离状态。由于在上述条件下△H=Q p,因此△c H m也就是该物质燃烧反应的等压热效应Q p。 在实际测量中,燃烧反应在恒容条件下进行(如在弹式量热计中进行),这样直接测得的是反应的恒容热效应Q v(即燃烧反应的△c U m)。若反应系统中的气体均为理想气体,根据热力学推导,Q p和Q v的关系为 Q P=Q V+?nRT(1)式中:T——反应温度,K; ?n——反应前后产物与反应物中气体的物质的量之差; R——摩尔气体常数。

通过实验测得Q V值,根据上式就可计算出Q P,即燃烧热的值。 测量热效应的仪器称作量热计。量热计的种类很多。一般测量燃烧热用弹式量热计。本实验所用量热计和氧弹结构如图2-2-1和图2-2-2所示。实验过程中外水套保持恒温,内水桶与外水套之间以空气隔热。同时,还对内水桶的外表面进行了电抛光。这样,内水桶连同其中的氧弹、测温器件、搅拌器和水便近似构成一个绝热体系。 弹式量热计的基本原理是能量守恒定律。样品完全燃烧所释放的能量使得氧弹本身及

大学物理实验-介电常数的测量

大学物理实验-介电常数的测量

介电常数的测定实验报告 数学系 周海明 PB05001015 2006-11-16 实验题目:介电常数的测定 实验目的:了解多种测量介电常数的方法及其特点和适用范围,掌握替代法,比较 法和谐振法测固体电介质介电常数的原理和方法,用自己设计与制作的介电常数测试仪,测量压电陶瓷的介电常数。 实验原理:介质材料的介电常数一般采用相对介电常数r ε来表示,通常采用测量样 品的电容量,经过计算求出r ε,它们满足如下关系:S Cd r 00εεεε== (1)。式中ε为绝对介电常数,0ε为真空介电常数,m F /10 85.812 0-?=ε,S 为样 品的有效面积,d 为样品的厚度,C 为被测样品的电容量,通常取频率为1kHz 时的电容量C 。 一、替代法 替代法参考电路如图1所示,将待测电容C x (图中R x 是待测电容的介电损耗电阻),限流电阻R 0(取1k Ω)、安培计与信号源组成一简单串联电路。合上开关K 1,调节信号源的频率和电压及限流电阻R 0,使安培计的读数在毫安范围恒定(并保持仪器最高的有效位数),记录读数I x 。将开关K 2打到B 点,让标准电容箱C s 和交流电阻箱R s 替代C x 调节C s 和R s 值,使I s 接近I x 。多次变换开关K 2的位置(A,B 位),反复调节C s 和R s ,使X S I I =。假定C x 上的介电损耗电阻R x 与标准电容箱的介电损耗电阻R s 相接近(s x R R ≈),则有

s x C C =。 另一种参考电路如图2所示,将标准电容箱C s 调到极小值,双刀双掷开关K 2扳到AA ’,测量C x 上的电压V x 值;再将K 2扳到BB ’,调节C s 让C s 上的电压V S 接近V x 。将开关K 2来回扳到AA ’和BB ’位,不断调节C s 和R s 值,使伏特计上的读数不变,即X S V V =,若s x R R ≈,则有 s x C C =。 二、比较法 当待测的电容量较小时,用替代法测量,标准可变电容箱的有效位数损失太大,可采用比较法。此时电路引入的参量少,测量精度与标准电容箱的精度密切相关,考虑到C s 和R s 均是十进制旋钮调节,故无法真正调到 X S V V =,所以用比较法只能部分修正电压差带来的误 差。比较法的参考电路如图3所示,假定C s 上的R x 与R s 接近(s x R R ≈),则测量C x 和C s 上的电压比V s /V x 即可求得C x :X S s x V V C C /?=。 三、谐振法 谐振法测量电容的原理图见图4,由已知电感L (取1H ),电阻R (取1k Ω)和待测电容C x 组成振荡电路,改变信号 源频率使RLC 回路谐振,伏特计上指示最大,则电容可由下式求出: L f C X 2241 π= (2)。式中f 为频率,L 为已知电感,C x 为待测电容。为减小 误差,这时可采用谐振替代法来解决。 谐振替代法参考电路如图5所示,将电感器的一端与待测电容C x 串联,调节频率f 使电路达到谐振,此时电容上的电压达到极大值,固定频率f 0,用标准电容箱C s 代替C x ,调节C s 使电路达到谐振,电容上的电压再次达到极大值,此时s x C C =。

纯液体饱和蒸汽压的测量实验报告修订版

纯液体饱和蒸汽压的测 量实验报告 Document number:PBGCG-0857-BTDO-0089-PTT1998

一、目的要求 1. 明确纯液体饱和蒸气压的定义和汽液两相平衡的概念,深入了解纯液体饱和蒸气压与温度的关系公式——克劳修斯-克拉贝龙方程式。 2. 用数字式真空计测量不同温度下环己烷的饱和蒸气压。初步掌握真空实验技术。 3. 学会用图解法求被测液体在实验温度范围内的平均摩尔气化热与正常沸点。 二、实验原理 通常温度下(距离临界温度较远时),纯液体与其蒸气达平衡时的蒸气压称为该温度下液体的饱和蒸气压,简称为蒸气压。蒸发1mol 液体所吸收的热量称为该温度下液体的摩尔气化热。 液体的蒸气压随温度而变化,温度升高时,蒸气压增大;温度降低时,蒸气压降低,这主要与分子的动能有关。当蒸气压等于外界压力时,液体便沸腾,此时的温度称为沸点,外压不同时,液体沸点将相应改变,当外压为1atm ()时,液体的沸点称为该液体的正常沸点。 液体的饱和蒸气压与温度的关系用克劳修斯-克拉贝龙方程式表示为: 2 m vap d ln d RT H T p ?= 式中,R 为摩尔气体常数;T 为热力学温度;m H vap ?为在温度T 时纯液体的摩尔气化热。 假定m H vap ?与温度无关,或因温度范围较小,m H vap ?可以近

似作为常数,积分上式,得: C T R H p +??- =1 ln m vap 其中C 为积分常数。由此式可以看出,以ln p 对1/T 作图,应为一直线,直线的斜率为vap m H R ?- ,由斜率可求算液体的vap m H ?。 三、仪器、试剂 蒸气压测定装置 1套 循环式真空泵 1台 精密数字压力计 1台 数字控温仪 1只 无水乙醇(分析纯) 四、实验步骤 1.读取室内大气压 2.安装仪器:将待测液体(本实验是无水乙醇)装入平衡管,之后将平衡管安装固定。 3.抽真空、系统检漏 4排气体:先设定温度为20℃,之后将进气阀打开,调压阀关闭,稳定后,关闭进气阀,置零,打开冷却水,同时打开真空泵和调压阀(此时调压阀较大)。抽气减压至压力计显示压差为-80kpa 左右时,将调压阀调小。待抽气减压至压力计显示压差为-97kpa 左右,保持煮沸3-5min ,关闭真空泵。 4.测定不同温度下纯液体的饱和蒸气压:当温度保持20o c 不变时,调节进 气阀使液面趋于等高。当液面等高时,关闭进气阀,记录压力表值。之后重新设置温度,重复操作。 5.测量温度 分别测定在26℃,31℃,36℃,41℃,46℃,51℃,56℃,61℃,66℃,71℃,76℃时的饱和蒸汽压。 6.实验结束,整理仪器 五、文献值 无水乙醇在标准压力下的沸点为℃,标准摩尔气化热为 KJ/mol 。 六、数据记录与数据处理 温度/K 压强/KPa P*/KPa 1/T lnP* 299 304 309

物化实验报告册

《物理化学实验》 报告册 —学年第学期 专业: 班级: 姓名: 学号:

物理化学实验是继无机化学实验、分析化学实和有机化学实验之后的一门基础实验课。综合了化学领域中各分支所需的基本研究工具和方法,通过实验的手段,研究物质的物理化学性质以及这些物理化学性质与化学反应之间的关系,从而形成规律的认识,使学生掌握物理化学的有关理论、实验方法和实验技术,以培养学生分析问题和解决问题的能力。 物理化学实验的主要目的是使学生能够掌握物理化学实验的基本方法和技能,从而能够根据所学原理设计实验,正确选择和使用仪器,培养学生正确地观察现象,记录数据和处理数据以及分析式样结果的能力;培养学生严肃认真、实事求是的科学态度和作风;通过物理化学实验课程的教学还可以验证所学的原理,加深和巩固对物理化学原理的理解,提高学生对物理化学知识灵活运用的能力。 为了达到上述目的,必须对学生进行正确而严格的基本操作训练,并提出明确的要求。实验过程中的具体要求分为以下三个方面: 一、实验前的预习 1.实验前必须充分预习,明确实验内容和目的,掌握实验的基本原理,了解所用仪器、仪表的构造和操作规程,熟悉实验步骤,明确实验要测量的数据并做好实验记录。 2.写出预习报告,内容包括实验目的、原理和简单的实验内容提要,针对实验时要记录的数据详细地设计一个原始数据记录表格,预习报告在实验前交教师检查。 二、实验过程 1.进入实验室后不得大声喧哗和乱摸乱动,根据教师安排按实验台编号进入到指定的实验台,检查核对所需仪器。 2.不了解仪器使用方法前不得乱试,不得擅自拆卸仪器。仪器安装调试好后,必须经教师检查无误后方能进行实验。 3.遇有仪器损坏,应立即报告,检查原因,并登记损坏情况。 4.严格按实验操作规程进行,不得随意改动,若确有改动的必要,事先应取得教师的同意。5.应注意养成良好的记录习惯。记录数据要求完全,准确.、整齐、清楚。所有数据应记录在预习报告上,不能只拣好的记,不得用铅笔或红笔记录。要采用表格形式记录数据。不能随意涂改数据。如发现某个数据有问题应该舍弃时,可用笔先将其划掉,再写出正确数据。6.充分利用实验时间,观察现象,记录数据,分析和思考问题,提高学习效率。 7.实验完毕,应将数据交教师审查合格并签字后,再拆实验装置,如数据不合格需补做或重做。 8.实验过程中应爱护仪器,节约药品。实验完毕后应仔细清洗和整理实验仪器,打扫实验室卫生。 三、实验报告 实验结束后,应严格地根据实验记录,对实验现象作出解释,写出有关反应,或根据实验数据进行处理和计算,作出相应的结论,并对实验中的问题进行讨论,独立完成实验报告,及时交指导教师审阅。书写实验报告应字迹端正,简明扼要,整齐清洁。

相关文档
最新文档