任意角和弧度制及任意角的三角函数教案

合集下载

1.1.1任意角(教案)

1.1.1任意角(教案)

1.1 任意角和弧度制1.1.1 任意角【教学内容解析】本节课内容是《普通高中课程标准实验教科书数学》人教A版必修4第一章《三角函数》1.1《任意角和弧度制》中第1.1.1节《任意角》的第一课时,本节教学内容为任意角,主要学习任意角的推广、象限角、用几何和符号表示终边相同的角.本节内容为三角函数的第一节,终边相同的角的表示为后面证明恒等式、化简及利用诱导公式求三角函数的值奠定基础.由此确定本节课的教学重点为:教学重点:将0°~360°的角的概念推广到任意角.【学情分析】学生早在小学与初中学习过“角”,对角的概念有一定印象,但是过去接触过的角都在0°~360°,在对角的认识上已经形成一定的思维定势,所以在本小节要将角的概念推广可能会有一定的困难.用集合和符号来表示终边相同的角,涉及任意角、象限角、终边相同的角等新概念,对学生来说刚刚将角推广到任意角,然后就利用它来解决终边相同的角,是学习的主要难点.故确定本节课的教学难点为:教学难点:角的概念的推广,终边相同的角的表示.【教学目标设置】根据上述教学内容的地位和作用,结合课程标准与学情,确定了以下目标:1.结合生活中实例,认识角的概念推广的必要性;2.初步学会在平面直角坐标系中讨论任意角,并能熟练写出与已知角终边相同的角的集合.3.通过从特殊的三个角找关系,推广到一般的终边相同的角的集合的书写,体会类比的思想方法,同时利用直角坐标系作出角解决问题,渗透数形结合的数学思想.【教学策略分析】根据本节课的教学内容、学生情况和教学目标,教学中采用“教师设疑引导,学生自主探究”的教学方法.通过启发引导,激发学生的思维,鼓励学生发现、探究、合作、展示,使其在探究中对问题本质的思考逐步深入,思维水平不断提高.针对本节课的重点——将0°~360°的角的概念推广到任意角,教学中,通过“思考”提出拨手表指针问题,引导学生感受推广角的概念的必要性,使他们明白要正确表达“校准”手表的过程,需要同时说明分针的旋转量和旋转方向,教学时,让学生自己描述“校准”过程,让学生体会仅用0°~360°的角已经难以回答当前的问题,进而引出学习课题.同时还以体操转体运动为例,进一步说明引入新概念的必要性和实际意义.针对本节课的主要难点,教学中此处设置问题,让学生自己在直角坐标系中画30°,330°,-390°,(这一组角比教材上的那组角更容易找关系)通过观察这些角得出终边相同,然后提问这些角之间有怎样的数量关系?能不能用其中一个角表示这些角?让学生自己得出这一组角中任意两角之差是360°的整数倍,进一步类比得出所有与任意角α终边相同的角,连同α在内构成一个集合的表示.通过学生自己活动解决“探究”,经历由具体数值到一般值的抽象的过程,形成对“终边相同的角相差360°的整数倍”的直观感知.教学中同时多媒体,建立坐标系,画出任意角,并测出角的大小,旋转角的终边,观察角的变化规律,从而将数、形联系起来,使角的几何表示和集合表示相结合.对例题和习题的处理上,对教材上的例2改编为终边落在x轴上的角的集合,将终边落在y轴上的角的集合作为变式,变式设置了4个问题,让学生对终边落在各个坐标轴与象限角的表示有深刻认识,总结两种方法,为后面章节学习打下基础。

高三数学总复习 任意角和弧度制及任意角的三角函数教案

高三数学总复习 任意角和弧度制及任意角的三角函数教案

芯衣州星海市涌泉学校2021届高三数学总复习任意角和弧度制及任意角的三角函数教案A版1.(必修4P15练习6改编)假设角θ同时满足sinθ<0且tanθ<0,那么角θ的终边一定落在第________象限.答案:四解析:由sinθ<0,可知θ的终边可能位于第三或者者第四象限,也可能与y轴的非正半轴重合.由tanθ<0,可知θ的终边可能位于第二象限或者者第四象限,可知θ的终边只能位于第四象限.2.角α终边过点(-1,2),那么cosα=________.答案:-3.扇形的周长是6cm,面积是2cm2,那么扇形的圆心角的弧度数是________.答案:1或者者44.角α终边上一点P(-4a,3a)(a<0),那么sinα=________.答案:-5.(必修4P15练习2改编)角θ的终边经过点P(-x,-6),且cosθ=-,那么sinθ=____________,tanθ=____________.答案:-解析:cosθ==-,解得x=.sinθ==-,tanθ=.1.任意角(1)角的概念的推广①按旋转方向不同分为正角、负角、零角.②按终边位置不同分为象限角和轴线角.(2)终边一样的角终边与角α一样的角可写成α+k·360°(k∈Z).(3)弧度制①1弧度的角:长度等于半径的圆弧所对的圆心角叫做1弧度的角.②规定:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零,|α|=,l是以角α作为圆心角时所对圆弧的长,r为半径.③弧度与角度的换算:360°=2π弧度;180°=π弧度.④弧长公式:l=|α|r.扇形面积公式:S扇形=lr=|α|r2.2.任意角的三角函数(1)任意角的三角函数定义设P(x,y)是角α终边上任一点,且|PO|=r(r>0),那么有sinα=,cosα=,tanα=,它们都是以角为自变量,以比值为函数值的函数.(2)三角函数在各象限内的正值口诀是:Ⅰ全正、Ⅱ正弦、Ⅲ正切、Ⅳ余弦.3.三角函数线设角α的顶点在坐标原点,始边与x轴非负半轴重合,终边与单位圆相交于点P,过P作PM垂直于x 轴于M,那么点M是点P在x轴上的正射影.由三角函数的定义知,点P的坐标为(cosα,sinα),即P(cosα,sinα),其中cosα=OM,sinα=MP,单位圆与x轴的正半轴交于点A,单位圆在A点的切线与α的终边或者者其反向延长线相交于点T,那么tanα=AT.我们把有向线段OM、MP、AT叫做α的余弦线、正弦线、正切线.三角函数线[备课札记]题型1三角函数的定义例1α是第二象限角,P(x,)为其终边上一点,且cosα=x,求sinα的值.解:∵OP=,∴cosα==x.又α是第二象限角,∴x<0,得x=-,∴sinα==.角α终边上一点P(-,y),且sinα=y,求cosα和tanα的值.解:r2=x2+y2=y2+3,由sinα===y,∴y=±或者者y=0.当y=即α是第二象限角时,cosα==-,tanα=-;当y=-即α是第三象限角时,cosα==-,tanα=;当y=0时,P(-,0),cosα=-1,tanα=0.题型2三角函数值的符号及断定例2(1)假设点P(sinθ·cosθ,2cosθ)位于第三象限,试判断角θ所在的象限;(2)假设θ是第二象限角,试判断sin(cosθ)的符号.解:(1)因为点P(sinθ·cosθ,2cosθ)位于第三象限,所以sinθ·cosθ<0,2cosθ<0,即所以θ为第二象限角.(2)∵2kπ+<θ<2kπ+π(k∈Z),∴-1<cosθ<0,∴sin(cosθ)<0.∴sin(cosθ)的符号是负号.点P(tanα,cosα)在第二象限,那么角α的终边在第________象限.答案:四解析:由题意,得tanα<0且cosα>0,所以角α的终边在第四象限.题型3弧长公式与扇形面积公式例3一扇形的中心角是α,所在圆的半径是R.(1)假设α=60°,R=10cm,求扇形的弧长及该弧所在的弓形面积;(2)假设扇形的周长是一定值C(C>0),当α为多少弧度时,该扇形有最大面积?解:(1)设弧长为l,弓形面积为S弓.∵α=60°=,R=10,∴l=π(cm).S弓=S扇-S△=×π×10-×102·sin60°=50cm2.(2)∵扇形周长C=2R+l=2R+αR,∴R=,∴S扇=α·R2=α=·=·≤,当且仅当α=,即α=2(α=-2舍去)时,扇形面积有最大值.2rad的圆心角所对的弦长为2,求这个圆心角所对的弧长.解:如图,∠AOB=2rad,过O点作OC⊥AB于C,并延长OC交于D.∠AOD=∠BOD=1rad,且AC=AB =1.在Rt△AOC中,AO==,从而弧AB的长为l=|α|·r=.1.假设α角与角终边一样,那么在[0,2π]内终边与角终边一样的角是________.答案:,,,解析:由题意,得α=+2kπ(k∈Z),=+(k∈Z).又∈[0,2π],所以k=0,1,2,3,=,,,.2.角α(0≤α≤2π)的终边过点P,那么α=__________.答案:解析:将点P的坐标化简得,它是第四象限的点,r=|OP|=1,cosα==.又0≤α≤2π,所以α=.3.扇形的周长为8 cm,那么该扇形面积的最大值为________cm2.答案:4解析:设扇形半径为rcm,弧长为lcm,那么2r+l=8,S=rl=r×(8-2r)=-r2+4r=-(r-2)2+4,所以Smax=4(cm2).4.假设角α的终边与直线y=3x重合且sinα<0,又P(m,n)是角α终边上一点,且|OP|=,那么m-n=________.答案:2解析:依题意知解得m=1,n=3或者者m=-1,n=-3.又sinα<0,∴α的终边在第三象限,∴n<0,∴m=-1,n=-3,∴m-n=2.1.设集合M=,N={α|-π<α<π},那么M∩N=________.答案:解析:由-π<-<π,得-<k<.∵k∈Z,∴k=-1,0,1,2,故M∩N=.2.α=,答复以下问题.(1)写出所有与α终边一样的角;(2)写出在(-4π,2π)内与α终边一样的角;(3)假设角β与α终边一样,那么是第几象限的角?解:(1)所有与α终边一样的角可表示为.(2)由(1)令-4π<2kπ+<2π(k∈Z),那么有-2-<k<1-.∵k∈Z,∴取k=-2、-1、0.故在(-4π,2π)内与α终边一样的角是-、-、.(3)由(1)有β=2kπ+(k∈Z),那么=kπ+(k∈Z).∴是第一、三象限的角.3.角α的终边经过点P(x,-2),且cosα=,求sinα和tanα.解:因为r=|OP|=,所以由cosα=,得=,解得x=0或者者x=±.当x=0时,sinα=-1,tanα不存在;当x=时,sinα=-,tanα=-;当x=-时,sinα=-,tanα=.4.在半径为10的圆O中,弦AB的长为10.(1)求弦AB所对的圆心角α的大小;(2)求α所在的扇形的弧长l及弧所在的弓形的面积S.解:(1)由圆O的半径r=10=AB,知△AOB是等边三角形,∴α=∠AOB=.(2)由(1)可知α=,r=10,∴弧长l=α·r=×10=,∴S扇形=lr=××10=,而S△AO B=·AB·=×10×=,∴S=S扇形-S△AOB=50.1.(1)要求适宜某种条件且与角终边一样,其方法是先求出与角终边一样的角的一般形式,再根据条件解方程或者者不等式.(2)角α的终边所在的直线方程,那么可先设出终边上一点的坐标,求出此点到原点的间隔,然后用三角函数的定义来求相关问题.假设直线的倾斜角为特殊角,也可直接写出角.2.角α终边上一点P的坐标,那么可先求出点P到原点的间隔r,然后用三角函数的定义求解α的三角函数值.3.弧度制下的扇形的弧长与面积公式,比角度制下的扇形的弧长与面积公式要简洁得多,用起来也方便得多.因此,我们要纯熟地掌握弧度制下扇形的弧长与面积公式.4.利用单位圆解三角不等式(组)的一般步骤(1)用边界值定出角的终边位置.(2)根据不等式(组)定出角的范围.(3)求交集,找单位圆中公一一共的部分.(4)写出角的表达式.[备课札记]。

北师大版4.1.3 任意角和弧度制及任意角的三角函数导学案

北师大版4.1.3 任意角和弧度制及任意角的三角函数导学案
答案D
【导学释疑】
1.已知sin = ,cos = ,若 是第二象限角,求实数a的值. .
2.(1)已知扇形的周长为10,面积为4,求扇形圆心角的弧度数;
(2)已知扇形的周长为40,当它的半径和圆心角取何值时,才能使扇形的面积最大?最大面积是多少?
3.设 为第三象限角,试判断 的符号. <0.
4.角 终边上的点P与A(a,2a)关于x轴对称(a≠0),角 终边上的点Q与A关于直线y=x对称,
A.-3B.3或
C.- D.-3或-
答案C
【学生小结】
谈谈学完本节课有什么收获?
教学反思
4、掌握三角函数在各个象限的符号
5.会做出某角的三角函数线
三、教学过程
【温故知新】
一、选择题
1.已知cos ·tan <0,那么角 是()
A.第一或第二象限角B.第二或第三象限角
C.第三或第四象限角D.第一或第四象限角
2.若0<x< ,则下列命题中正确的是()
A.sinx< B. sinx> C. sinx< D. sinx>
答案D
3.与610°角终边相同的角表示为
A.k·360°+230°(k∈Z)B.k·360°+250°(k∈Z)
C.k·360°+70°(k∈Z)D.k·360°+270°(k∈Z)
答案B
4.已知( )sin2 <1,则 所在象限为
A.第一或第二象限B.第二或第四象限
C.第二或第三象限D.第一或第三象限
求sin ·cos +sin ·cos +tan ·tan 的值.-1.
【检测反馈】
5.已知点P(tan ,cos )在第三象限,则角 的终边在第几象限()

任意角、弧度制、任意角的三角函数教学设计

任意角、弧度制、任意角的三角函数教学设计

高三复习课《任意角、弧度制、任意角的三角函数》教学设计一.教学内容解析:这一节的内容主要有任意角的概念,包括正角、负角、零角,终边相同的角,象限角;弧度制,包括1弧度交的定义,角与弧长、半径的关系,角度与弧度的互换,扇形的面积公式;任意角的三角函数,这是这一节的重点,包括任意角的三角函数的定义,诱导公式一,角的三角函数在象限的符号,三角函数线等。

二. 教学目标设置:1.知识目标:(1)了解任意角的概念,掌握终边相同角的关系以及象限角的范围;(2)了解弧度制的概念,能进行角度与弧度的互化,掌握扇形的弧长公式与面积公式;(3)掌握任意角的三角函数的定义,会判断角的三角函数在象限的符号,理解三角函数线的定义,并能简单的运用等。

2.能力目标:(1)培养学生整理知识的能力;(2)培养学生的分析能力、观察能力、理解能力。

(3)培养学生的类比能力、探索能力。

(4)培养学生运用运用数学思想思考问题的能力。

三.学生学情分析:高三学生已经掌握了一定的知识,但知识网络不够完整;能解一些题,但解题方法还有所欠缺。

四.教学策略分析:通过思维导图的形式,展现知识点之间的内在联系;通过对问题的剖析,结合数学思想(化归与转化、数形结合、分类讨论、函数与方程等)探讨如何解题。

五.教学过程:1.知识的整理:画一个直角三角形,引导学生回忆初中三角函数的定义,举出两个特殊的直角三角形(用途:记住特殊的三角函数值)。

再从特殊到一般,让学生挖掘斜三角形的性质(学生课后整理)。

然后类比到扇形,找出相似点,引出1弧度角的定义,弧长、半径与圆心角的关系,弧度与角度的互化。

再把锐角推广的任意角,坐标角,引出象限角,半角的范围,角与角终边的关系。

再类比直角三角形中角的三角函数的定义,推广任意角的三角函数的定义,利用角与角终边的关系,得到诱导公式。

然后根据任意角的三角函数的定义,得到角的三角函数在象限的符号。

再得到三角函数线的定义及应用。

【设计意图】首先培养建立知识体系的能力。

高中数学教案《任意角和弧度制》

高中数学教案《任意角和弧度制》

教学计划:《任意角和弧度制》一、教学目标1.知识与技能:学生能够理解并掌握任意角的概念,熟悉角度制与弧度制的转换方法,掌握利用弧度制进行简单三角函数的计算。

2.过程与方法:通过直观演示和抽象概括,引导学生自主探究任意角与弧度制的定义及性质;通过例题解析和课堂练习,提高学生的逻辑思维能力和数学运算能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生严谨的科学态度和探究精神;通过学习任意角和弧度制,让学生体会到数学知识的连续性和统一性。

二、教学重点和难点●教学重点:任意角的概念,角度制与弧度制的转换,弧度制下三角函数的基本性质。

●教学难点:理解并接受弧度制作为角的另一种度量方式,以及利用弧度制进行三角函数的计算。

三、教学过程1. 引入新课(约5分钟)●情境导入:以生活中的实例(如钟表指针的转动、体操运动员的旋转动作)为例,引导学生思考角的度量不仅仅局限于0°到360°之间,从而引出任意角的概念。

●定义揭示:明确任意角的定义,包括正角、负角和零角,强调角的旋转方向和度量范围。

●激发兴趣:简述历史上角度制与弧度制的发展过程,引起学生对弧度制的好奇心。

2. 讲授新知(约15分钟)●弧度制介绍:详细介绍弧度制的定义,即弧长与半径的比值,强调弧度制在三角学和微积分中的重要性。

●转换方法:讲解角度制与弧度制之间的转换公式,并通过具体例子演示转换过程。

●性质探讨:引导学生探讨弧度制下三角函数的基本性质,如正弦、余弦和正切函数的周期性、奇偶性等。

3. 直观演示与操作(约10分钟)●单位圆与弧度制:利用多媒体或实物教具展示单位圆上的角度与弧度的对应关系,加深学生对弧度制的理解。

●互动操作:让学生在纸上绘制单位圆,并尝试用尺子量取特定弧长,计算对应的弧度值,以增强感性认识。

●小组讨论:组织学生讨论角度制与弧度制的优缺点,促进知识的内化和吸收。

4. 例题解析与练习(约15分钟)●例题解析:选取典型例题,如角度制与弧度制的转换、利用弧度制计算三角函数值等,进行详细解析,展示解题步骤和思路。

2025届高考数学一轮复习教案:三角函数-任意角和弧度制及三角函数的概念

2025届高考数学一轮复习教案:三角函数-任意角和弧度制及三角函数的概念

第一节任意角和弧度制及三角函数的概念【课程标准】1.了解任意角的概念和弧度制;2.能进行弧度与角度的互化;3.借助单位圆理解三角函数(正弦、余弦、正切)的定义.【考情分析】考点考法:高考命题常以角为载体,考查扇形的弧长、面积、三角函数的定义;三角函数求值是高考热点,常以选择题或填空题的形式出现.核心素养:数学抽象、数学运算【必备知识·逐点夯实】【知识梳理·归纳】1.角的概念的推广(1)定义:角可以看成一条射线绕着它的端点旋转所成的图形.(2)分类按旋转方向正角、负角、零角按终边位置象限角和轴线角(3)相反角:我们把射线OA绕端点O按不同方向旋转相同的量所成的两个角叫做互为相反角.角α的相反角记为__-α__.(4)终边相同的角:所有与角α终边相同的角,连同角α在内,可构成一个集合S={β|β=α+k·360°,k∈Z}.2.弧度制的定义和公式(1)定义:把长度等于半径长的圆弧所对的圆心角叫做1弧度的角,弧度单位用符号rad表示.(2)公式角α的弧度数公式|α|=l r(弧长用l表示)角度与弧度的换算1°=180rad;1rad=(180)°弧长公式弧长l=|α|r扇形面积公式S=12lr=12|α|r23.任意角的三角函数(1)任意角的三角函数的定义(推广):设P(x,y)是角α终边上异于原点的任意一点,其到原点O的距离为r,则sinα=, cosα=,tanα=(x≠0).(2)三角函数值在各象限内的符号:一全正、二正弦、三正切、四余弦.(3)三角函数的定义域三角函数sinαcosαtanα定义域R R{α|α≠kπ+π2,k∈Z}【基础小题·自测】类型辨析改编易错题号12,341.(多维辨析)(多选题)下列说法正确的是()A.-π3是第三象限角B.若角α的终边过点P(-3,4),则cosα=-35C.若sinα>0,则α是第一或第二象限角D.若圆心角为π3的扇形的弧长为π,则该扇形面积为3π2【解析】选BD.因为-π3是第四象限角,所以选项A错误;由三角函数的定义可知,选项B正确;由sinα>0可知,α是第一或第二象限角或终边在y轴的非负半轴上,所以选项C错误;由扇形的面积公式可知,选项D正确.2.(必修第一册P175练习T1改题型)-660°等于()A.-133πB.-256πC.-113πD.-236π【解析】选C.-660°=-660×π180=-113π.3.(必修第一册P176习题T2改条件)下列与角11π4的终边相同的角的表达式中正确的是()A.2kπ+135°(k∈Z)B.k·360°+11π4(k∈Z)C.k·360°+135°(k∈Z)D.kπ+3π4(k∈Z)【解析】选C.与11π4的终边相同的角可以写成2kπ+3π4(k∈Z)或k·360°+135°(k∈Z),但是角度制与弧度制不能混用,排除A,B,易知D错误,C正确.4.(忽视隐含条件)设α是第二象限角,P(x,8)为其终边上的一点,且sinα=45,则x=()A.-3B.-4C.-6D.-10【解析】选C.因为P(x,8)为其终边上的一点,且sinα=45,所以sinα=45,解得x=±6,因为α是第二象限角,所以x=-6.【巧记结论·速算】α所在象限与2所在象限的关系α所在象限一二三四α2所在象限一、三一、三二、四二、四【即时练】设θ是第三象限角,且|cos2|=-cos2,则2是()A.第一象限角B.第二象限角C.第三象限角D.第四象限角【解析】选B.因为θ是第三象限角,所以2的终边落在第二、四象限,又|cos2|= -cos2,所以cos2<0,所以2是第二象限角.【核心考点·分类突破】考点一象限角及终边相同的角[例1](1)(2023·宁波模拟)若α是第二象限角,则()A.-α是第一象限角B.2是第三象限角C.3π2+α是第二象限角D.2α是第三或第四象限角或在y轴负半轴上【解析】选D.因为α是第二象限角,可得π2+2kπ<α<π+2kπ,k∈Z,对于A,可得-π-2kπ<-α<-π2-2kπ,k∈Z,此时-α位于第三象限,所以A错误;对于B,可得π4+kπ<2<π2+kπ,k∈Z,当k为偶数时,2位于第一象限;当k为奇数时,2位于第三象限,所以B错误;对于C,可得2π+2kπ<3π2+α<5π2+2kπ,k∈Z,即2(k+1)π<3π2+α<π2+2(k+1)π,k∈Z,所以3π2+α位于第一象限,所以C错误;对于D,可得π+4kπ<2α<2π+4kπ,k∈Z,所以2α是第三或第四象限角或在y轴负半轴上,所以D正确.(2)在-720°~0°内所有与45°终边相同的角为-675°和-315°.【解析】所有与45°终边相同的角可表示为β=45°+k×360°(k∈Z),当k=-1时,β=45°-360°=-315°,当k=-2时,β=45°-2×360°=-675°.【解题技法】1.知α确定kα,(k∈N*)的终边位置的步骤(1)写出kα或的范围;(2)根据k的可能取值确定kα或的终边所在位置.2.求适合某些条件的角的方法(1)写出与这个角的终边相同的角的集合;(2)依据题设条件,确定参数k的值,得出结论.【对点训练】已知角θ在第二象限,且|sin2|=-sin2,则角2在()A.第一象限或第三象限B.第二象限或第四象限C.第三象限D.第四象限【解析】选C.因为角θ是第二象限角,所以θ∈(π2+2kπ,π+2kπ),k∈Z,所以2∈(π4+kπ,π2+kπ),k∈Z,所以角2在第一或第三象限.又|sin2|=-sin2,所以sin2<0,所以角2在第三象限.考点二弧度制及其应用[例2]已知扇形的圆心角是α,半径为R,弧长为l.(1)若α=π3,R=10cm,求扇形的弧长l.(2)(一题多法)若扇形的周长是16cm,当扇形的圆心角为多少弧度时,这个扇形的面积最大?(3)若α=π3,R=2cm,求扇形的弧所在的弓形的面积.【解析】(1)因为α=π3,R=10cm,所以l=|α|R=π3×10=10π3(cm).(2)方法一:由题意知2R+l=16,所以l=16-2R(0<R<8),则S=12lR=12(16-2R)R=-R2+8R=-(R-4)2+16,当R=4cm时,S max=16cm2,l=16-2×4=8(cm),α==2,所以S的最大值是16cm2,此时扇形的半径是4cm,圆心角α=2rad.方法二:S=12lR=14l·2R≤14·(r22)2=16,当且仅当l=2R,即R=4cm时,S的最大值是16cm2.此时扇形的圆心角α=2rad.(3)设弓形面积为S弓形,由题意知l=2π3cm,所以S弓形=12×2π3×2-12×22×sinπ3=(2π3-3)cm2.【解题技法】应用弧度制解决问题时的注意事项(1)利用扇形的弧长和面积公式解题时,要注意角的单位必须是弧度.(2)求扇形面积最大值的问题时,常转化为基本不等式或二次函数的最值问题.(3)在解决弧长和扇形面积问题时,要合理地利用圆心角所在的三角形.【对点训练】若扇形的周长是16cm,圆心角是360π度,则扇形的面积(单位cm2)是16.【解析】设扇形的半径为r cm,圆心角弧度数为α=360π·π180=2,所以αr+2r=16即4r=16,所以r=4,所以S=12αr2=12×2×16=16.答案:【加练备选】已知弧长为60cm的扇形面积是240cm2,求:(1)扇形的半径;(2)扇形圆心角的弧度数.【解析】设扇形的弧长为l,半径为r,面积为S,圆心角为α.(1)由题意得S=12lr=12×60r=240,解得r=8(cm),即扇形的半径为8cm.(2)α==608=152,所以扇形圆心角的弧度数为152rad.考点三三角函数的定义及应用【考情提示】三角函数的定义主要考查利用定义求三角函数值及三角函数值符号的应用,常与三角函数求值相结合命题,题目多以选择题、填空题形式出现.角度1利用定义求三角函数值[例3](1)已知角α的终边经过点P(2,-3),则sinα=-31313,tanα=-32.【解析】因为x=2,y=-3,所以点P到原点的距离r=22+(-3)2=13.则sinα===-31313,tanα==-32.(2)若角60°的终边上有一点A(4,a),则a=43.【解析】由题设知:tan60°=4=3,即a=43.角度2三角函数值的符号[例4](1)若sinαtanα<0,且cos tan>0,则角α是()A.第一象限角B.第二象限角C.第三象限角D.第四象限角【解析】选B.由sinαtanα<0,知α是第二象限或第三象限角,由cos tan>0,知α是第一象限或第二象限角,所以角α是第二象限角.(2)sin2cos3tan4的值()A.小于0B.大于0C.等于0D.不存在【解析】选A.因为π2<2<3<π<4<3π2,所以sin2>0,cos3<0,tan4>0.所以sin2cos3tan4<0.【解题技法】与三角函数定义有关的解题策略(1)利用三角函数的定义,已知角α终边上一点P的坐标,可以求出α的三角函数值;已知角α的三角函数值,也可以求出点P的坐标.(2)利用角所在的象限判定角的三角函数值的符号时,特别要注意不要忽略角的终边在坐标轴上的情况.【对点训练】1.(多选题)设△ABC的三个内角分别为A,B,C,则下列各组数中有意义且均为正值的是()A.tan A与cos BB.cos B与sin CC.tan2与cos2D.tan2与sin C【解析】选CD.因为A,B的范围不确定,所以A选项不满足条件;cos B与sin C都有意义,但cos B不一定为正值,故B选项不满足条件;因为B,C∈(0,π),所以2,2∈(0,π2),所以C选项满足条件;因为0<A<π,所以0<2<π2,所以tan2>0,又因为0<C<π,所以sin C>0,故D选项满足条件.2.已知角θ的终边经过点(2a+1,a-2),且cosθ=35,则实数a的值是()A.-2B.211C.-2或211D.1【解析】选B.由题设可知=35且2a+1>0,即a>-12,所以42+4r152+5=925,则11a2+20a-4=0,解得a=-2或a=211,又a>-12,所以a=211.【加练备选】已知角α的终边上一点P的坐标为(sin5π6,cos5π6),则角α的最小正值为5π3.【解析】因为sin5π6>0,cos5π6<0,所以角α的终边在第四象限,根据三角函数的定义,可知sinα=cos5π6=-32,故角α的最小正值为α=2π-π3=5π3.。

任意角的三角函数及弧度制教案及练习(含答案)

任意角的三角函数及弧度制教案及练习(含答案)

第一章:三角函数第一课时教材:角的概念的推广目的:要求学生掌握用“旋转”定义角的概念,并进而理解“正角”“负角”“象限角”“终边相同的角”的含义。

过程:一、提出课题:“三角函数”回忆初中学过的“锐角三角函数”——它是利用直角三角形中两边的比值来定义的。

相对于现在,我们研究的三角函数是“任意角的三角函数”,它对我们今后的学习和研究都起着十分重要的作用,并且在各门学科技术中都有广泛应用。

二、角的概念的推广1.回忆:初中是任何定义角的?(从一个点出发引出的两条射线构成的几何图形)这种概念的优点是形象、直观、容易理解,但它的弊端在于“狭隘”2.讲解:“旋转”形成角突出“旋转”注意:“顶点”“始边”“终边”“始边”往往合于x轴正半轴3.“正角”与“负角”——这是由旋转的方向所决定的。

记法:角α或α∠可以简记成α4.由于用“旋转”定义角之后,角的范围大大地扩大了。

1︒角有正负之分如:α=210︒β=-150︒γ=-660︒2︒角可以任意大实例:体操动作:旋转2周(360︒³2=720︒) 3周(360︒³3=1080︒)3︒还有零角一条射线,没有旋转三、关于“象限角”为了研究方便,我们往往在平面直角坐标系中来讨论角角的顶点合于坐标原点,角的始边合于x轴的正半轴,这样一来,角的终边落在第几象限,我们就说这个角是第几象限的角(角的终边落在坐标轴上,则此角不属于任何一个象限)例如:30︒ 390︒-330︒是第Ⅰ象限角, 300︒-60︒是第Ⅳ象限角585︒ 1180︒是第Ⅲ象限角,-2000︒是第Ⅱ象限角等四、关于终边相同的角1.观察:390︒,-330︒角,它们的终边都与30︒角的终边相同2.终边相同的角都可以表示成一个0︒到360︒的角与)k∈个周角的和(Zk390︒=30︒+360︒)1k(=-330︒=30︒-360︒ )1(-=k 30︒=30︒+0³360︒ )0(=k 1470︒=30︒+4³360︒ )4(=k -1770︒=30︒-5³360︒ )5(-=k3.所有与α终边相同的角连同α在内可以构成一个集合 {}Z k k S ∈⋅+==,360| αββ即:任何一个与角α终边相同的角,都可以表示成角α与整数个周角的和 五、小结: 1︒ 角的概念的推广, 用“旋转”定义角,角的范围的扩大 2︒“象限角”与“终边相同的角”第二课时教材:弧度制目的:要求学生掌握弧度制的定义,学会弧度制与角度制互化,并进而建立角的集合与实数集R 一一对应关系的概念。

任意角和弧度制教案

任意角和弧度制教案

任意角和弧度制教案教案标题:任意角和弧度制教案教案目标:1. 了解任意角的概念,能够在坐标系中表示和定位任意角。

2. 理解弧度制的概念,能够在弧度制和度数制之间进行转换。

3. 掌握任意角的三角函数值的计算方法。

教学准备:1. 教师准备:教学投影仪、白板、笔记本电脑、教学PPT等。

2. 学生准备:纸和铅笔。

教学过程:Step 1: 引入1. 教师通过展示一张钟表图,引导学生思考角度的概念。

提问:你们平时见过哪些角度的度量方式?2. 学生回答后,教师解释度数制的概念,并引出本节课学习的内容:任意角和弧度制。

Step 2: 任意角的表示和定位1. 教师通过示意图和坐标系,解释任意角的表示方法。

提醒学生注意正角、负角和零角的特点。

2. 学生跟随教师的指导,在纸上练习绘制不同角度的示意图,并用坐标系表示和定位这些角。

Step 3: 弧度制的介绍和转换1. 教师给出弧度制的定义:1弧度是半径等于1的圆的弧所对应的角。

2. 教师通过示意图和实际物体(如一根铁丝弯成的圆弧),展示弧度制的概念和计算方法。

3. 教师引导学生进行度数制和弧度制之间的转换练习,提供一些常见的转换例题。

Step 4: 任意角的三角函数值的计算1. 教师复习正弦、余弦和正切的定义,并介绍任意角的三角函数值的计算方法。

2. 教师通过示例演示三角函数值的计算步骤,引导学生进行练习。

Step 5: 拓展应用1. 教师提供一些与任意角和弧度制相关的实际问题,引导学生运用所学知识解决问题。

2. 学生个别或小组合作完成拓展应用题。

Step 6: 总结和归纳1. 教师带领学生总结本节课所学内容,并强调重点和难点。

2. 学生将所学知识进行整理和归纳,完成课堂笔记。

Step 7: 作业布置1. 教师布置相关的课后作业,包括练习题和思考题。

2. 学生完成作业,以便巩固所学知识。

教学评估:1. 教师观察学生在课堂上的参与度和理解程度。

2. 教师检查学生完成的课堂练习和作业,评估学生的掌握情况。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章三角函数、三角恒等变换及解三角形第1课时任意角和弧度制及任意角的三角函数(对应学生用书(文)、(理)40~41页)页考情分析考点新知①了解任意角的概念;了解终边相同的角的意义.②了解弧度的意义,并能进行弧度与角度的互化.③理解任意角三角函数(正弦、余弦、正切)的定义;初步了解有向线段的概念,会利用单位圆中的三角函数线表示任意角的正弦、余弦、正切.①能准确进行角度与弧度的互化.②准确理解任意角三角函数的定义,并能准确判断三角函数的符号.1. (必修4P15练习6改编)若角θ同时满足sinθ<0且tanθ<0,则角θ的终边一定落在第________象限.答案:四解析:由sin θ<0,可知θ的终边可能位于第三或第四象限,也可能与y 轴的非正半轴重合.由tan θ<0,可知θ的终边可能位于第二象限或第四象限,可知θ的终边只能位于第四象限.2. 角α终边过点(-1,2),则cos α=________. 答案:-553. 已知扇形的周长是6cm ,面积是2cm 2,则扇形的圆心角的弧度数是________.答案:1或44. 已知角α终边上一点P(-4a ,3a)(a<0),则sin α=________. 答案:-355. (必修4P 15练习2改编)已知角θ的终边经过点P(-x ,-6),且cos θ=-513,则sin θ=____________,tan θ=____________.答案:-1213 125 解析:cos θ=-xx 2+36=-513,解得x =52.sin θ=-6⎝ ⎛⎭⎪⎫-522+(-6)2=-1213,tan θ=125.1. 任意角(1) 角的概念的推广① 按旋转方向不同分为正角、负角、零角. ② 按终边位置不同分为象限角和轴线角. (2) 终边相同的角终边与角α相同的角可写成α+k·360°(k ∈Z ). (3) 弧度制① 1弧度的角:长度等于半径的圆弧所对的圆心角叫做1弧度的角.② 规定:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零,|α|=lr ,l 是以角α作为圆心角时所对圆弧的长,r 为半径.③ 弧度与角度的换算:360°=2π弧度;180°=π弧度. ④ 弧长公式:l =|α|r .扇形面积公式:S 扇形=12lr =12|α|r 2. 2. 任意角的三角函数 (1) 任意角的三角函数定义设P(x ,y)是角α终边上任一点,且|PO|=r(r >0),则有sin α=yr ,cos α=x r ,tan α=yx ,它们都是以角为自变量,以比值为函数值的函数.(2) 三角函数在各象限内的正值口诀是:Ⅰ全正、Ⅱ正弦、Ⅲ正切、Ⅳ余弦.3. 三角函数线设角α的顶点在坐标原点,始边与x轴非负半轴重合,终边与单位圆相交于点P,过P作PM垂直于x轴于M,则点M是点P在x 轴上的正射影.由三角函数的定义知,点P的坐标为(cosα,sinα),即P(cosα,sinα),其中cosα=OM,sinα=MP,单位圆与x轴的正半轴交于点A,单位圆在A点的切线与α的终边或其反向延长线相交于点T,则tanα=AT.我们把有向线段OM、MP、AT叫做α的余弦线、正弦线、正切线.三角函数线[备课札记]题型1三角函数的定义例1α是第二象限角,P(x,5)为其终边上一点,且cosα=2 4x,求sinα的值.解:∵ OP =x 2+5,∴ cos α=x x 2+5=24x.又α是第二象限角,∴ x<0,得x =-3, ∴ sin α=5x 2+5=104. 变式训练已知角α终边上一点P(-3,y),且sin α=24y ,求cos α和tan α的值.解:r 2=x 2+y 2=y 2+3,由sin α=y r =yy 2+3=24y , ∴ y =±5或y =0.当y =5即α是第二象限角时,cos α=xr =-64,tan α=-153;当y =-5即α是第三象限角时,cos α=x r =-64,tan α=153;当y =0时,P(-3,0), cos α=-1,tan α=0.题型2 三角函数值的符号及判定例2 (1) 如果点P(sin θ·cos θ,2cos θ)位于第三象限,试判断角θ所在的象限;(2) 若θ是第二象限角,试判断sin(cos θ)的符号. 解:(1) 因为点P(sin θ·cos θ,2cos θ)位于第三象限, 所以sin θ·cos θ<0,2cos θ<0,即⎩⎨⎧sin θ>0,cos θ<0,所以θ为第二象限角. (2) ∵ 2k π+π2<θ<2k π+π(k ∈Z ),∴ -1<cos θ<0, ∴ sin(cos θ)<0.∴ sin(cos θ)的符号是负号. 备选变式(教师专享)已知点P(tan α,cos α)在第二象限,则角α的终边在第________象限.答案:四解析:由题意,得tan α<0且cos α>0,所以角α的终边在第四象限.题型3 弧长公式与扇形面积公式例3 已知一扇形的中心角是α,所在圆的半径是R.(1) 若α=60°,R =10cm ,求扇形的弧长及该弧所在的弓形面积;(2) 若扇形的周长是一定值C(C>0),当α为多少弧度时,该扇形有最大面积?解:(1) 设弧长为l ,弓形面积为S 弓. ∵ α=60°=π3,R =10,∴ l =103π(cm).S 弓=S 扇-S △=12×103π×10-12×102·sin60°=50⎝ ⎛⎭⎪⎪⎫π3-32 cm 2. (2) ∵ 扇形周长C =2R +l =2R +αR ,∴ R =C2+α,∴ S 扇=12α·R 2=12α⎝ ⎛⎭⎪⎪⎫C 2+α2=C 22·α4+4α+α2=C 22·14+α+4α≤C 216,当且仅当α=4α,即α=2(α=-2舍去)时,扇形面积有最大值C 216.备选变式(教师专享)已知2rad 的圆心角所对的弦长为2,求这个圆心角所对的弧长.解:如图,∠AOB =2rad ,过O 点作OC ⊥AB 于C ,并延长OC 交AB ︵于D.∠AOD =∠BOD =1rad ,且AC =12AB =1.在Rt △AOC 中,AO =AC sin ∠AOC =1sin1,从而弧AB 的长为l =|α|·r =2sin1.1. 若α角与8π5角终边相同,则在[0,2π]内终边与α4角终边相同的角是________.答案:2π5,9π10,7π5,19π10解析:由题意,得α=8π5+2k π(k ∈Z ),α4=2π5+k π2(k ∈Z ).又α4∈[0,2π],所以k =0,1,2,3,α4=2π5,9π10,7π5,19π10.2. 已知角α(0≤α≤2π)的终边过点P ⎝ ⎛⎭⎪⎫sin 2π3,cos2π3,则α=__________.答案:11π6解析:将点P 的坐标化简得⎝ ⎛⎭⎪⎫32,-12,它是第四象限的点,r =|OP|=1,cos α=x r =32.又0≤α≤2π,所以α=11π6.3. 已知扇形的周长为8 cm ,则该扇形面积的最大值为________cm 2.答案:4解析:设扇形半径为r cm ,弧长为l cm ,则2r +l =8,S =12rl =12r ×(8-2r)=-r 2+4r =-(r -2)2+4,所以S max =4(cm 2).4. 若角α的终边与直线y =3x 重合且sin α<0,又P(m ,n)是角α终边上一点,且|OP|=10,则m -n =________.答案:2解析:依题意知⎩⎨⎧n =3m ,m 2+n 2=10.解得m =1,n =3或m =-1,n =-3. 又sin α<0,∴ α的终边在第三象限, ∴ n <0,∴ m =-1,n =-3,∴ m -n =2.1. 设集合M =⎩⎨⎧⎭⎬⎫α⎪⎪⎪α=kπ2-π3,k ∈Z ,N ={α|-π<α<π},则M ∩N =________.答案:⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫-56π,-π3,π6,23π 解析:由-π<kπ2-π3<π,得-43<k <83.∵ k ∈Z ,∴ k =-1,0,1,2,故M ∩N =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫-56π,-π3,π6,23π. 2. 已知α=π3,回答下列问题. (1) 写出所有与α终边相同的角;(2) 写出在(-4π,2π)内与α终边相同的角; (3) 若角β与α终边相同,则β2是第几象限的角? 解: (1) 所有与α终边相同的角可表示为 ⎩⎨⎧⎭⎬⎫θ⎪⎪⎪θ=2kπ+π3,k ∈Z .(2) 由(1) 令-4π<2kπ+π3<2π(k ∈Z ), 则有-2-16<k <1-16. ∵ k ∈Z ,∴ 取k =-2、-1、0.故在(-4π,2π)内与α终边相同的角是-11π3、-5π3、π3. (3) 由(1) 有β=2kπ+π3(k ∈Z ),则β2=kπ+π6(k ∈Z ). ∴ β2是第一、三象限的角.3. 已知角α的终边经过点P(x ,-2),且cos α=x3,求sin α和tan α.解:因为r =|OP|=x 2+(-2)2,所以由cos α=x3,得xx 2+(-2)2=x3,解得x =0或x =±5. 当x =0时,sin α=-1,tan α不存在;当x =5时,sin α=-23,tan α=-255;当x =-5时,sin α=-23,tan α=255.4. 已知在半径为10的圆O 中,弦AB 的长为10. (1) 求弦AB 所对的圆心角α的大小;(2) 求α所在的扇形的弧长l 及弧所在的弓形的面积S.解:(1) 由圆O 的半径r =10=AB ,知△AOB 是等边三角形,∴ α=∠AOB =π3.(2) 由(1)可知α=π3,r =10,∴ 弧长l =α·r =π3×10=10π3,∴ S 扇形=12lr =12×10π3×10=50π3,而S △AOB=12·AB ·1032=12×10×1032=5032,∴ S =S 扇形-S △AOB =50⎝ ⎛⎭⎪⎪⎫π3-32.1. (1) 要求适合某种条件且与已知角终边相同,其方法是先求出与已知角终边相同的角的一般形式,再根据条件解方程或不等式.(2) 已知角α的终边所在的直线方程,则可先设出终边上一点的坐标,求出此点到原点的距离,然后用三角函数的定义来求相关问题.若直线的倾斜角为特殊角,也可直接写出角.2. 已知角α终边上一点P的坐标,则可先求出点P到原点的距离r,然后用三角函数的定义求解α的三角函数值.3. 弧度制下的扇形的弧长与面积公式,比角度制下的扇形的弧长与面积公式要简洁得多,用起来也方便得多.因此,我们要熟练地掌握弧度制下扇形的弧长与面积公式.4. 利用单位圆解三角不等式(组)的一般步骤(1) 用边界值定出角的终边位置.(2) 根据不等式(组)定出角的范围.(3) 求交集,找单位圆中公共的部分.(4) 写出角的表达式.请使用课时训练(B)第1课时(见活页).[备课札记]。

相关文档
最新文档