三角形解的个数问题专题
三招破解三角形解的个数问题(打印)

案例二:直角三角形解的个数问题
总结词
直角三角形解的个数问题需要利用勾股定理和三角形的基本性质,通过数形结合和分类 讨论求解。
详细描述
直角三角形有一个角为90度,可以利用勾股定理求出斜边长度。然后利用三角形的性 质,通过数形结合的方式,进行分类讨论求解。同样需要注意排除不符合三角形基本性
质的解。
案例三:等边三角形解的个数问题
三招破解三角形解 的个数问题(打印)
目 录
• 三角形解的个数问题的概述 • 三角形解的个数问题的解题方法 • 三角形解的个数问题的应用场景 • 三角形解的个数问题的案例分析 • 三角形解的个数问题的总结与展望
01
三角形解的个数问题 的概述
三角形解的个数问题的定义
01
三角形解的个数问题是指在给定 一组边长后,判断这组边长能否 构成三角形,以及构成三角形的 可能个数。
具体例子:在求解与正弦、余弦函数有关的代数方程时, 需要考虑方程在不同区间上的解的个数,以及是否满足三 角函数的周期性和图像性质。
代数题
代数题中三角形解的个数问题通常涉及到代数方程的解的个数,需要利用代数方程的性质和求解方法 来判断解的个数。例如,在求解与三角形边长和角度有关的代数方程时,需要考虑不同情况下解的个 数。
的方法。
三角函数法主要涉及三角函数的 周期性和振幅,通过分析三角函 数的图像来确定三角形的解的个
数。
三角函数法需要熟练掌握三角函 数的性质和图像,对于一些特殊 的问题可能需要找到合适的三角
函数表达式。
03
三角形解的个数问题 的应用场景
几何题
三角形解的个数问题在几何题中常常涉及到三角形边长和角 度的关系,需要利用三角形的性质和定理来判断解的个数。 例如,在求解等腰三角形、直角三角形、等边三角形等问题 时,需要考虑不同情况下解的个数。
画图判断三角形解的个数

龙源期刊网
画图判断三角形解的个数
作者:张巧凤
来源:《新高考·高一数学》2015年第03期
在学习《解三角形》这一章时班上同学提出来一些非常有针对性的问题:“已知两边和其中一边所对的角判断三角形解的个数,有没有可以不解三角形就可以写出答案的办法呢?”“并且在填空题中有些题目根本没法计算,给的角度不是特殊角,可不可以非常简便地判断出三角形解的个数呢?”我想很多读者可能都会有同样的困惑,今天,就针对题目中经常出现的这个问题给一种简单的解法。
高考数学复习解三角形专题讲解4--- 解的个数问题(解析版)

高考数学复习解三角形专题讲解第4讲解的个数问题1.在ABC ∆中,已知2a =,b =,45A =︒,则满足条件的三角形有()A .一个B .两个C .0D .无法确定【解析】解:ABC ∆中,45A =︒,b ,2a =,∴利用正弦定理可得:sin sin a b A B =,∴=sin B , (0,)B π∈,120B ∴=︒或60︒,则满足条件的三角形有2个,故选:B .2.(2020春•金安区校级期中)已知ABC ∆的内角A ,B ,C 所对的边分别为a ,b ,c ,且4a =,5b =,45A =︒,则满足条件的三角形有()A .0个B .1个C .2个D .无法确定【解析】解:由于4a =,5b =,45A =︒,由于sin b a b A >>,所以三角形有两解.故选:C .3.(2020秋•广西月考)在ABC ∆中,角A 、B 、C 的对边分别为a 、b 、c ,且,(0)a b λ==>,45A =︒,则满足条件的三角形个数是()A .0B .1C .2D .无数个【解析】解:,(0)a b λ==>,45A =︒,∴由正弦定理sin sin a b A B =得:sin sin (0,1)b A B a ===, 又B 为三角形的内角,则满足条件的三角形个数是2个.故选:C .4.(2020秋•大石桥市校级月考)已知ABC ∆中,2,45a b B ==︒,则满足此条件的三角形的个数是()A .0B .1C .2D .无数个【解析】解:ABC ∆中,2,45a b B ===︒,2sin 45=︒,解得:sin (0,1)A ,且a b >; 所以满足条件的角A 有2个,对应三角形有2个.故选:C .5.(2020秋•安庆校级期中)在ABC ∆中,60A ∠=︒,a ,b =,满足条件的(ABC ∆)A .不能确定B .无解C .有一解D .有两解【解析】解:因为60A =︒,b =,a =所以sin h b A ===< 故选:D .6.(2020秋•紫阳县校级期中)在ABC ∆中,若6a =,12b =,60A =︒,则此三角形解的情况()A .一解B .两解C .无解D .解的个数不能确定 【解析】解:在ABC ∆中,6a =,12b =,60A =︒,∴由正弦定理sin sin a b A B=得:12sin 2sin 16b A B a ===>, 则此三角形无解.故选:C .7.(2021•西湖区校级模拟)已知ABC ∆中,内角A ,B ,C 的对边分别为a ,b ,c ,2b =,45B =︒,若三角形有两解,则a 的取值范围是()A .2a >B .02a <<C.2a <<.2a <<【解析】解:ABC ∆中,内角A ,B ,C 的对边分别为a ,b ,c ,2b =,45B =︒,若三角形有两解,则:sin a b a B >>,整理得2a <<故选:C .8.(2020秋•郑州期末)已知ABC ∆的三内角A ,B ,C 的对边边长分别为a ,b 、c ,若2b =,45B =︒,且此三角形有两解,则a 的取值范围是()A.B.)+∞C.)+∞D .(2,【解析】解:由正弦定理得:sin sin a b A B ===sin A ∴=,因为2b =,45B =︒,且此三角形有2解,所以2a b >=,且sin 1A =<,所以2a <<故选:D .9.(2020春•南江县校级期中)ABC ∆的三内角A ,B ,C 的对边边长分别为a ,b ,c ,若a x =,3b =,60B =︒且此三角形有两解,则x 的取值范围是()A .03x <<B .3x <<C .x >D .无法确定【解析】解:当sin a B b a <<时,三角形ABC 有两组解,又3b =,60B =︒,a x =,如果三角形ABC 有两组解,那么x 应满足sin603x x ︒<<,即3x <<;x 的取值范围是3x <<故选:B .10.(2020春•碑林区校级期中)在ABC ∆中,角A 、B 、C 所对的边分别为a 、b 、c ,当A 、B 、C 成等差数列,a x =,2b =,且这个三角形有两解时,x 的取值范围是()A .16(0,)3B .16(2,)3C .D . 【解析】解:由题意知,ABC ∆中,2B A C=+,所以60B =︒; 又2b =,要使三角形有两解,就是要使以C 为圆心,半径为2的圆与BA 有两个交点;当90A =︒时圆与AB 相切,当60A =︒时交于B 点,也就是只有一解,6090A ∴︒<<︒sin 1A <<; 又2b =,60B =︒,由正弦定理sin sin a b A B =得:24sin sin sin sin 33b aA A AB ===,sin 1A <<, 所以2A <<, 则x 的取值范围是. 故选:D.11.(2020春•九龙坡区校级期中)在ABC ∆中,60A =︒,a 3b =,则ABC ∆解的情况是 无解 (填“无解”“一解”或“两解”)【解析】解:由正弦定理得:sinsin a b A B =3sin B=,解得sin 1B >, 因为,sin [1B ∈-,1],故角B 无解.即此三角形解的情况是无解.故答案为:无解..12.在ABC ∆中,a 、b 、c 分别为角A 、B 、C 的对边,已知a x =,2b =,45B ∠=︒,若这个三角形只有一个解,则x的取值范围是x =2x <.【解析】解:a x =,2b =,45B ∠=︒,∴直角三角形BCD 的对边22sin 22CD BC Bx x ===, 要使这个三角形只有一个解,则满足2b ==或者b a ,即x =02x <,故答案为:x =02x <.13.(2020秋•莆田校级期末)下面是一道选择题的两种解法,两种解法看似都对,可结果并不一致,问题出在哪儿?[题]在ABC ∆中,a x =,2b =,45B =︒,若ABC ∆有两解,则x 的取值范围是()A .(2,)B +∞.(0,2).(2,2)C D[解法1]ABC ∆有两解,sin a B b a <<,sin452x x ︒<<,即2x <<,故选C .[解法2]sin sin a b A B=,sin sin 45sin 2a B x A b ︒==ABC ∆有两解,sin b A a b <<,22x <<,即02x <<,故选B . 你认为 解法1是正确的(填“解法1”或“解法2”)【解析】解:解法1正确若a b <,则A B <,45B =︒,ABC ∴∆只有一解,故解法2不正确故答案为:解法114.(2020秋•宁波校级期中)ABC ∆中,角A ,B ,C 所对边分别为a ,b ,c ,2a =,45B =︒,①当b 时,三角形有1个解;②若三角形有两解,则b 的取值范围是.【解析】解:①ABC ∆中,角A ,B ,C 所对边分别为a ,b ,c ,2a =,45B =︒,b =,由正弦定理sin sin a b A B=,得2sin A =, 解得sin 1A =,90A ∴=︒,三角形只有一个解.故答案为:1.②2BC a ==,要使三角形有两解,就是要使以C 为圆心,半径为2的圆与BA 有两个交点,当90A =︒时,圆与AB 相切;当45A =︒时交于B 点,也就是只有一解,4590A ∴︒<<︒sin 1A <<,由正弦定理以及sin sin a B b A =.可得:sin sin a B b x A A ===,22sin (2A ∈,.b ∴的取值范围是(2,.故答案为:(2,.15.(2020春•怀仁市期中)设ABC ∆的内角A ,B ,C 所对的边分别为a ,b ,c ,已知a x =,2b =,60B =︒,如果解此三角形有且只有两个解,则x 的取值范围是. 【解析】解:当sin a B b a <<时,三角形ABC 有两组解,又2b =,60B =︒,a x =,如果三角形ABC 有两组解,那么x 应满足sin602x x ︒<<,即.2x <<x 的取值范围是:.故答案为:.16.已知下列各三角形中的两边及其中一边的对角,判断三角形是否有解,有解的作出解答.(1)7a =,8b =,105A =︒;(2)10a =,20b =,80A =︒;(3)10b =,c =60C =︒;(4)a =6b =,30A =︒.【解析】解:(1)7a =,8b =,所以A B <,因为105A =︒,所以无解;(2)10a =,20b =,80A =︒,由正弦定理可得sin 2sin 2sin80 1.961B A ==︒=>,B 不存在,所以此三角形为无解;(3)10b =,c =60C =︒,10sin B=,所以45B =︒,所以75A =︒,5a =;(4)a =6b =,30A =︒6sin 2B=,所以60B =︒或120︒,所以90C =︒或30︒,所以c =。
已知三角形两边及其中一边的对角时解三角形的个数判定方法及其应用

已知三角形两边及其中一边的对角时解三角形的个数判定方法及其应用作者:***来源:《教育界·下旬》2015年第11期一、已知三角形两边及其中一边的对角时解三角形的个数的探讨在△ABC中,已知两边a、b和其中边a的对角A,解三角形时,解的个数有哪些情况?问题相当于:在△ABC中,已知两边a、b和其中边a的对角A画三角形时,能画多少个三角形?画法:(1)画∠MAN等于已知角A;(2)在射线AM上截取AC=b;(3)以C为圆心、a为半径画弧,交射线AN于点B(交点B的个数决定画出的三角形的个数),则△ABC就是要画的三角形。
1.当A为锐角时:(1)当a(2)当a=bsinA时,画出唯一的三角形,如图(2),只有一个解;(3)当bsinA(4)当a≥b时,画出唯一的三角形,如图(4),只有一个解.2.当A为直角或钝角时:(1)当a≤b时,无解,如图(5)、图(6);(2)当a>b时,一个解,如图(7)、图(8)。
记忆方法:解的个数判定方法一(1)当A为锐角时;(2)当A为直角或钝角时.当已知角的对边是大边,有一解,否则,无解。
在△ABC中,已知两边a、b和其中边a的对角A解三角形,解的个数的判定方法还可以用下面方法:方法二:由余弦定理a2=b2+c2-2bccosA得到以第三边c为未知数的一元二次方程,此方程正数解的个数即为三角形解的个数。
已知a,b,A,由余弦定理a2=b2+c2-2bccosA,得c2-(2bcosA)c+b2=a2=0,(l)若方程无解或无正数解,则三角形无解;(2)若方程有唯一正数解,则三角形有一解;(3)若方程有两个不同的正数解,则三角形有两解。
二、已知三角形两边及其中一边的对角时三角形解的个数判定方法应用举例1.已知三角形两边及其中一边的对角时判定解的个数。
例1:在△ABC中,角A、B、C的对边分别为a、b、c,根据下列条件,不解三角形判断有几组解?。
专题4 解三角形中的计算求值问题-12个类型(原卷版)-2024届高三三角函数与解三角形重点题型

专题4解三角形中的计算求值问题·12类题型目录知识点梳理 (2)一、中线或比例端点的处理策略: (2)二、高线问题的处理策略: (3)三、角平分线问题的处理策略: (3)四、解三角形多解情况 (4)高考真题梳理与回顾 (5)2023年新课标全国Ⅱ卷真题:已知中线长 (5)2023年高考全国甲卷数学(理)真题.T16角平分线相关计算 (6)2021新高考一卷T20:三等分线相关计算 (7)题型一周长与面积相关计算 (11)2022.佛山二模 (11)2024届.广东省六校第二次联考 (11)2023.福州二模 (12)2023.湛江.一模 (12)2023.湖北5月联考 (12)2022.深圳二模 (13)题型二给值求角型 (13)2023.广东.二模 (13)2023.广州一模 (13)2023.重庆.三模 (13)题型三角平分线相关计算 (14)2023.厦门第四次质检 (14)2023.广东省六校高三第四次联考 (15)2024届.云南省昆明华区高三上期中 (15)题型四中线相关计算 (15)2023.广州天河区一模 (15)2023广州市.一模 (16)2023.重庆九龙坡二模 (16)2023.莆田市二模 (16)2023.青岛.三模 (17)2023.福州三模 (17)题型五三等分线或其它等分线 (18)2023.广州市二模 (18)2023届.巴蜀中学适应性月考(十) (18)2023.雅礼中学二模 (18)2023.重庆一中高三5月月考 (19)2023.深圳二模 (19)题型六高线线相关计算 (20)题型七其它中间线 (22)2023.台州二模 (22)2023上.肇庆.二模 (23)题型八二倍角的处理策略 (24)广东省六校2024届第一次联考 ..................................................................................................... 24 题型九 三角形解的个数问题 ....................................................................................................................... 25 题型十 解三角形的实际应用 .. (26)类型1 距离问题 ...................................................................................................................................... 26 类型2 高度问题 ...................................................................................................................................... 27 题型十一 与三角函数结合 ........................................................................................................................... 29 题型十二 重心,外心相关计算 . (30)知识点梳理中间线的处理通用策略:用2次余弦定理,邻补角余弦值为相反数,即cos cos 0ADB ADC +=∠∠一、中线或比例端点的处理策略:如图,△ABC 中,AD 为BC 的中线,已知AB ,AC ,及∠A ,求中线AD 长.策略一:如图,倍长中线构造全等,再用余弦定理即可策略三:两次余弦定理,邻补角余弦值为相反数,即cos cos 0ADB ADC +=∠∠二、 高线问题的处理策略:策略一:等面积法:sin AD BC AB AC BAC ⋅=⋅⋅∠ 策略二:sin =sin AD AB ABD AC ACD =⋅⋅∠∠ 策略三:a c COS Bb COS C =⋅+⋅ 三、角平分线问题的处理策略:△策略一:角平分线定理:DAC CDΑΒΒ= 证法1(等面积法)1212=ABD ACD S BD h AB h S CD h AC h ⋅⋅=⋅⋅,得D AC CDΑΒΒ= 注:1h 为A 到BC 的距离,2h 为D 到AB,AC 的距离. 证法2(正弦定理) 如图,sin 3sin 1D ΑΒΒ=∠∠,sin 4sin 2C CD Α=∠∠,而sin 1sin 2,sin 3sin 4==∠∠∠∠整理得DAC CDΑΒΒ= 策略二:利用两个小三角形面积和等于大三角形面积处理SS ∆AABBCC =SS ∆AABBAA +SS ∆AAAACC ⟹12×AAAA ×AAAA ×ssss ss AA =12×AAAA ×AAAA ×ssss ss AA2+12×AAAA ×AAAA ×ssss ss AA2,策略三:角互补:∠AAAAAA +∠AAAAAA =ππ⟹ccccss∠AAAAAA +ccccss∠AAAAAA =0, 在△AAAAAA 中,ccccss∠AAAAAA =AAAA 2+AABB 2−AABB 22AAAA ×AABB ,在△AAAAAA 中,ccccss∠AAAAAA =AAAA 2+AACC 2−AACC 22AAAA ×AACC,四、解三角形多解情况在△ABC 中,已知a ,b 和A 时,解的情况如下:sin a b A =sin A a <<a b ≥高考真题梳理与回顾2023年新课标全国Ⅱ卷真题:已知中线长【详解】(1)方法1:在ABC 中,因为D 为BC 中点,π3ADC ∠=,1AD =,则1111sin 12222ADC ABC S AD DC ADC a S =⋅∠=××===4a =,在ABD △中,2π3ADB ∠=,由余弦定理得2222cos c BD AD BD AD ADB =+−⋅∠, 即2141221()72c =+−×××−=,解得c =cos B =,sinB , 所以sin tan cos BBB ==方法2:在ABC 中,因为D 为BC 中点,π3ADC ∠=,1AD =, 则1111sin 12222ADC ABC S AD DC ADC a S =⋅∠=××=== 4a =, 在ACD 中,由余弦定理得2222cos b CD AD CD AD ADB =+−⋅∠,即214122132b =+−×××=,解得b =,有2224AC AD CD +==,则π2CAD ∠=, π6C =,过A 作AE BC ⊥于E ,于是3cos ,sin 2CE AC C AE AC C ====,52BE =,所以tan AEBBE ==(2)方法1:在ABD △与ACD 中,由余弦定理得222211121cos(π)4211121cos 42c a a ADC b a a ADC =+−×××−∠=+−×××∠,整理得222122a b c +=+,而228b c +=,则a =又11sin 2ADC S ADC =×∠= sin 1ADC ∠=,而0πADC <∠<,于是π2ADC ∠=,所以2b c ==.方法2:在ABC 中,因为D 为BC 中点,则2AD AB AC =+ ,又CB AB AC =−,于是2222224()()2()16AD CB AB AC AB AC b c +=++−=+=,即2416a +=,解得a =又11sin 2ADC S ADC =×∠= sin 1ADC ∠=,而0πADC <∠<,于是π2ADC ∠=,所以2b c ==.2023年高考全国甲卷数学(理)真题·T16 角平分线相关计算【详解】如图所示:记,,AB c AC b BCa ===, 方法一:由余弦定理可得,22222cos 606b b +−×××= , 因为0b >,解得:1b =+ 由ABCABD ACD S S S =+ 可得, 1112sin 602sin 30sin 30222b AD AD b ×××=×××+××× , 解得:2AD =. 故答案为:2.方法二:由余弦定理可得,22222cos606b b +−×××= ,因为0b >,解得:1b =2sin sin b B C =,解得:sin B =sin C = 因为1+>>45C = ,180604575B =−−= ,又30BAD ∠= ,所以75ADB ∠= ,即2ADAB ==.2021新高考一卷T20:三等分线相关计算记ABC 是内角A ,B ,C 的对边分别为a ,b ,c .已知2b ac =,点D 在边AC 上,sin sin BD ABC a C ∠=.(1)证明:BD b =;(2)若2AD DC =,求cos ABC ∠.【答案】(1)证明见解析;(2)7cos 12ABC ∠=. 【分析】(1)根据正弦定理的边角关系有acBD b=,结合已知即可证结论.(2)方法一:两次应用余弦定理,求得边a 与c 的关系,然后利用余弦定理即可求得cos ABC ∠的值.【详解】(1)设ABC 的外接圆半径为R ,由正弦定理,得sin sin,22b cR ABC C R==∠, 因为sin sin BD ABC a C ∠=,所以22b cBD a R R⋅=⋅,即BD b ac ⋅=. 又因为2b ac =,所以BD b =.(2)[方法一]【最优解】:两次应用余弦定理因为2AD DC =,如图,在ABC 中,222cos 2a b c C ab+−=,①在BCD △中,222()3cos 23ba b b a C +−=⋅.② 由①②得2222223()3b a b c a b +−=+− ,整理得22211203a b c −+=. 又因为2b ac =,所以2261130a ac c −+=,解得3ca =或32c a =, 当22,33c c a b ac ===时,3c a b c +=+<(舍去).当2233,22c c a b ac ===时,22233()722cos 31222c c ABC c c c +⋅−==⋅∠. 所以7cos 12ABC ∠=.[方法二]:等面积法和三角形相似 如图,已知2AD DC =,则23ABD ABC S S =△△, 即21221sin sin 2332b ac AD A B BC ×=××∠∠,而2b ac =,即sin sin ADB ABC ∠=∠, 故有ADB ABC ∠=∠,从而ABD C ∠=∠. 由2b ac =,即b c a b =,即CA BACB BD=,即ACB ABD ∽, 故AD ABAB AC=,即23bc c b =,又2b ac =,所以23c a =,则2227cos 212c a b ABC ac +−==∠. [方法三]:正弦定理、余弦定理相结合 由(1)知BD b AC ==,再由2AD DC =得21,33AD b CD b ==. 在ADBsin BDA=.又ABD C ∠=∠,所以s 3sin n 2i C b Ab=,化简得2sin sin 3C A =. 在ABC 中,由正弦定理知23c a =,又由2b ac =,所以2223b a =.在ABC 中,由余弦定理,得222222242793cos 221223a a a a cb ABC ac a +−−×∠+===.故7cos 12ABC ∠=. [方法四]:构造辅助线利用相似的性质如图,作DE AB ∥,交BC 于点E ,则DEC ABC △∽△.由2AD DC =,得2,,333c a aDE EC BE ===. 在BED 中,2222()()33cos 2323BED a c b a c −=⋅∠+⋅.在ABC 中222cos 2a a BC c A b c+−=∠.因为cos cos ABC BED ∠=−∠, 所以2222222()()3322233a c ba cb ac ac +−+−=−⋅⋅,整理得22261130a b c −+=.又因为2b ac =,所以2261130a ac c −+=, 即3c a =或32a c =.下同解法1.[方法五]:平面向量基本定理因为2AD DC =,所以2AD DC =.以向量,BA BC为基底,有2133BD BC BA =+ . 所以222441999BD BC BA BC BA =+⋅+ , 即222441cos 999b ac c ABC a ∠=++, 又因为2b ac =,所以22944cos ac a ac ABC c ⋅∠=++.③ 由余弦定理得2222cos b a c ac ABC =+−∠, 所以222cos ac a c ac ABC =+−∠④ 联立③④,得2261130a ac c −+=. 所以32a c =或13a c =.下同解法1.重点题型·归类精练2022·佛山二模2024届·广东省六校第二次联考3.ABC 的角,,A B C 的对边分别为,,,1,a b c AB AC ABC ⋅=−a =ABC 的周长.2023·湛江·一模求a .2023·湖北5月联考的周长.6.记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知2B A =,当4,6a b ==时,求ABC 的面积S .题型二 给值求角型2023·广东·二模2023·广州一模8.在ABC 中,内角,,A B C 的对边分别为,,a b c ,2,2sin 3sin2c b A C =,求sin C .2023·重庆·三模9.已知ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,sin()tan sin sin A B C A B −=.题型三角平分线相关计算2023·厦门第四次质检2023·广东省六校高三第四次联考且1AD =,2BD CD =,求ABC 的周长.2024届·云南省昆明市五华区高三上期中12.ABC 的内角,,A B C 的对边分别为,,,a b c AD 平分BAC ∠且交BC 于点D .已知1,AD ACD =△的面积为1,若2CD BD =,求tan BAC ∠.题型四 中线相关计算2023·广州天河区一模ABC 的中线,求AD 的长.2023·重庆九龙坡二模求边BC 的中线AD 的长.2023·莆田市二模16.ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,2a =,D 为AB 的中点,且CD =.的周长.求ABC2023·福州三模18.△ABC的内角A,B,C的对边分别为a,b,c.已知 的面积.ABC题型五三等分线或其它等分线2023·广州市二模∠.求tan BAD2023届·巴蜀中学适应性月考(十)2023·雅礼中学二模2023·重庆一中高三5月月考BC=.2023·深圳二模AM的长度.题型六高线线相关计算24.(2023秋·山东泰安·高三统考阶段练习)△AAAAAA的内角AA,AA,AA的对边分别为aa,bb,cc,已知AA=135°,bb=2,cc=√2.(1)求sin AA的值;(2)若AA是AAAA上一点,AAAA⊥AAAA,求△AAAAAA的面积.25.△AAAAAA中,角AA,AA,AA的对边分别为aa,bb,cc,2sin2AA+2sin2AA+2sin AA sin AA+cos[2(AA+AA)]=1,∠AA的平分线交AAAA边于AA,过AA作AADD⊥AAAA,垂足为点DD.(1)求角A的大小;(2)若bb=2,cc=4,求AADD的长.26.已知ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,6a =,sin2b A B =.(1)若1b =,证明:π2CA =+;(2)若BC ,求ABC 的周长.27.已知ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且222sin 2a c b c A b c+−=−.(1)求A ;(2)若14b c =,且BC 边上的高为a .28.已知H 为锐角△AAAAAA 的垂心,AAAA ,AADD ,AACC 为三角形的三条高线,且满足9HHAA ⋅HHDD ⋅HHCC =HHAA ⋅HHAA ⋅HHAA .(1)求cos AA cos AA cos AA的值.(2)求cos∠AAAAAA⋅cos∠AAAAAA的取值范围.题型七其它中间线2023·台州二模BC=.2023上·肇庆·二模题型八 二倍角的处理策略广东省六校2024届第一次联考33.在ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若2A B =,求证:22a b bc −=;34.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且4b =.若2A B =,且ABC 的边长均为正整数,求a .35.已知,,a b c 分别是ABC 的角,,A B C 的对边,()sin sin sin 2cos2b B a A C b B c −=−. (1)求证:2A B =;(2)求ca的取值范围.题型九 三角形解的个数问题36.在ABC ∆中,2c =,cos sin a C c A =,若当0a x =时的ABC ∆有两解,则0x 的取值范围是 .37.若满足3ABC π∠=,3AC =,BC m =的ABC ∆恰有一解,则实数m 的取值范围是 .38.在ABC ∆中,内角A ,B ,C 所对的边分别a ,b ,c ,且3B π=,若(0)b c x x =>,当ABC ∆仅有一解时,写出x 的范围,并求a c −的取值范围.39.已知ABC ∆的内角A 、B 、C 所对的边分别是a ,b ,c ,60A =°,若(0)ab m m =>,当ABC ∆有且只有一解时,求实数m 的范围及ABC ∆面积S 的最大值.题型十 解三角形的实际应用 类型1 距离问题40.一游客在A 处望见在正北方向有一塔B ,在北偏西45°方向的C 处有一寺庙,此游客骑车向西行1km 后到达D 处,这时塔和寺庙分别在北偏东30°和北偏西15°,则塔B 与寺庙C 的距离为______km .41.(2023·全国·高三专题练习)山东省科技馆新馆目前成为济南科教新地标(如图1),其主体建筑采用与地形吻合的矩形设计,将数学符号“∞”完美嵌入其中,寓意无限未知、无限发展、无限可能和无限的科技创新.如图2,为了测量科技馆最高点A 与其附近一建筑物楼顶B 之间的距离,无人机在点C 测得点A 和点B 的俯角分别为75°,30°,随后无人机沿水平方向飞行600米到点D ,此时测得点A 和点B 的俯角分别为45°和60°(A ,B ,C ,D 在同一铅垂面内),则A ,B 两点之间的距离为______米.42.如图,为了测量,A C 两点间的距离,选取同一平面上的B ,D 两点,测出四边形ABCD 各边的长度(单位:km ):5AB =,8BC =,3CD =,5DA =,且,,,A B C D 四点共圆,则AC 的长为_________km .43.如图,一条巡逻船由南向北行驶,在A处测得灯塔底部C在北偏东15°方向上,匀速向北航行20分钟到达B处,此时测得灯塔底部C在北偏东60°方向上,测得塔顶P的仰角为60°,已知灯塔高为.则巡逻船的航行速度为______km/h.类型2 高度问题44.如图,某中学某班级课外学习兴趣小组为了测量某座山峰的高度,先在山脚A处测得山顶C处的仰角为60°,又利用无人机在离地面高300m的M处(即300mMD=),观测到山顶C处的仰角为15°,山脚A处的俯角为45°,则山高BC=_________m.45.如图,某沿海地区计划铺设一条电缆联通A、B两地,A处位于东西方向的直线MN上的陆地处,B处位于海上一个灯塔处,在A处用测角器测得3tan4BAN∠=,在A处正西方向1km的点C处,用测角器测得tan 1BCN ∠=.现有两种铺设方案:①沿线段AB 在水下铺设;②在岸MN 上选一点P ,设BPN θ∠=,0,2πθ∈,先沿线段AP 在地下铺设,再沿线段PB 在水下铺设,预算地下、水下的电缆铺设费用分别为2万元/km 、4万元/km.(1) 求A 、B 两点间的距离;(2)请选择一种铺设费用较低的方案,并说明理由.46.如图,测量河对岸的塔高AB 时,可以选取与塔底B 在同一水平面内的两个测量基点C 与D .现测得35BCD α∠==°,100BDC β∠==°,400m CD =.在点C 测得塔顶A 的仰角为50.5°. (1)求B 与D 两点间的距离(结果精确到1m );(2)求塔高AB (结果精确到1m ).350.811°=80 1.393°=,tan 50.5 1.2°=.47.中国古代数学名著《海岛算经》记录了一个计算山高的问题(如图1):今有望海岛,立两表齐,高三丈,前后相去千步,令后表与前表相直.从前表却行一百二十三步,人目着地取望岛峰,与表末参合.从后表却行百二十七步,人目着地取望岛峰,亦与表末参合.问岛高及去表各几何?假设古代有类似的一个问题,如图2,要测量海岛上一座山峰的高度AH,立两根高48丈的标杆BC和DE,两竿相距BD=800步,D,B,H三点共线且在同一水平面上,从点B退行100步到点F,此时A,C,F三点共线,从点D退行120步到点G,此时A,E,G三点也共线,则山峰的高度AH=_________步.(古制单位:180丈=300步)题型十一与三角函数结合48.已知函数ff(xx)=2sin(ωωxx+φφ)�ωω>0,|φφ|<π2�的图象的相邻两条对称轴之间的距离为π2,且ff(xx)的图象的一个对称中心为�5π12,0�.(1)求ff(xx)的解析式;(2)在△AAAAAA中,内角A,B,C所对的边分别为a,b,c,已知AA=π3,aa=ff(AA),且△AAAAAA的面积为√312,求△AAAAAA的周长.49.已知向量mm��⃗=(cos xx,sin xx),ss�⃗=�cos xx,√3cos xx�,xx∈R,设函数ff(xx)=mm��⃗⋅ss�⃗+12(1)求函数ff(xx)的单调递增区间;(2)设aa,bb,cc分别为△AAAAAA的内角AA,AA,AA的对边,若ff(AA)=2,bb+cc=2√2,△AAAAAA的面积为12,求aa的值.50.已知△AAAAAA的内角A,AA,AA所对的边分别为aa,bb,cc,ff(xx)=4cos xx sin�xx−π6�的最大值为ff(AA).(1)求角AA;(2)若点AA在AAAA上,满足AAAA=3AAAA,且AAAA=√7,AAAA=√3,求角C.题型十二重心,外心相关计算51.已知ABC的内角A,B,C的对边分别为a,b,c,且222=+.c a b38(1)求cos B 的最小值;(2)若M 为ABC 的重心,90AMC ∠=°,求sin sin AMB CMB∠∠.52.记ABC 的内角,,A B C 的对边分别为,,a b c sin cos cos ,B a C c A b G −==为ABC 的重心. (1)若2a =,求c 的长;(2)若AG =ABC 的面积.53.ABC 的内角A ,B ,C 所对的边分别为,,,6,sin sin 2B C a b c a b a B +==. (1)求A 的大小;(2)M 为ABC 内一点,AM 的延长线交BC 于点D ,___________,求ABC 的面积. 请在下面三个条件中选择一个作为已知条件补充在横线上,使ABC 存在,并解决问题.①M 为ABC 的重心,AM =②M 为ABC 的内心,AD =;③M 为ABC 的外心,4AM =.54.在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且a ,b ,c 是公差为2的等差数列.(1)若2sin 3sin C A =,求ABC 的面积.(2)是否存在正整数b ,使得ABC 的外心在ABC 的外部?若存在,求b 的取值集合;若不存在,请说明理由.55.在ABC 中,角A ,B ,C 对应的三边分别为a ,b ,c ,(tan 1)(tan 1)2A B ++=,c =2a =,O为ABC 的外心,连接OA ,OB ,OC .(1)求OAB 的面积;(2)过B 作AC 边的垂线交于D 点,连接OD ,试求cos OBD ∠的值.56.在 ABC 中,三内角A ,B ,C 对应的边分别为a ,b ,c ,a =6.(1)求b cos C +c cos B 的值;(2)若O 是 ABC0OA OB OC →→→→+=,求 ABC 外接圆的半径.。
重点突破:判断三角形解的个数问题

0
=
b sinB
,即 1 =
2
3
3 3 sinB
∴B=60°或 B=120°. 故选:C . 点睛:本题主要考查正弦定理解三角形,属于简单题.在解与三角形有关的问题时,正弦定理、余弦定理是两个
主要依据. 解三角形时, 有时可用正弦定理, 有时也可用余弦定理, 应注意用哪一个定理更方便、 简捷一般来说 , 当条件中同时出现 ab 及b2 、a2 时,往往用余弦定理,而题设中如果边和正弦、余弦函数交叉出现时,往往运 用正弦定理将边化为正弦函数再结合和、差、倍角的正余弦公式进行解答. 5.D 【解析】分析:利用正弦定理即可得出. 详解:由正弦定理可得:
5 1 , B 1500 符合两解。选 D. 9 2
bsinA 0 , A 中 sinB 1, B 90 , 1 解, 不符。 C 中 sinB 2 1 , a
【点睛】
在己知两边一对角的题型中,有钝角或直角最多一解,己知角所对边为大边,最多一解,其余情况根据三角形内 角和 180 ,大边对大角来判断。 4.C【解析】分析:利用正弦定理求出 sinB,得出 B,利用内角和定理进行检验. 详解:由正弦定理得 ∴sinB= .π 2π π源自)B.2π 3
C.
π 3
D.
π 4
2.已知 ABC 中, a A. 0 个 B. 1个
0
2, b 3, A 45 ,则三角形的解的个数(
D. 0 个或 1个
)
)
C. 2 个
3.在 ABC 中,利用正弦定理理解三角形时,其中有两解的选项是( A. a 3, b 6, A 30 B. a 6, b 5, A 150 D. a
专题4-4 三角函数与解三角形大题综合归类-(原卷 版)

专题4-4 三角函数与解三角形大题综合归类目录一、热点题型归纳【题型一】三角函数求解析式:“识图”................................................................................................. 1 【题型二】图像与性质1:单调性与值域................................................................................................ 3 【题型三】图像与性质2:恒等变形:结构不良型 ................................................................................ 4 【题型四】图像与性质3:恒成立(有解)求参数 ................................................................................ 5 【题型五】图像与性质4:零点与对称轴................................................................................................ 6 【题型六】解三角形1:面积与周长常规................................................................................................ 8 【题型七】解三角形2:计算角度与函数值 ............................................................................................ 9 【题型八】解三角形3:求面积范围(最值) ...................................................................................... 10 【题型九】解三角形4:周长最值 ......................................................................................................... 11 【题型十】解三角形5:巧用正弦定理求“非对称”型 ...................................................................... 11 【题型十一】解三角形6:最值范围综合.............................................................................................. 12 二、真题再现 ............................................................................................................................................ 12 三、模拟测试 .. (14)【题型一】三角函数求解析式:“识图”【典例分析】(2023·全国·高三专题练习)函数()sin(π),R f x A x x ϕ=+∈(其中π0,02A ϕ>≤≤)部分图象如图所示,1(,)3P A 是该图象的最高点,M ,N 是图象与x 轴的交点.(1)求()f x 的最小正周期及ϕ的值;(2)若π4PMN PNM ∠+∠=,求A 的值.1.(2023·全国·高三专题练习)已知函数()()sin 0,0,02f x A x A πωϕωϕ⎛⎫=+>><< ⎪⎝⎭的部分图象如图所示.(1)求函数()f x 的解析式;(2)将()f x 图象上所有点的横坐标缩短到原来的12(纵坐标不变),得到函数()y g x =的图象,求函数()g x ≥.2.(2022·四川·宜宾市教科所三模(理))已知函数()()πsin 0,2f x x ωϕωϕ⎛⎫=+>< ⎪⎝⎭的部分图象如图所示:(1)求()f x ;(2)若2f α⎛⎫= ⎪⎝⎭()0,πα∈,求cos2α的值.3.(2022·全国·高三专题练习)已知函数()()sin ,0,0,2f x A x x R A ωϕωϕπ⎛⎫=+∈>>< ⎪⎝⎭部分图象如图所示.(1)求()f x 的最小正周期及解析式; (2)将函数()y f x =的图象向右平移3π个单位长度得到函数()y g x =的图象,求函数()g x 在区间0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值.【题型二】图像与性质1:单调性与值域【典例分析】(2022·浙江·高三开学考试)已知函数()21cos cos 2f x x x x =⋅-. (1)求函数()f x 的单调递增区间; (2)求()f x 在区间[0,2π]上的最值.【变式演练】1.(2022·湖北·高三开学考试)已知函数2()sin cos sin sin 44f x x x x x x ππ⎛⎫⎛⎫=+++- ⎪ ⎪⎝⎭⎝⎭.(1)求()f x 的最小正周期;(2)若[0,]x π∈,求出()f x 的单调递减区间.2.(2022·黑龙江·双鸭山一中高三开学考试)已知函数()sin 2cos 22sin cos .36f x x x x x ππ⎛⎫⎛⎫=+++- ⎪ ⎪⎝⎭⎝⎭(1)求函数()f x 的最小正周期及对称轴方程;(2)将函数()y f x =的图象向左平移12π个单位,再将所得图象上各点的纵坐标不变、横坐标伸长为原来的2倍,得到函数()y g x =的图象,求()y g x =在[0,2π]上的单调递减区间.3.(2022·全国·高三专题练习)已知函数()()()2sin cos cos 04f x x x x ππωωωω⎛⎫=--+> ⎪⎝⎭的最小正周期为π.(1)求()f x 图象的对称轴方程;(2)将()f x 的图象向左平移6π个单位长度后,得到函数()g x 的图象,求函数()g x 在0,2π⎡⎤⎢⎥⎣⎦上的值域.【题型三】图像与性质2:恒等变形:结构不良型【典例分析】(2023·全国·高三专题练习)在①sin α=①2tan 40αα-=这两个条件中任选一个,补充到下面的问题中,并解答.已知角a 是第一象限角,且___________. (1)求tan α的值;(2)3)cos()cos(3)2πααπαπ+++-的值.注:如果选择多个条件分别解答,按第一个解答计分.【变式演练】1.(2022·北京·二模)已知函数2()cos cos (0,)ωωωω=++>∈R f x x x x m m .再从条件①、条件①、条件①这三个条件中选择能确定函数()f x 的解析式的两个作为已知. (1)求()f x 的解析式及最小值;(2)若函数()f x 在区间[]0,(0)t t >上有且仅有1个零点,求t 的取值范围. 条件①:函数()f x 的最小正周期为π;条件①:函数()f x 的图象经过点10,2⎛⎫⎪⎝⎭;条件①:函数()f x 的最大值为32.注:如果选择的条件不符合要求,得0分;如果选择多组符合要求的条件分别解答,按第一组解答计分.2.(2023·全国·高三专题练习)已知函数()()sin cos 0,0f x a x x a ωωω=>>.从下列四个条件中选择两个作为已知,使函数()f x 存在且唯一确定.条件①:π14f ⎛⎫= ⎪⎝⎭;条件①:()f x 为偶函数;条件①:()f x 的最大值为1;条件①:()f x 图象的相邻两条对称轴之间的距离为π2. 注:如果选择的条件不符合要求,第(1)问得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分.(1)求()f x 的解析式;(2)设()()22cos 1g x f x x ω=-+,求函数()g x 在()0,π上的单调递增区间.3.(2023·全国·高三专题练习)已知函数()()2sin cos f x a x x x x =∈R ,若__________.条件①:0a >,且()f x 在x ∈R 时的最大值为1条件①:6f π⎛⎫= ⎪⎝⎭请写出你选择的条件,并求函数()f x 在区间,43ππ⎡⎤-⎢⎥⎣⎦上的最大值和最小值.注:如果选择条件①和条件①分别解答,按第一个解答计分.【题型四】图像与性质3:恒成立(有解)求参数【典例分析】(2023·全国·高三专题练习)已知函数()π2sin()3f x x =+.(1)若不等式()3f x m -≤对任意ππ[,]63x ∈-恒成立,求整数m 的最大值;(2)若函数()π()2g x f x =-,将函数()g x 的图象上各点的横坐标缩短到原来的12倍(纵坐标不变),再向右平移12π个单位,得到函数()y h x =的图象,若关于x 的方程()102h x k -=在π5π[,]1212x ∈-上有2个不同实数解,求实数k 的取值范围.【变式演练】1.(2023·全国·高三专题练习)已知平面向量2sin 2,26m x π⎛⎫⎛⎫=-+- ⎪ ⎪⎝⎭⎝⎭,()21,sin n x =,()f x m n =⋅,其中0,2x π⎡⎤∈⎢⎥⎣⎦. (1)求函数()f x 的单调增区间; (2)将函数()f x 的图象所有的点向右平移12π个单位,再将所得图象上各点横坐标缩短为原来的12(纵坐标不变),再向下平移1个单位得到()g x 的图象,若()g x m =在5,824x ππ⎡⎤∈-⎢⎥⎣⎦上恰有2个解,求m 的取值范围.2.(2023·全国·高三专题练习)已知函数()sin()0,0,02f x A x A πωϕωϕ⎛⎫=+>><< ⎪⎝⎭的部分图象如图所示.(1)求函数()f x 的解析式;(2)先将函数()f x 的图象向右平移3π个单位长度,再将所得图象上各点的纵坐标不变,横坐标变为原来的2倍,得到()g x 的图象.(i )若0m >,当[0,]x m ∈时,()g x 的值域为[2],求实数m 的取值范围;(ii )若不等式2()(21)()10g x t g x t -+--≤对任意的,32x ππ⎡⎤∈⎢⎥⎣⎦恒成立,求实数t 的取值范围.3.(2022·全国·高三专题练习)已知:函数()2sin cos f x x x x =. (1)求()f x 的最小正周期; (2)求()f x 的单调递减区间;(3)若函数()()g x f x k =-在π0,4⎡⎤⎢⎥⎣⎦上有两个不同的零点,写出实数k 的取值范围.(只写结论)【题型五】图像与性质4:零点与对称轴【典例分析】(2022·全国·高三专题练习)已知函数()4cos cos 1(0)3f x x x πωωω⎛⎫=⋅-- ⎪>⎝⎭的部分图像如图所示,若288AB BC π⋅=-,B ,C 分别为最高点与最低点.(1)求函数()f x 的解析式;(2)若函数()y f x m =-在130,12π⎡⎤⎢⎥⎣⎦,上有且仅有三个不同的零点1x ,2x ,3x ,(123x x x <<),求实数m 的取值范围,并求出123 cos (2)x x x ++的值.【变式演练】1.(2023·全国·高三专题练习)已知函数()sin()0,0,||2f x A x B A πωϕωϕ⎛⎫=++>>< ⎪⎝⎭的部分图象如图所示.(1)求函数()f x 的解析式;(2)将函数()y f x =的图象上所有的点向右平移12π个单位,再将所得图象上每一个点的横坐标变为原来的2倍(纵坐标不变),得到函数()y g x =的图象.当130,6x π⎡⎤∈⎢⎥⎣⎦时,方程()0g x a -=恰有三个不相等的实数根()123123,,x x x x x x <<,求实数a 的取值范围和1232x x x ++的值.2.(2023·全国·高三专题练习)已知函数()sin()0,0,||2f x A x B A πωϕωϕ⎛⎫=++>>< ⎪⎝⎭的部分图象如图所示.(1)求函数()f x 的解析式;(2)将函数()y f x =的图象上所有的点向右平移12π个单位,再将所得图象上每一个点的横坐标变为原来的2倍(纵坐标不变),得到函数()y g x =的图象,若方程()0g x m -=在70,3π⎡⎤⎢⎥⎣⎦上有三个不相等的实数根()123123,,x x x x x x <<,求m 的取值范围及()123tan 2x x x ++的值.3.(2023·全国·高三专题练习)已知数2()2sin 1(0)6212x f x x πωπωω⎛⎫⎛⎫=+++-> ⎪ ⎪⎝⎭⎝⎭的相邻两对称轴间的距离为2π. (1)求()f x 的解析式;(2)将函数()f x 的图象向右平移6π个单位长度,再把各点的横坐标缩小为原来的12(纵坐标不变),得到函数()y g x =的图象,当,126x ππ⎡⎤∈-⎢⎥⎣⎦时,求函数()g x 的值域;(3)对于第(2)问中的函数()g x ,记方程4()3g x =在4,63x ππ⎡⎤∈⎢⎥⎣⎦上的根从小到大依次为12,,n x x x ,若m =1231222n n x x x x x -+++++,试求n 与m 的值.【题型六】解三角形1:面积与周长常规【典例分析】(2022·安徽·高三开学考试)在ABC 中,点,M N 分别在线段,BC BA 上,且,BM CM ACN BCN =∠=∠,3,22AB AM AC ===.(1)求BM 的长;(2)求BCN △的面积.【变式演练】1.(2022·北京·高三开学考试)在ABC 中,角A ,B ,C 的对边分别为,,,sin2sin =a b c C C . (1)求C ∠;(2)若1b =,且ABCABC 的周长.2.(2022·江苏·南京市金陵中学河西分校高三阶段练习)已知ABC 的三个内角,,A B C 所对的边分别为a ,b ,c ,)tan tan tan tan 1+=B C B C . (1)求角A 的大小;(2)若1a =,21)0c b -=,求ABC 的面积.3.(2022·云南昆明·高三开学考试)已知ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,sin cos 0B b A -=. (1)求A ;(2)若c =a =ABC 的面积.【题型七】解三角形2:计算角度与函数值【典例分析】(2022·全国·高三专题练习)在ABC 中,角A 、B 、C 的对边分别为a ,b ,c.已知12,cos 4a b c A ==-.(1)求c 的值; (2)求sin B 的值; (3)求sin(2)A B -的值.【变式演练】1.(2021·天津静海·高三阶段练习)已知ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,满足()()2sin 2sin 2sin a b A b a B c C -+-=. (1)求角C 的大小;(2)若c =4a b +=,求ABC 的面积.(3)若cos =A ,求()sin 2A C -的值.2.(2022·北京市第二十二中学高三开学考试)已知ABC 的内角,,A B C 所对的对边分别为,,a b c ,周长为1,且sin sin A B C +. (1)求c 的值;(2)若ABC 的面积为1sin 6C ,求角C 的大小.3.(2022·青海玉树·高三阶段练习(文))在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且ABC 的面积)222S a c b =+-. (1)求角B 的大小;(2)若2a c =,求sin C .【题型八】解三角形3:求面积范围(最值)【典例分析】(2022·云南·昆明一中高三开学考试)已知ABC 的内角,,A B C 所对边分别为,,a b c ,且222sin sin sin sin A B C B C -=. (1)求A ;(2)若a =ABC 面积的最大值.【变式演练】1.(2022·河南·高三开学考试(文))已知,,a b c 分别为ABC 的内角,,A B C 所对的边,且()()sin sin sin sin a c b A C B c B +--+=(1)求角A 的大小;(2)若a =ABC 面积的最大值.2.(2022·湖南·麻阳苗族自治县第一中学高三开学考试)在ABC 中,内角A ,B ,C 的对边分别是a ,b ,c .已知ABC 的外接圆半径R =tan tan B C +=.(1)求B 和b 的值;(2)求ABC 面积的最大值.3.(2021·江苏·矿大附中高三阶段练习)ABC 的内角A ,B ,C 的对边分别是a ,b ,c ,设sin cos sin (2cos )A B B A =-.(1)若b c +,求A ;(2)若2a =,求ABC 的面积的最大值.【题型九】解三角形4:周长最值【典例分析】(2022·黑龙江·双鸭山一中高三开学考试)在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且222sin sin sin sin sin A B C A B +-=. (1)求角C 的大小;(2)若ABCABC 周长的取值范围.【变式演练】1.(2022·广东·深圳外国语学校高三阶段练习)已知ABC 中,内角,,A B C 所对边分别为,,a b c ,若()2cos cos 0a c B b C --=.(1)求角B 的大小;(2)若2b =,求a c +的最大值.2.(2022·湖北·襄阳五中高三开学考试)在锐角ABC 中,角A ,B ,C ,的对边分别为a ,b ,c ,从条件①:3sin cos tan 4A A A =,条件①12=,条件①:2cos cos cos a A b C c B -=这三个条件中选择一个作为已知条件. (1)求角A 的大小;(2)若2a =,求ABC 周长的取值范围.3.(2022·广东·高三开学考试)已知锐角ABC 中,角A 、B 、C 所对边为a 、b 、c ,= (1)求角A ;(2)若4a =,求b c +的取值范围.【题型十】解三角形5:巧用正弦定理求“非对称”型【典例分析】(2022·四川成都·模拟预测(理))①ABC 中,角,,A B C 所对边分别是,,a b c ,tan tan 2tan tan A AB C bc,cos cos 1b C c B +=.(1)求角A 及边a ; (2)求2b c +的最大值.【变式演练】1.(2022·全国·南京外国语学校模拟预测)在ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,且5sin sin 35cos cos cos2B C B C A -=+. (1)求角A 的大小;(2)若a =2b c +的最大值.2..(2022·辽宁·抚顺市第二中学三模)在①()()222sin 2sin B c a C b c a b -=+-,①23cos cos cos 24A C A C --=,tan tan A B =+这三个条件中,任选一个,补充在下面问题中,问题:在ABC 中,a ,b ,c 分别为角A ,B ,C 所对的边,b =_______. (1)求角B ﹔(2)求2a c -的范围.【题型十一】解三角形6:最值范围综合【典例分析】(2022·浙江·高三开学考试)记ABC 内角,,A B C 的对边分别是,,a b c ,已知tan tan 2tan tan tan B CB A A=-.(1)求证:2222b c a +=;(2)求2abc 的取值范围.【变式演练】1.(2022·辽宁·渤海大学附属高级中学模拟预测)ABC 的内角A 、B 、C 所对边的长分别为a 、b 、c ,已cos sin B b C =+. (1)求C 的大小;(2)若ABC 为锐角三角形且c =22a b +的取值范围.2.(2022·湖南湘潭·高三开学考试)设ABC 的内角,,A B C 的对边分别为,,a b c ,A 为钝角,且tan bB a =.(1)探究A 与B 的关系并证明你的结论; (2)求cos cos cos A B C ++的取值范围.1.(2022·天津·高考真题)在ABC 中,角A 、B 、C 的对边分别为a ,b ,c.已知12,cos 4a b c A ===-.(1)求c 的值; (2)求sin B 的值; (3)求sin(2)A B -的值. 2.(2022·全国·高考真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,分别以a ,b ,c 为边长的三个正三角形的面积依次为123,,S S S ,已知12313S S S B -+==.(1)求ABC 的面积;(2)若sin sin A C =,求b . 3.(2022·全国·高考真题(文))记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ﹐已知()()sin sin sin sin C A B B C A -=-. (1)若2A B =,求C ; (2)证明:2222a b c =+4.(·浙江·高考真题(理))已知ABC 的内角,,A B C 所对的对边分别为,,a b c 1,且sin sin A B C +. (1)求c 的值;(2)若ABC 的面积为1sin 6C ,求角C 的大小.5.(2022·全国·高考真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知cos sin 21sin 1cos2A BA B=++.(1)若23C π=,求B ;(2)求222a b c +的最小值.6.(2020·山东·高考真题)小明同学用“五点法”作某个正弦型函数sin()0,0,2y A x A ωϕωϕπ⎛⎫=+>>< ⎪⎝⎭在根据表中数据,求:(1)实数A ,ω,ϕ的值;(2)该函数在区间35,44ππ⎡⎤⎢⎥⎣⎦上的最大值和最小值.7.(山东·高考真题)已知函数()2sin 2y x ϕ=+,x ∈R ,π02ϕ<<,函数的部分图象如下图,求(1)函数的最小正周期T 及ϕ的值: (2)函数的单调递增区间.8.(2021·天津·高考真题)在ABC ,角 ,,A B C 所对的边分别为,,a b c ,已知sin :sin :sin 2A B C =b =(I )求a 的值; (II )求cos C 的值;(III )求sin 26C π⎛⎫- ⎪⎝⎭的值.9.(2021·全国·高考真题)在ABC 中,角A 、B 、C 所对的边长分别为a 、b 、c ,1b a =+,2c a =+.. (1)若2sin 3sin C A =,求ABC 的面积;(2)是否存在正整数a ,使得ABC 为钝角三角形?若存在,求出a 的值;若不存在,说明理由.10.(2021·北京·高考真题)在ABC 中,2cos c b B =,23C π=.(1)求B ;(2)再从条件①、条件①、条件①这三个条件中选择一个作为已知,使ABC 存在且唯一确定,求BC 边上中线的长.条件①:c =;条件①:ABC 的周长为4+条件①:ABC11.(2023·全国·高三专题练习)在ABC 中.3sin cos 64A A π⎛⎫-= ⎪⎝⎭.(1)求角A ;(2)若8AC =,点D 是线段BC 的中点,DE AC ⊥于点E ,且DE =CE 的长.1.(2022·浙江省杭州学军中学模拟预测)已知函数()()sin y f x A x B ωϕ==++(其中A ,ω,ϕ,B 均为常数,且0A >,0>ω,ϕπ<)的部分图像如图所示.(1)求()f x 的解析式;(2)若5()126g x f x f x ππ⎛⎫⎛⎫=-+- ⎪ ⎪⎝⎭⎝⎭,,02x π⎛⎫∈- ⎪⎝⎭,求()g x 的值域.2.(2022·全国·高三专题练习)已知向量(sin a x =,(1,cos )b x =.(1)若a b ⊥,求sin 2x 的值;(2)令()f x a b =⋅,把函数()f x 的图像上每一点的横坐标都缩短为原来的一半(纵坐标不变),再把所得的图像沿x 轴向左平移6π个单位长度,得到函数()g x 的图像,求函数()g x 在0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值.3.(2023·全国·高三专题练习)已知函数()()sin 0,2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭,再从条件①、条件①、条件①这三个条件中选择两个作为一组已知条件,使()f x 的解析式唯一确定. (1)求()f x 的解析式;(2)设函数()()6g x f x f x π⎛⎫=++ ⎪⎝⎭,求()g x 在区间0,4⎡⎤⎢⎥⎣⎦π上的最大值.条件①:()f x 的最小正周期为π;条件①:()00f =;条件①:()f x 图象的一条对称轴为4x π=. 注:如果选择多组条件分别解答,按第一个解答计分.4.(2023·全国·高三专题练习)已知函数()()()3,sin 26f x x x a a a g x x π⎛⎫=--+∈=+ ⎪⎝⎭R .(1)若()f x 为奇函数,求实数a 的值;(2)若对任意[]10,1x ∈,总存在20,2x π⎡⎤∈⎢⎥⎣⎦,使()()12f x g x =成立,求实数a 的取值范围.5.(2023·全国·高三专题练习)已知函数()2sin 216f x x πω⎛⎫=++ ⎪⎝⎭.(1)若()()()12f x f x f x ≤≤,12min 2x x π-=,求()f x 的对称中心;(2)已知05ω<<,函数()f x 图象向右平移6π个单位得到函数()g x 的图象,3x π=是()g x 的一个零点,若函数()g x 在[],m n (m ,n R ∈且m n <)上恰好有10个零点,求n m -的最小值; 6、(2022·安徽·高三开学考试)记ABC 的内角,,A B C 的对边分别为,,a b c ,且23,2b c B C ==.(1)求cos C ;(2)若5a =,求c .7.(2022·广西·模拟预测(文))设ABC 的内角A 、B 、C 所对的边分别为a 、b 、c ,且2cos 2sin c b A b A -=. (1)证明:()sin 2sin sin A B B A -=; (2)若3A B =,求B 的值.8.(2022·全国·高三专题练习)在①2cos cos c b B a A -=;①sin cos 2AA =;()sin a C C =,这三个条件中任选一个,补充在下面的横线上,并加以解答.在ABC 中,角,,A B C 的对边分别是,,a b c ,若__________.(填条件序号) (1)求角A 的大小;(2)若3a =,求ABC 面积的最大值.注:如果选择多个条件分别解答,按第一个解答计分.9.(2021·福建省华安县第一中学高三期中)在①π1cos cos 32B B ⎛⎫-=+ ⎪⎝⎭,①sin (sin sin )sin a A c C A b B +-=,tan tan A B =+这三个条件中,任选一个,补充在下面问题中.问题:在ABC 中,a ,b ,c 分别为角A ,B ,C 所对的边,b =______________. (1)求角B ;(2)求a c +的最大值.注:如果选择多个条件分别解答,按第一个解答计分. 10.(2022·山东烟台·三模)在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且22cos cos 2cos b a A C c A =+. (1)求角A ;(2)若4a =,求2c b -的取值范围.11.(2023·全国·高三专题练习)在ABC 中,点D 在边BC 上,3AB =,2AC =. (1)若AD 是BAC ∠的角平分线,求:BD DC ;(2)若AD 是边BC 上的中线,且AD =,求BC .12.(2022·全国·模拟预测(文))在①3cos210cos 10A A +-=,①sin cos A A -=①tan 2A =三个条件中任选一个,补充在下面的问题中,并作答.如果多选,则按第一个解答给分. 已知ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且______ (1)求cos A ;(2)sin sin B C 的最大值.。
(专题精选)初中数学三角形难题汇编及答案解析

∴∠BAE=∠EAD=60°
∴△ABE是等边三角形,
∴AE=AB=BE,∠AEB=60°,
∵AB= BC,
∴AE=BE= BC,
∴AE=CE,故①正确;
∴∠EAC=∠ACE=30°
∴∠BAC=90°,
∴S△ABC= AB•AC,故②错误;
∵BE=EC,
∴E为BC中点,O为AC中点,
(专题精选)初中数学三角形难题汇编及答案解析
一、选择题
1.如图,已知 ,若 , , ,下列结论:① ;② ;③ ;④ 与 互补;⑤ ,其中正确的有()
A.2个B.3个C.4个D.5个
【答案】C
【解析】
【分析】
根据平行线的判定得出AC∥DE,根据垂直定义得出∠ACB=∠CDB=∠CDA=90°,再根据三角形内角和定理求出即可.
∴S△ABE=S△ACE=2S△AOE,故③正确;
∵四边形ABCD是平行四边形,
∴AC=CO,
∵AE=CE,
∴EO⊥AC,
∵∠ACE=30°,
∴EO= EC,
∵EC= AB,
∴OE= BC,故④正确;
故正确的个数为3个,
故选:C.
【点睛】
此题考查平行四边形的性质,等边三角形的判定与性质.注意证得△ABE是等边三角形是解题关键.
15.如图,四边形 和 都是正方形,点 在 边上,点 在对角线 上,若 ,则 的面积是()
A.6B.8C.9D.12【答Βιβλιοθήκη 】B【解析】【分析】
根据正方形的性质得到∠DAC=∠ACD=45°,由四边形EFGH是正方形,推出△AEF与△DFH是等腰直角三角形,于是得到DE= EH= EF,EF= AE,即可得到结论.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解三角形专题2
三角形解的个数问题
A 为锐角 A 为钝角或直角
图形
关系 A<bsinA
A=bsinA bsinA<a<b a ≥b a ≤b
解的
个数
无解 一解 两解 一解 无解
1 已知下列三角形中的两边及其中一边的对角,判断三角形是否有解,并指出有几解?
(1) 78105a ,b ,A ==∠=
(2) 102080a ,b ,A ==∠=
(3) 105660b ,c ,C ==∠=
(4) 23630a ,b ,A ==∠=
答案:(1) 90A ∠>而a b <,故无解
(2) 90A ,a b sin A b ∠<<<,故有无解
(3) c b >,故有一组解
(4) 90A ,b sin A a b ∠<<<,故有两组解
2在△ABC 中,A =45°,AB =3,则“BC=2”是“△ABC 只有一解且C =60°”的
A .充分不必要条件
B .必要不充分条件
C .充要条件
D .既为充分也不必要条件
另解法
法1:大角对大边
在已知ABC ∆中的边长a ,b 和角A ,且已知a ,b 的大小关系,常利用正弦定理结合“大边对大角”
来判断三角形解的个数,一般的做法如下,首先利用大边对大角,判断出角B 与角A 的大小关系,然后求
出B 的值,根据三角函数的有界性求解.
【例1】在ABC ∆
中,已知a =
b =45B =︒,求A 、C 及
c .
解:由正弦定理,
得sin sin 2a B A b ===,∵4590B =︒<︒,b a <,∴60A =︒或120︒. 当60A =︒时,75C =︒
,sin 75sin sin 452b C c B ︒=
==︒; 当120A =︒时,15C =︒
,sin sin b C c B ===. 点评:在三角形中,sin sin a b A B A B >⇔>⇔>这是个隐含条件,在使用时我们要注意挖掘.
法2:二次方程的正根个数
一般地,在ABC ∆中的边长a ,b 和角A ,常常可对角A 应用余弦定理,并将其整理为关于c 的一元
二次方程2222cos 0c bc A b a -+-=,若该方程无解或只有负数解,则该三角形无解;若方程有一个正数
解,则该三角形有一解;若方程有两个不等的正数解,则该三角形有两解. 【例2】如图,在四边形ABCD 中,已知AD CD ⊥,10AD =,14AB =
, 60BDA ∠=︒,135BCD ∠=︒,求BC 的长.
解:在ABD ∆中,设BD x =,由余弦定理得2221410210cos60x x =+-⋅︒,
整理得210960x x --=,解得16x =.
由正弦定理,得sin 16sin30sin sin135BD CDB BC BCD ∠︒===∠︒
点评:已知三角形两边和其中一边的对角,我们可以采用正弦定理或余弦定理求解,从上述例子可以看出,
利用余弦定理结合二次方程来判断显得更加简捷.
法3:画圆法
已知ABC ∆中,A 为已知角(90≠︒),先画出A ,确定顶点A ,再在A 的一边上确定顶点C ,使AC
边长为已知长度,最后以顶点C 为圆心,以CB 边长为半径画圆,看该圆与A 的另一边是否有
A B C D
交点,如果
没有交点,则说明该三角形的解的个数为0;若有一个交点,则说明该三角形的解的个数为1;若有两个
交点,则说明该三角形的解的个数为2.
【例3】在ABC ∆中,60A ∠=︒
,a =3b =,则ABC ∆解的情况( ) (A )无解 (B )有一解 (C )有两解 (D
)不能确定 解:在A 的一边上确定顶点C ,使3AC b ==,作60CAD ∠=︒,
以顶点C 为圆心,以CB a ==AD 没有交点,
则说明该三角形的解的个数为0,故选A .
A b
C a D。