抽样分布与参数估计 PPT

合集下载

统计学课件第5-7章概率分布、抽样分布及参数估计剖析.

统计学课件第5-7章概率分布、抽样分布及参数估计剖析.
第5、6、7章
概率分布、抽样分布及参数估计
Probability Distributions & Sampling Distributions
& Parameter Estimation
Wednesday, January 16, 2019
Statistical Research Office
1
本部分主要研究的问题有:
● 遵循随机性原则 --- 体现在在每一层抽选中;
● 每一层内应包含足够多的个体;
● 在同等条件下,抽样误差要小于简单随机抽 样和系统抽样的抽样误差。
Wednesday, January 16, 2019 Statistical Research Office 12
Wednesday, January 16, 2019
Statistical Research Office
7

常用的随机抽样组织方式
► 简单随机抽样(Simple random sampling)
►分层随机抽样(Stratified sampling)
►系统随机抽样(Systematic sampling)
►整群随机抽样 (Cluster sampling) 常用的随机抽样方法: ►重复抽样 (Sampling with replacement) ►不重复抽样(Sampling without replacement)
8
Wednesday, January 16, 2019
Statistical Research Office
★ 简单随机抽样 -定义:从总体中,按照随机的原则,使得总体 中每个个体都有同等被选中的机会,而先后抽 出的n个个体作为一个容量为n的样本。

抽样分布与参数估计

抽样分布与参数估计

三、t分布曲线下的面积分布规律
自由度为 的t分布曲线
t 分布曲线下 的整个面积为1, t 分布曲线下从a到b 的面积为t值分布 在此范围内的百分 比,即t值落在此 范围内的概率P。
双侧:由于t分布以0为中心对称,即 P(t≤- t, )= P(t≥ t, )= /2 于是有P(- t, ≤t≤ t, )=1-
sx
u X
X
t X =n-1
s X
u分布 t分布
二、t分布图形的特点
• 1. t分布是一簇曲线。 t分布有一个参数, 即自由度 ,与标准差的自由度一致。
• 2. t分布曲线以0为中心,左右对称; 越小, t变量值的离散程度越大,曲线越扁平。
• 3. t分布曲线较标准正态曲线要扁平些(高 峰低些,两尾部翘得高些), 逐渐增大, t分布曲线逐渐的逼近于标准正态曲线,若 =,则t分布曲线和标准正态曲线完全吻 合。
参数估计在统计方法中的地位
统计方法
描述统计
推断统计
点值估计
参数估计
假设检验
区间估计
一、基本概念
➢ 参数估计:用样本统计量来估计总体参数。
点值估计:不计抽样误差,直接用样本均数来 估计μ。
区间估计:根据抽样误差的规律,按一定的概 率估计总体均数的所在范围。统计上习惯用95% 或99%可信区间表示总体均数可能所在范围。
第一节 均数的抽样误差 第二节 t分布 第三节 总体均数可信区间的估计
一、抽样研究:从总体中随机抽取部分 观察单位构成样本,用样本信息去 推断总体特征的研究方法。
统计推断的过程
总体

样本统计量

例如:样本均
值、比例
二、抽样误差:在抽样研究中,因抽样造 成的样本统计量与样本统计量、样本统计 量与总体参数的差值。

概率论与数理统计-参数估计_图文

概率论与数理统计-参数估计_图文


于是得到
的置信水平为 的置信区间为
为已知
其中
于是得到
的置信水平为 的置信区间为
其中
例3 为比较 I ,ቤተ መጻሕፍቲ ባይዱⅡ 两种型号步枪子弹的枪口
速度 ,随机地取 I 型子弹 10 发 ,得到枪口速度的平
均值 为
标准差

机地取 Ⅱ 型子弹 20 发 ,得到枪口速度的平均值为
标准差
假设两总
体都可认为近似地服从正态分布.且生产过程可认
2. 估计的精度要尽可能的高. 如要求区间长度
尽可能短,或能体现该要求的其它准则.
可靠度与精度是一对矛盾,一般是在保证 可靠度的条件下尽可能提高精度.
二、置信区间的求法
在求置信区间时,要查表求分位点.
定义 设
, 对随机变量X,称满足
的点 为X的概率分布的上 分位点.
若 X 为连续型随机变量 , 则有 所求置信区间为
X~N( )
样本均值是否是 的一个好的估计量?
样本方差是否是 的一个好的估计量?
这就需要讨论以下几个问题: (1) 我们希望一个“好的”估计量具有什么特性? (2) 怎样决定一个估计量是否比另一个估计量“好”?
(3) 如何求得合理的估计量?
常用的几条标准是:
1.无偏性 2.有效性 3.相合性
这里我们重点介绍前面两个标准 .
概率论与数理统计-参数估计_图文.ppt
参数估计
现在我们来介绍一类重要的统计推断问题 参数估计问题是利用从总体抽样得到的信息来估 计总体的某些参数或者参数的某些函数.
估计新生儿的体重
估计废品率
在参数估计问题
估计降雨量 中,假定总体分 布形式已知,未
… 知的仅仅是一个 … 或几个参数.

概率论与数理统计第7章参数估计PPT课件

概率论与数理统计第7章参数估计PPT课件
5
a1(1, ,k )=v1
1 f1(v1, ,vk )
假定方程组a2(1, ,k ) v2 ,则可求出2 f2(v1, ,vk )
ak (1, ,k ) vk
k fk (v1, ,vk )
则x1 xn为X的样本值时,可用样本值的j阶原点矩Aj估计vj,其中
Aj
1 n
n i1
xij ( j
L(x1, ,xn;ˆ)maxL(x1, ,xn;),则称ˆ(x1, ,xn)为
的一种参数估计方法 .
它首先是由德国数学家
高斯在1821年提出的 ,然而, 这个方法常归功于英国统
Gauss
计学家费歇(Fisher) . 费歇在1922年重新发现了
这一方法,并首先研究了这
种方法的一些性质 .
Fisher
10
极大似然估计是在已知总体分布形式的情形下的 点估计。
极大似然估计的基本思路:根据样本的具体情况
注:估计量为样本的函数,样本不同,估计量不 同。
常用估计量构造法:矩估计法、极大似然估计法。
4
7.1.1 矩估计法
矩估计法是通过参数与总体矩的关系,解出参数, 并用样本矩替代总体矩而得到的参数估计方法。 (由大数定理可知样本矩依概率收敛于总体矩, 且许多分布所含参数都是矩的函数)
下面我们考虑总体为连续型随机变量的情况:
n
它是的函数,记为L(x1, , xn; ) f (xi , ), i 1
并称其为似然函数,记为L( )。
注:似然函数的概念并不仅限于连续随机变量 ,
对于离散型随机变量,用 P {Xx}p(x,)
替代f ( x, )
即可。
14
设总体X的分布形式已知,且只含一个未知参数,

抽样分布与参数估计

抽样分布与参数估计
思考题:收视率估计
▪ 某电视台欲在95%的置信度水平下,对电
视节目的收视率作为有效的估计,试考 虑样本量应当为多少?
▪ 问题:若确定估计绝对误差为5%,则样
本为385户,是否可行?
▪ 若考虑估计相对误差为10%,则样本量应
当为多少?
统计学原理
其他样本量估计的情况
▪ 估计样本比例时样本量的确定 ▪ 估计两个总体均值之差时样本量的确定 ▪ 估计两个总体比例之差时样本量的确定 ▪ 以上问题,均可通过参数估计的公式进行
o 比例估计时,方差为:p(1-p) o 可知,p(1-p)的最大值为0.25。
统计学原理
比例估计时的样本量推算
在校园内估计学生拥有手机的比例,希 望在95%的置信水平下,估计的绝对误 差不超过5个百分点(5%),求样本量
n
1.962
0.052
2
, 取
2
Max
0.25
则有n 385
统计学原理
助记方法
统计学原理
统计学原理
一个总体参数—总体均值
▪ 正态总体,方差已知;
o 或非正态总体,大样本,方差已知。
z x ~ N (0,1) X n
置信区间:
(
x
za
2
X
n
,
x
za
2
X
n
)
注意:Z取a/2的原因在于此时置信 区间是最小的。
统计学原理
一个总体参数—总体均值
▪ 正态总体,方差未知
统计学原理
计算结果
▪ 计算样本平均数:X=39.5 ▪ 计算样本标准差:s=7.7736 ▪ 令:总体标准差=样本标准差,计算抽样误差为
1.2956

统计学 第 6 章 抽样与参数估计

统计学  第 6 章   抽样与参数估计

第6章抽样与参数估计第6章抽样与参数估计6.1抽样与抽样分布6.2参数估计的基本方法6.3总体均值的区间估计6.4总体比例的区间估计6.5样本容量的确定学习目标理解抽样方法与抽样分布估计量与估计值的概念点估计与区间估计的区别评价估计量优良性的标准总体均值的区间估计方法总体比例的区间估计方法样本容量的确定方法参数估计在统计方法中的地位统计推断的过程6.1抽样与抽样分布什么是抽样推断概率捕样方法抽样分布抽样方法抽样方法概率抽样(probabilitysampling)也称随机抽样特点按一定的概率以随机原则抽取样本抽取样本时使每个单位都有一定的机会被抽中每个单位被抽中的概率是已知的,或是可以计算出来的当用样本对总体目标量进行估计时,要考虑到每个样本单位被抽中的概率简单随机抽样(simplerandomsampling)从总体N个单位中随机地抽取n个单位作为样本,每个单位入抽样本的概率是相等的最基本的抽样方法,是其它抽样方法的基础特点简单、直观,在抽样框完整时,可直接从中抽取样本用样本统计量对目标量进行估计比较方便局限性当N很大时,不易构造抽样框抽出的单位很分散,给实施调查增加了困难没有利用其它辅助信息以提高估计的效率分层抽样(stratifiedsampling)将抽样单位按某种特征或某种规则划分为不同的层,然后从不同的层中独立、随机地抽取样本优点保证样本的结构与总体的结构比较相近,从而提高估计的精度组织实施调查方便既可以对总体参数进行估计,也可以对各层的目标量进行估计系统抽样(systematicsainplmg)将总体中的所有单位(抽样单位)按一定顺序排列,在规定的范闱内随机地抽取一个单位作为初始单位,然后按爭先规定好的规则确定其它样本单位先从数字1到k之间随机抽取一个数字r作为初始单位,以后依次取r+k,r+2k…等单位优点:操作简便,可提高估计的精度缺点:对估计量方差的估计比较困难整群抽样(clustersampling)将总体中若干个单位合并为组(群),抽样时直接抽取群,然后对中选群中的所有单位全部实施调查特点抽样时只需群的抽样框,可简化工作量调查的地点相对集中,节省调查费用,方便调查的实施缺点是估计的精度较差抽样分布总体中各元素的观察值所形成的分布分布通常是未知的可以假定它服从某种分布总体分布(populationdistribution)一个样本中各观察值的分布也称经验分布当样本容屋n逐渐增大时,样本分布逐渐接近总体的分布样本分布(sampledistribution)抽样分布的概念(samplingdistribution)抽样分布是指样本统计屋的分布,即把某种样本统计量看作一个随机变量,这个随机变屋的全部可能值构成的新的总体所形成的分布即为某种统计量的抽样分布.统计量:样本均值,样本比例,样本方差等样本统计量的概率分布是一种理论概率分布随机变量是样本统计量样本均值,样本比例,样本方差等结果来自容量相同的所有可能样本提供了样本统计量长远稳定的信息,是进行推断的理论基础,也是抽样推断科学性的重要依据对抽样分布的理解抽样分布:即不是总体分布,也不是样本分布,是根据所有可能样本计算的统计量的全部可能取值形成的分布样本均值的抽样分布容量相同的所有町能样本的样本均值的概率分布一种理论概率分布进行推断总体均值的理论基础样本均值的抽样分布样本均值的抽样分布(例题分析)【例】设一个总体,含有4个元素(个体),即总体单位数N=4。

统计学基础ppt课件

统计学基础ppt课件
➢ 调查失败的主要原因是抽样框出现了问题。在经济大萧条 时期由于电话和汽车并不普及,只是富裕阶层才会拥有, 调查有电话和汽车的人们,并不能够反映全体选民的观点
4-4
统计学 参数估计在统计方法中的地位
基础
统计方法
描述统计
推断统计
参数估计
假设检验
4-5
第 4 章 抽样与参数估计
4.1 抽样与抽样分布
4 - 14
统计学 基础
有关抽样的几个基本概念
4、抽样比 抽样比是指在抽选样本时,所抽取的样本
单位数n与总体单位数N之比。一般地讲, n≥30为大样本,n<30为小样本。研究社会 经济现象时,通常采用大样本进行抽样调查。
对于给定的研究对象,全及总体是唯一确定 的,而样本总体不是唯一的,它是随机的。
有关抽样的几个基本概念
2、抽样框
目标总体规定了理论上的抽样范围,但是进行抽样 的总体单位与目标总体有时是不一致的,因而, 在抽样之前,还必须明确实际进行抽样的总体范 围和抽样单位。
抽样框是指用以代表总体,并从中抽选样本的一个
框架。
目标总体与抽样框有时是一致的;多数情 况下,目标总体的范围要率大于抽样框。
4. 局限性
当N很大时,不易构造抽样框 抽出的单位很分散,给实施调查增加了困难 没有利用其它辅助信息以提高估计的效率
4 - 17
统计学 基础
抽样方法和样本可能数目
1、重复抽样
重复抽样也叫重置抽样,是指每次抽取一个元素 后又放回,重新参加下一次的抽选,直到抽取n个 元素为止。全及总体单位数始终保持不变,每个总 体单位都有被重复抽中的可能。 重复抽样通常要考虑单位排列顺序,如电话号 码中的“8651”和“1568”不同。
其样本可能数目为 m重 N n

抽样分布与参数估计

抽样分布与参数估计

f
n
X
x
2
f
x
0.79
f
n

x
~
N


,
2
n

比较及结论:1. 样本均值的均值(数学期望) 等于总体均值
2. 样本均值的方.差等于总体方差的1/n
样本均值的抽样分布
(数学期望与方差)
1. 样本均值的数学期望
E(X )
2. 样本均值的方差
第一个
第二个观察值
观察值
1
•2
•3
•4
1
1,1
•1,2
1,3
•1,4
2
•2,1
2,2
2,3
2,4
3
•3,1
3,2
3,3
3,4
4
•4,1
4,2
4,3
4,4
.
样本均值的抽样分布
(例题分析)
计算出各样本的均值,如下表。并给出样本均 值的抽样分布
•16个样本的均值(x)
第一个
第二个观察值
观察值 •1 •2 •3 •4
2
x
2π 2
f (x)
f(x) = 随机变量 X 的频数
= 正态随机变量X的均值
= 正态随机变量X的方差
= 3.1415926; e = 2.71828
x = 随机变量的取值 (- < x < )
x ~ N, 2
x
.
正态分布的概率
b
f(x)
P(a x b) a f (x)dx ?
E(P)
2. 样本比例的方差
– 重复抽样
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

X
~
N
(,
2 X
)
11
样本个数 1800 1600 1400 1200 1000 800 600 400 200 0
均数的抽样分布——正态分布
1200
1000
800
n=5
600
400
200样本均数0来自n=10图1 从正态总体N(155.4,5.32)中 以n=5抽样时样本均数的分布
1200
1000
800
抽样分布与参数估计
主要内容
§ 4.1 均数的抽样误差与标准误 § 4.2 t 分布和总体均数的估计
2
在医学研究中,因受人、财、物、时等条件的 限制,研究者不可能对总体(无论是有限总体 还是无限总体)中的所有个体进行研究,只能 对总体中的部分个体(样本)进行研究,然后 用样本信息来推断总体特征。这种用样本信息 推断总体特征的研究方法为抽样研究。
4
1. 模拟试验
已知某市16岁女中学生的身高分布服从均 数μ 为155.4cm、标准差σ 为5.3 cm的正态 分布。
现以固定n =10从该总体中随机抽取100个 样本,求得100个样本均数,如表3-1。
5
表3-1 100个样本均数
154.4 155.1 155.8 156.2 156.9 157.7 158.4 155.5 153.8 151.5 152.4 153.7 154.1 154.9 155.3 155.8 155.5 156.2 157.9 156.6 153.6 152.2 153.3 154.3 154.6 155.3 155.6 155.5 156.3 158.5 159.6 157.6 156.7 156.1 155.4 155.1 154.8 153.9 153.2 153.4 155.9 156.5 157.2 158.8 155.2 152.2 152.8 153.5 153.6 152.9 156.4 157.1 158.6 155.5 154.6 154.2 153.5 153.7 156.3 155.7 156.6 157.3 157.8 159.2 157.4 155.3 155.6 154.6 154.2 152.6 154.5 153.4 154.3 156.5 153.1 154.1 153.6 155.7 159.8 156.1 153.3 154.4 155.2 156.8 158.2 156.4 155.2 154.3 156.7 155.6 154.5 155.9 154.7 155.8 154.7 155.7 155.4 155.6 154.8 155.4
样本均数 X 的分布仍服从正态分 布 N (, 2 )。
X
当样本含量 n 足够大时,即使从偏态分布总 体中以固定 n 抽样,其样本均数的分布也服 从正态分布。
9
155.4cm 5.3cm
X~ N (, 2 )
以固定 n 随机抽样
n足够大
轻度偏态
X
X 155.38cm 155.4cm
sX 1.71cm
600
n=20
400
200
0
图2 从正态总体N(155.4,5.32)中
以n=10抽 样 时 样 本 均 数 的
分布
900
800
700
600
500
n=30
400
300
200
100
0
图3 从正态总体N(155.4,5.32)中 以n=20 抽样时样本均数的分布
图4 从正态总体N(155.4,5.32)中 以n=30 抽样时样本均数的分布
误。
12
标准误
样本均数的标准差 :简称标准误,是衡 X
量均数抽样误差大小的指标。
计算公式:
X
n
(理论值)
S X
S n
(估计值)
如上例, 5.3 cm,n 10 ,则
X
n 1.68 cm ,计算结果与模拟试验
中样本均数的标准差1.71cm相近。
14
标准误的意义
由公式可见,当 n 固定时,标准误与标准差成正比, 即个体离散度越大,标准误越大;当标准差不变时, 标准误与样本含量的平方根成反比,即样本含量越
t 分布的概念 总体均数的估计:
点值估计 区间估计
15
一、t 分布
N(,2)
ux
正态分布
X
以固定样本含量n抽样 u x / n
N(,2/n)
抽样研究的目的是用样本信息推断总体特征, 即统计推断(statistical inference),包括总体参 数估计和假设检验两个重要内容。
3
§ 4.1 均数的抽样误差与标准误
由于变异的存在,抽样研究所造成的样本均 数 与总体均数的差异,以及各样本均数间的 差异 称为均数的抽样误差。 抽样误差在抽样研究中是不可避免的,但只要 严格遵循随机化原则进行抽样,抽样误差的大 小是可以估计的。 如何估计?可通过下面的模拟试验加以理解。
15
154
19
155
27
156
16
157
8
158
5
159160
3
合计
100
由频数表可看出这100个样本均数的分布仍服从 正态分布;对该资料计算均数和标准差,记为
X 155.38 155.4 cm,S 1.71 cm。 X 8
2. 中心极限定理
中心极限定理:
从正态分布总体 N (, 2 )中以固定 n 抽样时,
6
由表3-1可看出,这100个样本均数大小不 等,且绝大部分不等于总体均数155.4,此 为抽样误差造成的。
如何估计其抽样误差的大小? 把该100个均数看作为X,即100个观察值,
并编制成频数表,如表3-2。
7
表3-2 模拟实验的100个样本均数的频数分布
组段(cm)
频数
151
1
152
6
153
大,标准误越小,当 n ,即总体时,标准误
sX 0 (对总体而言,无抽样误差)。 标准误的意义:标准误小,表示抽样误差小,样本 均数的代表性好;反之,标准误大,表示抽样误差 大,样本均数的代表性差。 因此,在实际工作中,可通过适当增加样本含量和 减少观察值的离散程度来减少抽样误差。
14
§ 4 . 2 t 分布和总体均数的估计
11
3. 标准误
在原正态分布中, 为标准差,反映的是各
观察值 X 间变异的大小,即反映了个体间的 离散度。
在样本均数的正态分布中, X 为样本均数的
标准差(简称标准误),反映的是各样本均数 间变异的大小,即反映了均数(群体)间的离 散度。
故可用标准误来估计抽样误差的大小;也
就 是说,反映抽样误差大小的指标为标准
相关文档
最新文档