泰勒公式(泰勒中值定理)

合集下载

泰勒公式展开

泰勒公式展开

泰勒公式展开泰勒公式也称为泰勒中值定理,是高等数学中的一个重要定理,也是考研数学中的一个重要考点,常用于函数极限的计算、中值问题和不等式的证明以及函数的无穷级数展开式中,因此大家应该理解并熟练掌握其应用。

f(x)=f(x0)+f′(x0)1!⋅(x−x0)+f′′(x0)2!⋅(x−x0)2+...+f(n)(x0)n!⋅(x−x0)n+Rn(x)f(x)=f(x0)+f′(x0)1!⋅(x−x0)+f″(x0)2!⋅(x−x0)2+...+f(n)(x0)n!⋅(x−x0)n+Rn(x) 即:f(x)=f(x0)+∑i=1nf(i)(x0)i!⋅(x−x0)i+Rn(x)即:f(x)=f(x0)+∑i=1nf(i)(x0)i!⋅(x−x0)i+Rn(x)其中Rn(x)Rn(x)表示泰勒公式的余项,可以估算近似的误差,相当于无穷小将其中的x0x0带入00就可以得到麦克劳林展开,即f(x)=f(0)+f′(0)1!⋅x+f′′(0)2!⋅x2+...+fn(0)n!⋅xnf(x)=f(0)+f′(0)1!⋅x+f″(0)2!⋅x2+...+fn(0)n!⋅xn 然后虽然我们知道了这两个公式,还是不会用诶(当然大佬可能都是知道怎么用的..然而我确是一脸懵233)..下面说两个实例展开y=sin(x)y=sin⁡(x)和y=cos(x)y=cos⁡(x)用y=sin(x)y=sin⁡(x)来说:前置知识:fn(x)=sin(x+nπ2)fn(x)=sin(x+nπ2)(推一下x=1、2、3...x=1、2、3...即可找到公式)然后我们需要求出f(0)f(0)的nn阶导,推一下发现f1(0)f3(0)f5(0)f7(0)=1=−1=1=−1f2(0)=0f4(0)=0f6(0)=0f8(0)=0f1(0)=1f2(0)=0f3(0)=−1f4(0)=0f5(0)=1f6(0)=0f7(0)=−1f8(0)=0也就是f2n−1(0)=(−1)n−1f2n−1(0)=(−1)n−1,f2n(0)=0f2n(0)=0 通过麦克劳林展开可以得到sin(x)=x1!−x33!+x55!−...+(−1)n−1x2n−1(2n−1)!sin(x)=x1!−x33!+x55!−...+(−1)n−1x2n−1(2n−1)!同理可以得到cos(x)=1−x22!+x44!−...+(−1)nx2n(2n)!cos(x)=1−x22!+x44!−...+(−1)nx2n(2n)!计算近似值前置知识:e=limx→0(1+x)1xe=limx→0(1+x)1x即e=limx→∞(1+1x)xe=limx→∞(1+1x)x因此令f(x)=exf(x)=ex通过麦克劳林展开可以得到ex=f(x)=e0+e01!⋅x+e02!⋅x2+...+e0n!⋅xn+Rn=1+x1!+x22!+x33!+...+xnn!+Rnex=f(x)=e0+e01!⋅x+e02!⋅x2+...+e0n!⋅xn+Rn=1+x1!+x22!+x33!+...+xnn!+Rn忽略余项得到ex≈1+x1!+x22!+x33!+...+xnn!+Rnex≈1+x1!+x22!+x33!+...+xnn! +Rn带入x=1x=1,e≈1+11!+12!+13!+...+1n!。

泰勒中值定理

泰勒中值定理

泰勒中值定理一、泰勒中值定理若)(x f 在含有0x 的某个区间I 内具有直到1n +阶导数,则当x I ∈时,有()20000000()()()()'()()()()()2!!n n n f x f x f x f x f x x x x x x x R x n ''=+-+-++-+ ,其中拉格朗日型余项(1)0()()(),(1)!n n n f R x x x n ξξ+=-+位于0x 与x 之间.当0n =时,泰勒中值定理就是拉格朗日中值定理.取00x =,()(1)2(0)(0)()()(0)'(0),2!!(1)!n n n nf f f f x f f x x x x x n n ξξθ+''=+++++=+ 位于0与x 之间,(0,1)θ∈,其为n 阶麦克劳林公式.二、基本函数的高阶导数公式⎪⎩⎪⎨⎧<=>=-mn x A m n n m n x n m n mn m !0)()( 1)()(!)1(1+±-=⎪⎭⎫ ⎝⎛±n n m a x n a x , nn n a x n a x )()!1()1()][ln(1)(±--=±-,a a a nx n x ln )()(=, )2sin()(sin )(πn ax a ax n n +=,)2cos()(cos )(πn ax a ax n n +=;()()()()()()12120[()()]()(),[()()][()][()]nn n n n kn k k n k k u x k v x k u x k v x u x v x C u x v x -=+=+=⋅∑; 三、基本函数的麦克劳林展开式(1)2(1)(1)(1)(1)12!!mnm m m m m n x mx x x n ---++=+++++ ,1x < (2) ++-++-+-=++1)1(432)1ln(1432n x x x x x x n n )11(≤<-x (3) ++++++=!!3!2!1132n x x x x e n x)(+∞<<-∞x (4) +--+-+-=--)!12()1(!5!3sin 12153n x x x x x n n )(+∞<<-∞x (5) +-+-+-=)!2()1(!4!21cos 242n x x x x n n )(+∞<<-∞x 当0x →时,有233(1)(1)(2)(1)1()2!3!mm m m m m x mx x x o x ---+=++++12332111(1)1()2816x x x x o x +=+-++,233ln(1)()23x x x x o x +=-++2331()1!2!3!x x x x e o x =++++,23233ln ln ln 1()1!2!3!xa a a a x x x o x =++++355sin ()3!5!x x x x o x =-++,244cos 1()2!4!x x x o x =-++,3552tan ()315x x x x o x =+++3553arcsin ()640x x x x o x =+++,355arctan ()35x x x x o x =-++例1、求下列高阶导数)()(x yn(1)设502)54(+=x y ,则!100450)100(⋅=y .(2)设232+-=x x x y ,求)(n y . 解: ])2(2)1(1[!)1()21(2)11(11)()()(++-++⋅-=-++=n n n n n n x x n x x y. (3)设x y x y=-,则1(2,1)1!(1),2!()n n n n n n z n x z n y y x y ++∂∂=-=⋅∂-∂ (3)设x x y 44cos sin +=,则)24cos(4)4(cos 41)43()1()()()(πn x x y n n n n +=+=-.(4)设n n x x x y )4(cos )2(2π-+=,求)()(x f n ,)1()(n f .解:()()()0()[(1)][(2)(cos )]4nn k n k nn n k n k x f x C x x π-==-+∑ 21)(2!3|)4(cos)2(!)1(n n x nnnnn n xx n C f=+==π.(5)设函数2()sin f x x x =,求 (2009)(0)f.解:321221sin [(1)]3!(21)!n n x x x x x x n --=-++-+- 52131(1)3!(21)!n n x x x n +-=-++-+- 则(2009)(0)12009!2007!f =,故(2009)(0)20082009f=⨯. 注(1): 若01()nn f x a a x a x =++++ ,则()(0)()(0)(0)!n n f f x f f x x n '=++++ ,于是()(0)!n n f a n =,故()(0)!n n f n a =. 注(2):若求(2009)()4fπ,则只能用莱布尼兹公式完成.例2、计算下列极限(1)4301sin sinlim tan x x x x x x →-+;(2)20(1)ln(1)lim 1x x x x x e →-++-;(3)21lim ln(1)x x x x →∞⎡⎤-+⎢⎥⎣⎦; (1)解:原式33303033000tan ~()sin 113!lim lim sin lim 6x x x x x x o x x x x x x x →→→+-=+==. (2)解:原式22222200(1)[()]()122lim lim 2x x x xx x x o x o x x x →→-+-+-+===-. (3)解:原式21222()ln(1)12lim lim 2x t x x t o x t t t t =∞-∞→∞→∞+-+=== 或(泰勒)2221111lim (())22x x x o x x x →∞⎡⎤=--+=⎢⎥⎣⎦.例3、设lim )0x ax b →+∞-=,求b a ,.解:10lim )lim x tx t bt aax b t =→+∞→--=3021001(2)()1()223lim lim 0333a t t t t o t bt o t t b b t t =→→++-⎡⎤==++-=-=⎢⎥⎣⎦∴ 32,1==b a . 例4、当0→x 时,x x33tan -是关于x 的k 阶无穷小,则3=k .解:(一)tan tan 00003331(tan )ln 3lim lim lim3limx x x x xk k kx x x x x x x x x -→→→→---== 3330()ln 33ln 3lim 3k k x x x o x x x =→++-==故3=k . 解:(二)tan 0000333(tan )tan lim ln 3lim ln 3lim lim3x x k k k x x x x x x x x x xξξξ→→→→---== 33300()tan ln 33ln 3lim ln 3lim 3k k k x x xx o x x x x x x =→→++--==,故3=k . 例5、设函数)(x f 在0=x 的某邻域内具有一阶连续导数,且,0)0(,0)0(≠'≠f f 若)0()2()(f h bf h af -+在0→h 时是比h 高阶的无穷小,试确定b a ,的值.解: 由条件可知),()0()0()(h h f f h f ο+'+=).()0(2)0()2(h h f f h f ο+'+= 所以)0()2()(f h bf h af -+=).()0()2()0()1(h h f b a f b a ο+'++-+从而⎩⎨⎧=+=-+0201b a b a ,可得⎩⎨⎧-==12b a .注(1):设函数)(x f 在0=x 的某邻域内具有n 阶导数,则当0x →时,有 ()(0)()(0)(0)()!n n n f f x f f x x x n ο'=++++ .证明:()0(0)()[(0)(0)]!lim n nn x f f x f f x x n x→'-+++ ()1'10(0)'()(0)''(0)(1)!lim n n L Hn x f f x f f x x n nx --→'-----= ()2'20(0)''()''(0)(2)!lim (1)n n L Hn x f f x f x n n n x--→----=- (1)(1)()'0()(0)(0)lim !n n n L Hx f x f f x n x --→--== (1)(1)()01()(0)[lim (0)]0!n n n x f x f f n x--→-=-=.注(2):设函数)(x f 在0=x 的某邻域内具有(1)n +阶导数,利用注(1)的结论,则有()(1)10(0)()(0)(0)(0)!lim (1)!n nn n x f f x f f x xf n x n ++→'---=+ .例6、设()f x 在0x =处具有二阶导数,且有42260()ln(1)2lim 3x x f x x x x →++-=, 求(0),'(0),''(0)f f f .解:当0x →时,22''(0)()(0)(0)()2!f f x f f x x x ο'=+++46226ln(1)()23x x x x o x +=-++于是,422602()ln(1)lim 3x x f x x x x →++-=4566601''(0)1[(0)](0)[]()22!3lim x f f x f x x x x ο→'-++++= 201[(0)](0)''(0)12lim []2!3x f f xf x →'-+=++故有1(0),2f ='(0)0f =,而''(0)122!33f +=,即2''(0)3f =.例7、设函数)(x f 在(1,1)-内任意阶可导, ()(0)0n f ≠,1,2,n = ,且满足泰勒公式 (1)()1(0)()()(0)'(0),(1)!!n n n nf f x f x f f x x x n n θ--=++++- (0,1)θ∈,求0lim x θ→.解:()()(1)0()(0)lim (0)0n n n x f x f f xθθ+→-=≠(1)()1()()100(0)(0)()(0)'(0)()(0)(1)!!lim !limn n n nn n n x x f f f x f f x x xf x f n n n x x θ--+→→-------= (1)(1)(0)(0)!(1)!1n n f f n n n ++==++则01lim 1x n θ→=+. 例8、设()f x 在(0,)+∞内满足''()1f x ≤,且lim ()x f x →+∞存在,求证:lim '()0x f x →+∞=.解:当(0,)x ∈+∞时,任取0ε>,有2'()()()'(),(,)2f f x f x f x x x ξεεεξε+=++∈+则()()''()()()''()'()22f x f x f f x f x f f x εξεξεεεε+-+-=-≤+ 1()()2f x f x εεε≤+-+ 注意到lim ()x f x →+∞存在,有1lim '()lim[()()]22x x f x f x f x εεεε→+∞→+∞≤+-+=于是00lim '()lim lim '()lim 02x x f x f x εεε++→+∞→+∞→→=≤=故lim '()0x f x →+∞=.练习题1、设xx x f +-=11)(,则nn n x n x f )1(!2)1()()(+⋅⋅-=. 2、设函数)1ln()(2x x x f +=,则当3≥n ,2!)1()0(1)(--=-n n fn n . 3、设222xy x y=-,则(2,1)n nz y ∂=∂ 1(1)![1]3nn n +-+.4、设函数()(1)sin f x x x x =-,则(2010)(0)f =2010-.5、计算下列极限(1)0x →=14-(2)0x x →=1(3)30arctan lim ln(12)x x x x →-=+16- (4)0tan 22tan lim sin 33sin x x x x x →-=-12-(5)22201cos lim()sin x x x x →-=43(6)30sin(sin )sin[sin(sin )]lim sin x x x x →-=166、若0)(6sin lim 30=⎥⎦⎤⎢⎣⎡+→x x xf x x ,则206()lim x f x x →+=36. 7、设2)()1l n (lim 220=+-+→x bx ax x x ,则------------------------------------------AA 25,1-==b aB 2,0-==b aC 25,0-==b a D 2,1-==b a8、当0,1cos cos 2cos3x x x x →-对于无穷小x 的阶数为2.9、设当)1(,02++-→bx ax e x x 是比2x 高阶的无穷小,则-------------------------AA 1,21==b aB 1,1==b aC 1,21=-=b a D 1,1=-=b a10、当230,(1)1()x x e ax bx cx o x →++=++是比2x 高阶的无穷小,试确定,,a b c .121,,633a b c ==-=11、当0,()ln(1)1xx f x ax bx→=-++关于无穷小x 的阶数最高,试确定,a b .11,2a b ==-12、设)(x f 在0=x 的某邻域内具有二阶连续导数,且0)0(≠f ,0)0(≠'f ,(0)0f ''≠, 求证: 存在惟一的一组实数321,,λλλ,使得当0→h 时,)0()3()2()(321f h f h f h f -++λλλ是比2h 高阶的无穷小.。

-第21讲泰勒中值定理精品文档35页

-第21讲泰勒中值定理精品文档35页

由极限知识可知, 此时应有
0 x l x 0 if( m x ) f(x 0 ) f( ( x x 0 ) x x 0 ) ( 2 x 0 ) a 2 (x x 0 ) 2
我们先假定以下运算均成立, 计算完后再看需要 补充什么条件. 运用罗必达法则, 得
0lifm (x)f(x 0) 2 a 2(x x 0)
则 F ( x 0 ) 0 ,G ( x 0 ) 0 ;
F ( x 0 ) f ( x 0 ) f ( x 0 ) 0 ,G ( x 0 ) 2 ( x 0 x 0 ) 0 ,
假F 设 (x),G(x),F(x),G (x)满足柯西中 ,
F ( x ) f ( x ) f ( x 0 ) f ( x 0 ) x x ( 0 )
想一想, 如何求出这里的待定函数.
由(x 于 ) f(x ) f(x ( 0 x ) x f 0 ) ( 2 x 0 )x ( x 0 ),
如 ,令 果 F ( x ) 分 f ( x ) f ( x 0 ) 子 f ( x 0 ) x ( x 0 ),
分G (母 x)(xx0)2,
该公式称为带皮亚诺余项的二阶泰勒公式.
式中 o((xx0)2)称为二阶皮亚. 诺余项
运用罗必达法则计算极限.
仿照以上的做法, 继续进行下去, 即可得到一般的带 皮亚诺余项的 n 阶泰勒公式.
一. 带皮亚诺余项的泰勒公式
设 f ( x ) C k ( N ( x 0 )( ) k 0 , 1 , 2 , , n 1 ) ,
e x xn1 (n 1)!
估 计 误 差
e 的近 似计算 公式
例2
求f(x)sixn的 n阶马克劳 . 林公式
( ) 解 f(n )(x ) sixn n

泰勒公式(泰勒中值定理)

泰勒公式(泰勒中值定理)

m 1 (
x)
其中
R2m1(x)
(1)m1 cos( x)
(2m 2) !
x2m2
(0 1)
麦克劳林公式
f (0) f (0)x
f (0) x2
f (n) (0) xn
2!
n!
(0 1)
f (k) (x) ( 1) ( k 1)(1 x) k
f (k) (0) ( 1) ( k 1) (k 1, 2, )
o(x4 x4
)
7 12
第四节
n!
称为麦克劳林( Maclaurin )公式 .
由此得近似公式
f (x) f (0) 若在f公(式x)成立的f区(间x0上)
f (0)x f (x0 )(x
f
f (nx10)
()2x(!0) )fx22M(x!0,则) (有x误差fx估(0nn计))!(2式0)
xn
f
(n) (x0 ) (x n ! Rn (x)

在不需要余项的精确表达式时 , 泰勒公式可写为
f
(x0 )
f (x0 )(x x0 )
f
( x0 2!
)
(
x
x0
)2
f
(n) ( x0 n!
)
(
x
x0
)
n
o[(x
x0 )n ]

公式 ③ 称为n+1 阶泰勒公式的佩亚诺(Peano) 余项 .
f (x)
f (x0 )
f (x0 )(x x0 )
f
( x0 2!
)
(x
x0
)2
特例:
f
(n) ( x0 n!

初等函数的幂级数展开式

初等函数的幂级数展开式

将函数ln(1+x)展开成 x的幂级数 的幂级数. 展开成 的幂级数 例1* 将函数 1 , 解 因为 [ln(1 + x )]′ = 1+ x 又
1 =1−x + x2 −x3+···+(−1)nxn +··· − − 1+ x
对上式逐项积分 对上式逐项积分 ∞ x dt x − ln(1+x) = ∫ = ∑ ∫ (−1)nt ndt 0 1+ t 0 n= 0 1 2 1 3 1 n+1 n = x − x + x − L+ (−1) x +L n+1 2 3 ∞ xn = ∑ ( − 1) n−1 n n=1
n n n−1
(1+x)n=1+nx+
n( n − 1) 2 n( n − 1)L ( n − k + 1) k x x +L+ 2! n! n! − +⋅⋅⋅ +nxn−1+x n ⋅⋅⋅
? (1+x)α =
α (α − 1 ) 2 α (α − 1 ) L (α − n + 1 ) n 1+αx+ x +L x +L+ 2! n!
(0) n f ′′ ( 0 ) 2 f (n) (0) n ∑0 n ! x = f ( 0 ) + f ′( 0 ) x + 2! x + L + n ! x + L n= 称为函数 f (x)的麦克劳林级数 的麦克劳林级数. f
(n) ∞
定理2 泰勒级数在 内收敛于f 定理 f(x)在x0点的泰勒级数在UR (x0)内收敛于 (x) 在 点的泰勒级数 内收敛于 ⇔ 在UR (x0) 内, Rn(x)→0. →

高数上3.3 泰勒公式

高数上3.3 泰勒公式

f ( x) f ( x0 ) f '( x0 )( x x0 )
f
(n)
(x 0
)
(x
x
)n
R
(x)
n!
0
n
用类似的证明方法,我们可以证得另外一种带有 皮亚诺余项的泰勒公式.
设 f (x (n) ) 存在,则 0
f ( x) f ( x0 ) f '( x0 )( x x0 )
例 2 求 f ( x) e x 的 n 阶麦克劳林公式.
解 f ( x) f ( x) f (n)( x) e x ,
f (0) f (0) f (0) f (n)(0) 1,
注意到 f ( (n1) x) e x 代入泰勒公式, 得
e
x
1
x
x2 2!
xn n!
ex (n 1)!
但这种近似等式存在明显不足, 首先是精度 不高,误差会比较大,其次是误差无法估计.
能否用其它较简单的曲线函数来近似替代 复杂的连续函数f(x)呢?
事实上多项式函数
Pn (x) a0 a1x a2 x2 an xn
是一种处处连续可导分析性质很好的函数, 在n>1时,它是一条连续的曲线函数。 因此在讨论较复杂的连续函数f(x)在某一个 邻域内的分析性质时,经常用多项式函数来 近似代替较复杂的连续函数。
f
(5)
(
)
6
2
.
例1 写出函数 f ( x) x3ln x 在 x0 1 处的四阶
泰勒公式.

f
(4) ( x)
6 x
,
f (4)(1) 6,
f
(5)(
x)
6 x2

泰勒中值定理

泰勒中值定理

2.取 2.取x0 = 0, 0 ξ 在 与x之间,令 = θx (0 < θ < 1) ξ
f (n+1) (θx) n+1 x 则 项 Rn ( x) = 余 (n + 1)!
四、麦克劳林(Maclaurin)公式
f ′′(0) 2 f (n) (0) n f ( x) = f (0) + f ′(0)x + x + L+ x 2! n! f (n+1) (θx) n+1 x (0 < θ < 1) + (n + 1)!
′ Pn′( x0 ) = f ′′( x0P ( x0 ) = f
(k ) n
1
(k )
( x0 ) k = 1,2,L, n
0
a0 = f ( x0 ),
n
1⋅ a = f ′( x ),
( n) 0
2!⋅a2 = f ′′( x0 )
L L, n!⋅a = f ( x ) 1 (k ) (k = 0,1,2,L, n) 得 ak = f ( x0 ) k!
x2
1 例4 求 f ( x, y) = 1+ x 麦克劳林展式

1 f ( x) = 1+ x
f ( k ) (0) ( −1) k k ! ak = = = ( −1) k k! k!
( −1) n +1 ( n + 1)! ( n + 1) f ( x) = n+ 2 (1 + x )
(0) = ( −1) n! 1 2 3 n n L ∴ = 1− x + x − x +L +(−1) x + Rn(x) 1+ x f

3.3 泰勒公式

3.3 泰勒公式

f ( n1) ( ) 其中,Rn ( x) ( x x0 )n1 ( 介于 x与 x0 之间) (n 1)!
-8-

pn ( x)
k 0
n
f ( k ) ( x0 ) ( x x0 ) k k!
称为 f ( x) 按 ( x x0 )的幂展开的n次泰勒多项式;
an ( x x0 )n .
( x) a1 2a2 ( x x0 ) n an ( x x0 ) n1 则 pn
2 !a2 n(n 1)an ( x x0 ) n2
( n) pn ( x)

n !a n
a0 pn ( x0 ) f ( x0 ) ,
f ( x) 3 x 2 ln x x 2 ,
f (1) 0;
f (1) 1;
f (1) 5;
f (1) 11;
f
) 6 ln x 11, 6 ( 4) f ( x) , x
( )
6

;

(k ) f (1) 3 k ( x 1 ) R3 ( x ) x ln x k! k 0 ( 介于1和 x 之间) 5 11 6 2 3 ( x 1) ( x 1) ( x 1) ( x 1) 4 2! 3! 4! 3
-10-
在 x x0 的附近近似表达 f ( x)?
要求:
(1) 提高精确度;
(2) 给出误差 f ( x) pn ( x) 的具体表达式,便于估计.
-4-
分析:
近 似 程 度 越 来 越 好
二、 多项式 pn ( x)的确定
1. 若pn ( x)与 f ( x0 ) 在 x0 处相交
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

令 Rn (x) f (x) pn (x)(称为余项) , 则有
Rn (x0 ) Rn (x0 ) Rn(n) (x0 ) 0
Rn (x)
(x x0 )n1

Rn (x
(x) Rn (x0 x0 )n1 0
)

(n
Rn (1) 1)(1
x0

f
( x0 2!
)
(x

x0 )2


特例:

f
(n) (x0 n!
)
(x

x0
)n

f (n1) ( )
(n 1) !
(
x
x0 )n1
( 在 x0

x
之间)
(1) 当 n = 0 时, 泰勒公式变给为出拉格朗日中值定理
f (x) f (x0 ) f ( )(x x0 )
泰勒公式
理论分析 目的-用多项式近似表示函数. 应用
近似计算
一、泰勒公式的建立 二、几个初等函数的麦克劳林公式 三、泰勒公式的应用
一、泰勒公式的建立
在微分应用中已知近似公式 :
f (x) f (x0 ) f (x0 )(x x0 ) y
y f (x)
p1 ( x)
x 的一次多项式
p1 ( x)
特点: p1(x0 ) f (x0 ) p1(x0 ) f (x0 )
O x0 x x
以直代曲
如何提高精度 ? 需要解决的问题
如何估计误差 ?
1. 求 n 次近似多项式 pn (x), 要求:
pn (x0 ) f (x0 ), pn (x0 ) f (x0 ), , pn(n) (x0 ) f (n) (x0 ) 令 pn (x) a0 a1(x x0 ) a2 (x x0 )2 an (x x0 )n
Rn (x)
f (n1) ( )
(n 1) !
(
x

x0
)n1
( 在 x0 与x 之间)
当在 x0 的某邻域内 f (n1) (x) M 时
Rn
(x)

M (n 1)!
x

x0
n1
Rn (x) o((x x0 )n ) (x x0 )
泰勒(Taylor)中值定理 :

Rn(n1) ( )
(n 1) !
( 在 x0 与xn 之间)
Rn (x) f (x) pn (x)
Rn (x) (x x0 )n1

Rn(n1) ( )
(n 1) !
( 在 x0 与x 之间)
pn(n1) (x) 0, Rn(n1) (x) f (n1) (x)

f
(n) (x0 ) (x n ! Rn (x)
x0
)n Mf((nn1x)1()n!)1
(n 1) !
(x x0 )n1
( 在 x0 与
a2

1 2!
pn
(
x0
)
1 2!
f
(x0 ), , an

1 n!
pn(n)
(
x0
)

1 n!
f
(n) (x0 )

pn (x)
f (x0 )
f (x0 )(x x0 )
1 2!
f
( x0
)(x

x0
)2



1 n!
f
(n) (x0 )(x x0 )n
2. 余项估计
( 在x0与x 之间)
(2) 当 n = 1 时, 泰勒公式变为
可见
f f
(x) (x)
f f
(x0 ) (x0 )
f (x0 )(x x0 ຫໍສະໝຸດ f (x0 )(x x0 )
f
(
2!
) (x x0 )2
( 在x0与x
之间)
误差
R1(x)
f
(
2!
)
(
x

x0
)
2
( 在 x0 与x 之间)
df
在泰勒公式中若取 x0 0, 记 x (0 1) , 则有
f (x) f (0) f (0)x f (0) x2 f (n) (0) xn
2!
n!
f (n1) ( x) xn1
(n 1) !
若 f (x) 在包含 x0 的某开区间 (a,b) 内具有
直到 n 1阶的导数 , 则当 x (a ,b)时, 有
f (x)
f (x0 )
f (x0 )(x x0 )
f
( x0 2!
)
(
x

x0
)
2



f
(n) (x0 n!
)
(
x

x0
)
n

Rn
(
x)

其中 Rn (x)
)n
(1 在 x0 与x 之间)

Rn (1) Rn (x0 ) (n 1)(1 x0 )n 0

(n
Rn(2 ) 1)n(2 x0 )n1
(2 在 x0 与 1 之间)


Rn(n) (n ) Rn(n) (x0 ) (n 1)2(n x0 ) 0
则 pn (x)
a1 2a2 (x x0 ) n an (x x0 )n1
pn (x)

pn(n) (x)
2 !a2 n(n 1)an (x x0 )n2 n!an
a0 pn (x0 ) f (x0 ),
a1 pn (x0 ) f (x0 ),
f (x)
f (x0 )
f (x0 )(x x0 )
f
( x0 2!
)
(
x

x0
)
2



f
(n) (x0 n!
)
(
x

x0
)
n
o[(x x0 )n ]

公式 ③ 称为n+1 阶泰勒公式的佩亚诺(Peano) 余项 .
f (x)
f (x0 )
f (x0 )(x x0 )
f (n1) ( )
(n 1) !
(
x

x0
)n1
( 在 x0 与x 之间) ②
公式 ① 称为 f (x)的 n+1 阶泰勒公式 .
公式 ② 称为n+1 阶泰勒公式的拉格朗日余项 .
泰勒
注意到 Rn (x) o[(x x0 )n ]

在不需要余项的精确表达式时 , 泰勒公式可写为
称为麦克劳林( Maclaurin )公式 .
由此得近似公式
f (x) f (0) f (0)x
若在f (公x) 式 成f (立x0的) 区f间(x上0 )(
x f
f (nx10)
()2x(!0) )fx22M(x!0,则) (x有误fx(0nn差))!(2估0) 计xn式
相关文档
最新文档