对称性和守恒定律
物理学中的对称性与守恒定律

物理学中的对称性与守恒定律对称性和守恒定律是物理学中的基本概念,它们在理解和解释自然界中各种物理现象和规律中起着重要作用。
本文将探讨物理学中的对称性和守恒定律,并探讨它们之间的密切关系。
一、对称性在物理学中的意义对称性是物理学中的重要概念,它描述了物理系统在某些变换下保持不变的性质。
在物理学中,对称性可以分为时空对称性和内禀对称性两种。
1. 时空对称性时空对称性是指物理系统在时空变换下保持不变。
在相对论物理学中,洛伦兹变换是描述时空变换的数学工具。
根据洛伦兹变换的不同类型,物理系统可以表现出平移对称性、旋转对称性和洛伦兹对称性等。
平移对称性是指物理系统在空间位置上的平移不会改变其物理性质。
例如,一个均匀介质中的物理规律在空间中的任何位置都是相同的。
旋转对称性是指物理系统在空间方向的旋转下保持不变。
例如,地球的自转周期不会影响物理规律的成立。
洛伦兹对称性是指物理系统在洛伦兹变换下保持不变,包括时间和空间的坐标变换。
相对论物理学中的基本原理就是洛伦兹对称性。
2. 内禀对称性内禀对称性是指物理系统在内部变换下保持不变。
在粒子物理学中,内禀对称性描述了粒子的基本性质。
例如,电荷共轭对称性指粒子与其反粒子具有相同的物理性质。
对称性在物理学中具有广泛的应用。
它不仅可以用于解释物理定律的成因,还可以帮助物理学家发现新的规律和预测新的物理现象。
二、守恒定律与对称性的关系守恒定律是物理学中的基本定律,描述了物理系统在某些变换下某个物理量保持不变的规律。
守恒定律与对称性之间存在着密切的关系。
以能量守恒定律为例,它描述了物理系统的能量在各种变换下保持不变。
能量守恒定律与时间平移对称性密切相关,即物理规律在时间上的平移不变性保证了能量守恒。
动量守恒定律是另一个重要的守恒定律,它描述了物理系统的总动量在某些变换下保持不变。
动量守恒定律与空间平移对称性密切相关,即物理规律在空间上的平移不变性保证了动量守恒。
角动量守恒定律和电荷守恒定律等也与对称性有着密切的联系。
05-2-对称性和守恒定律

Ep x1 , x2 , t t Ep x1 , x2 , t
有Ep/t = 0 体系的总能量
Ep
t 势能函数不显含时间t
t O(t )
Ep(x1, x2, t) = Ep(x1, x2)
dE dv1 dv2 Ep dx1 Ep dx2 m1v1 m2v2 dt dt dt x1 dt x2 dt
物 理 规 律 具 有 空 间 平对 移称 性 、 空 间 转 动 对性 称、 时间平移对称性。
牛顿定律具有伽利略变 换下的对称性,
而伽利略变换是近似的 ,
所以,牛顿定律也是近 似的。
内特尔定律 如果运动规律在某一不明显依赖于时间的情况下具有 不变性,必相应存在一个守恒定律。
5.7.2对称性的破缺
由于空间各向同性,系统的势能决定于两 粒子的相对位置,而与连线的方向无关。
Ep = 0 任意 AB间的力矩M = 0
L = 常量
角动量守恒定律 特定方向
7.4.3 能量守恒定律和时间平移对称性 一维低速运动的两个粒子 t时刻 势能为Ep(x1, x2, t) 经过t时间 体系的势能变为Ep(x1, x2, t+t) 体系具有时间平移对称性, Ep(x1, x2, t) = Ep(x1, x2, t+t)
旋转对称性
回文诗 如苏东坡的《题金山寺》 潮随暗浪雪山顶,远浦渔舟钓月明; 桥对寺门山径小,巷当泉眼石波清; 迢迢绿树江天晓,霭霭红霞晚日晴; 遥望四边云接水,碧峰千点数鸥轻。 轻鸥数点千峰碧,水接云边四望遥; 晴日晚霞红霭霭,晓天江树绿迢迢; 清波石眼泉当巷,小径山门寺对桥; 明月钓舟渔浦远,顶山雪浪暗随潮。
Ep(AB)=Ep(AB)
Ep(AB)=Ep(AB)fABs
大学物理 第三章 守恒定律与对称性剖析

转动对称P4:
转动90º的整数 倍形状不变。
缔合转换引起 的对称:滑移 反射对称,平 移加镜像反射 后形状不变。
图选自李政道《物理 的挑战》中国经济出 版社, 2002年
缔合转换引起 的对称:将镜 像的黑白两种 颜色互换图形 不变。
图选自杨振宁《基本粒 子发现简史》上海科学 技术出版社, 1963年。原 图为荷兰画家M.C.Escher 所画。
体所做的功。
dA F dr cos Ft dr F dr Biblioteka drFtB F
L
质点沿曲线 L 从A到B力所做的功:
Fn
B
B A
A dA F dr
A
A
L
L
质点沿曲线 L 从A到B力所做的功为力F 沿路径 L 从A到B
的线积分。显然,功是标量其大小与路径有关。
3.合力做的功
若 F F1 F2 Fn
图选自李政道《物理 的挑战》中国经济出 版社, 2002年
对称性在微观世界非常重要:铂针尖上原子对称排 列在场离子显微镜下显示的花样
图选自李政道《物理的挑战》中国经济出版社, 2002年
自然界中非生命的宏观的结构大多是非对称性?
对称性——是时空性质的反映。时间和空间具有各向 同性和均匀性,所以有能量、动量和角动量的守恒。
§2 功和功率
问题提出:考察作用力在空间累积作用的结果使运动 产生怎样的变化? 力在空间上作用的结果:物体在力的作用下产生位移。 功:描述力在空间上积分的物理量。
1.恒力对直线运动物体所作的功
F
S
定义:力对物体所做的功为:
A FS cos F S
2.变力对曲线运动物体所作的功——元功
理论物理中对称性与守恒定律的关系

理论物理中对称性与守恒定律的关系在理论物理中,对称性与守恒定律是两个核心概念。
对称性描述了系统在某些变换下保持不变的性质,而守恒定律则说明了系统在各种变化中某些物理量的不变性。
这两个概念之间存在着密切的关系,对称性的存在导致了守恒定律的存在,反之亦然。
本文将深入探讨对称性与守恒定律的关系。
首先,让我们来了解对称性的概念。
对称性可以简单地理解为某种变换下系统保持不变的性质。
在物理学中,常见的对称性有平移对称性、旋转对称性、时间平移对称性和粒子对称性等。
平移对称性指的是系统在空间中的平移下保持不变,旋转对称性指的是系统在空间中的旋转下保持不变,时间平移对称性指的是系统在时间上的平移下保持不变,而粒子对称性指的是系统在粒子交换下保持不变。
对称性在物理学中起着非常重要的作用。
与对称性相关联的是守恒定律。
守恒定律描述了系统在各种变化中某些物理量守恒的性质。
守恒定律可以用数学表达式表示为:某一物理量的变化率等于该物理量进入与离开系统的流量之差。
根据对称性的不同,我们可以得到不同的守恒定律。
首先,根据时间平移对称性,我们可以得到能量守恒定律。
能量守恒定律指的是系统的能量在时间上保持不变。
这是因为系统的物理规律在时间上的不变性导致的。
无论系统中发生了怎样的能量转化,总能量的变化率始终为零,能量守恒得到维持。
其次,根据空间平移对称性,我们可以得到动量守恒定律。
动量守恒定律指的是系统的动量在空间上保持不变。
这是因为系统的物理规律在空间上的不变性导致的。
无论系统中的物体如何运动,总动量的变化率始终为零,动量守恒得到维持。
此外,根据空间旋转对称性,我们可以得到角动量守恒定律。
角动量守恒定律指的是系统的角动量在空间上保持不变。
这是因为空间旋转对称性导致的。
无论系统中的物体如何旋转,总角动量的变化率始终为零,角动量守恒得到维持。
最后,根据粒子对称性,我们可以得到电荷守恒定律。
电荷守恒定律指的是系统中的总电荷量在粒子交换下保持不变。
粒子物理学中的对称性与守恒定律

粒子物理学中的对称性与守恒定律粒子物理学是研究物质的最基本组成部分和相互作用的学科。
在这个领域中,对称性与守恒定律是非常重要的概念。
对称性指的是在某种变换下,系统的性质保持不变;而守恒定律则是指物理量在时间和空间上的变化率为零。
一、对称性在粒子物理中的重要性对称性是粒子物理学中一项基本原则。
根据量子力学和相对论的理论基础,我们知道,自然界的基本定律应该具有某种形式的对称性。
首先是空间对称性,即物理系统的性质在空间位置的变换下保持不变。
例如,相对论性量子场论中的拉格朗日量具有洛伦兹对称性,这意味着在任何洛伦兹变换下,物理定律保持不变。
其次是时间对称性,即物理系统的性质在时间演化的过程中保持不变。
例如,量子力学中的薛定谔方程描述的系统具有时间反演对称性,即系统在时间反演下的演化与正常的时间演化完全一致。
还有内禀对称性,即系统在某种内部变换下保持不变。
例如,电荷守恒定律是电荷在整个物理过程中都保持不变的内禀对称性。
二、粒子物理中的守恒定律在粒子物理学中,守恒定律描述了一系列重要的物理量在物理过程中的守恒。
这些守恒定律为粒子物理学的研究和实验提供了重要的基础。
首先是能量守恒定律。
能量是物理过程中最基本的物理量之一,根据能量守恒定律,能量在物理过程中总是守恒的。
例如,在粒子碰撞实验中,总能量守恒可以用来解释反应产物的能量分布。
其次是动量守恒定律。
动量是描述物体运动状态的物理量,根据动量守恒定律,系统中所有粒子的总动量在物理过程中保持不变。
例如,在高能碰撞实验中,通过测量反应产物的动量可以对碰撞发生前的粒子进行研究。
还有角动量守恒定律和电荷守恒定律。
角动量守恒定律描述了系统中所有粒子的总角动量在物理过程中保持不变,而电荷守恒定律描述了系统中电荷的总量保持不变。
这些守恒定律在研究物质的性质和相互作用时起着至关重要的作用。
三、对称性与守恒定律的关系对称性与守恒定律之间存在密切的关系。
根据诺特定理,守恒定律可以由系统的对称性得出。
对称性与守恒定律

对称性与守恒律物理规律是分层次的,有的只对某些具体事物适用,如胡克定律只适用于弹性体;有的在一定范畴内成立,如牛顿定律适用于一切低速运动的宏观物体;有的如能量、动量守恒等守恒律,则在所有领域的自然界起作用。
后者属于自然界更深层次、最为基本的规律。
而守恒律和对称性有紧密联系。
了解对称性的概念、规律及其分析方法,对于深入地认识自然有重要意义。
一、什么是对称性对称的概念日常生活中就有,如人体外部器官的左右对称,紫禁城建设布局的东西对称,不带任何标记的球的中心对称等。
对称性的定义如下。
若某个体系(研究对象)经某种操作(或称变换)后,其前后状态等价(相同),则称该体系对此操作具有对称性,相应的操作称为对称操作。
简言之,对称性就是某种变换下的不变性。
二、物理学中几种常见的(对称)变换1.空间变换1)平移:即对位矢作的变换,相应的对称性谓之平移对称性。
例如,一个不带任何标记的无限大平面,对沿平面的任意平移具有对称性,而当此平面上均匀布满方格时,则对沿平面的特定方位(如边长或对角线方位)平移某个长度的整数倍具有对称性。
2)转动:绕某定点或轴线的转动前述球的中心对称,就是指球对绕球心的任意旋转对称,通常就称之为球对称。
一圆柱体,对绕其中心轴旋转任一角度状态不变,即具有旋转轴对称……3)镜像反射(反演):俗称照镜子。
指对镜面作物像变换。
紫禁城建筑的东西对称,就是以天安门中轴面(南北竖直面)为镜面的镜像对称。
●物理矢量的镜面反射——极矢量和轴矢量按镜面反射时,矢量物像的方向之间的关系,物理矢量分两类。
一类,以位移为例,其镜像为,如图1(a)所示。
它们平行于镜面的分量方向相同,垂直于镜面的分量的方向相反,这类矢量叫极矢量。
,,等都是极矢量。
另一类矢量,如图1(b)中右侧所示一沿圆轨道运动的质点的角速度。
保持角速度方向与轨道旋向成右手关系的规定不变,则其镜像为左侧的。
和沿镜面的平行分量反向,而垂直分量方向相同。
这类矢量叫轴矢量,又称赝矢量。
量子力学中的对称性与守恒定律

量子力学中的对称性与守恒定律量子力学是描述微观世界的物理学理论,它主要研究微观粒子的行为和性质。
在量子力学中,对称性和守恒定律是十分重要的概念,它们不仅帮助我们理解微观世界的规律,还对于解释和预测自然现象都起到了关键作用。
本文将对量子力学中的对称性与守恒定律进行论述。
1. 对称性在量子力学中的作用对称性在物理学中具有重要的地位,它可以帮助我们理解自然界中的各种现象。
在量子力学中,对称性可以通过算符的变换来描述。
对称性的存在意味着系统在某些变换下保持不变,这些变换可以是平移、旋转、粒子交换等。
不同的对称性对应着不同的物理规律和守恒量。
2. 空间对称性与动量守恒定律空间平移对称性是量子力学中的重要对称性之一。
根据诺特定理,一个系统的平移不变性对应着动量的守恒,即动量守恒定律。
在量子力学中,动量被表示为动量算符,根据平移算符的性质,能量本征态同时也是动量本征态,从而推导出动量守恒的数学表达式。
3. 时间对称性与能量守恒定律时间平移对称性是量子力学中另一个重要的对称性。
根据诺特定理,一个系统的时间平移不变性对应着能量的守恒,即能量守恒定律。
在量子力学中,能量被表示为能量算符,根据时间平移算符的性质,能量本征态同时也是时间本征态,从而推导出能量守恒的数学表达式。
4. 粒子交换对称性与电荷守恒定律粒子交换对称性是量子力学中独特的对称性。
根据粒子交换的性质,不同种类的粒子在交换后会得到正负符号不同的波函数。
通过对称性的研究,我们可以得出守恒定律,例如电荷守恒定律。
在量子力学中,电荷被表示为电荷算符,根据粒子交换算符的性质,电荷守恒可以被推导出来。
5. 空间反演对称性与正负宇称守恒空间反演对称性是又一种重要的对称性。
根据空间反演的性质,物理过程在空间反演后会得到相反的结果。
通过对称性的研究,我们可以得出守恒定律,例如正负宇称守恒。
正负宇称守恒与粒子的手性和反粒子的存在有关,通过对称性的分析可以得到这一守恒定律的数学表达式。
对称性与物理学中的守恒定律

对称性与物理学中的守恒定律物理学中对称性与守恒定律是一对密不可分的概念。
对称性是自然界的一种基本现象,而守恒定律则是对称性的体现。
本文将介绍对称性与物理学中的守恒定律的基本概念及其在物理学中的应用。
对称与对称性对称是指一个物体在某个操作下仍能保持不变。
常见的对称有平移对称、旋转对称和镜像对称等。
以矩形为例,它有平移、旋转和镜像三种对称。
当你将矩形向一个方向平移一定距离时,它仍看起来一模一样;当你绕矩形中心旋转90度时,它也仍然不变;当你将矩形沿着某一直线对折时,它还是一样的。
在数学中,对称主要是通过变换来定义的。
例如,将平面上的点(x,y)绕原点旋转一个角度θ得到(x',y'),则(x,y)和(x',y')就是关于原点对称的。
物理学中的对称性是指物理现象在某种变换下仍然保持不变。
例如,物体在不同位置、不同时间、不同方向和不同状态下具有平移、时间、旋转和内禀对称性。
具体而言,平移对称意味着物理定律在位置的变换下不变;时间对称性要求物理现象在时间上前后对称;旋转对称性要求物理定律在空间旋转下不变;内禀对称性指的是物理现象在基本粒子的内部对称变换下保持不变。
对称性原理对称性原理是物理学中一个重要的基本原理。
其基本思想是,自然界的基本定律应该具有某些对称性,而这些对称性可以用来推导自然界的规律。
换言之,对称性原理是自然界中某些规律的先决条件。
在物理学中,对称性原理有多个方面。
首先,对称性原理要求物理定律在各种对称变换下不变。
例如,物体的质量在不同位置、不同方向和不同速度下应该保持不变。
这是牛顿运动定律中的一个例子。
更具体地说,在牛顿定律中,物体的运动状态不随时间、空间和速度的变化而改变。
其次,对称性原理还要求物理定律在内部对称变换下不变。
例如,在电动力学中,电场和磁场在某些线性旋转下保持不变。
最后,对称性原理还要求物理定律在粒子转换下不变。
例如,在核物理学中,电荷守恒原理要求在粒子转换时总电荷量不变。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
标度变换使空间尺度放大或缩小。
平移对称操作
一条无限长的直线
时间平移操作,改变时间零点;
时间反演操作使时间t变为-t 动量由p = dr/dt变为-p,角动量由l = rp变为-l
如果系统在这些操作下变换为等价状态,就称系统具有时间平 移和时间反演对称性。相应的操作即为对称操作。 全同粒子置换,规范变换、正反粒子共轭变换等。
蛋白质由氨基酸的链组成,人工合成的氨基酸有左旋和右旋两 种异构体,互为镜象对称,成份相等. 但是生物蛋白质几乎全部 由左旋氨基酸组成. 生物体内的催化剂 酶 在起作用,它只消化 和制造左旋氨基酸. 生物一旦死亡,酶失去活性,体内的氨基酸逐渐转化,直至达到 左右旋成份相等. 在老化过程中,右旋氨基酸已开始积累.
f v
有心力作用下的行星轨道
斜抛运动的轨迹
求棱AB、面对角线AF和体对角线AG之间的电阻
AG间等效电路
AC间等效电路
AB间等效电路
5R/6
3R/4
7R/12
5.7.4 对称性与守恒定律
1. 守恒定律 在宇宙中,某些量 (如:能量,动量和角动量等)的总量不变, 这些量是守恒的, 并用守恒定律的形式来描述这些概念 守恒定律是最基本的规律, 它们具有极大的普遍性和可靠性 ,因而可以预言哪些过程是允许的,哪些过程是禁戒的, 而不 必考虑引起这些过程的物理机制
生命与对称性破缺息息相关
对称性和对称性破缺的研究十分重要
5.7.3 对称性原理
自然发生的事件总是遵循一定的规律,反映了一种因果关系
法国物理学家皮埃尔居里(Pierre Curie)在1894年提出了 对称性原理:
原因的对称性必反映在结果中,即结果中的对称性至少有原因 中的那么多。 反过来说:结果中的对称性必在原因中有反映,即原因中的不 对称性至少有结果中的不对称性那么多 通过对称性原理,对某些物理问题不必进行定量的计算,即可 给出正确的结论
决定对称性的变换还可以是几种变换组成的复合变换。
电荷对称: 一组带电粒子极性互换, 其相互作用不变(但在弱 相互作用下这种对称被部分破坏).
物理定律的对称性
在现代物理学中,对称性是一个很深刻的问题。它的数学基础 是群论。在粒子物理,固体物理,原子物理,以及生命现象等 领域它都很重要。
物理规律的对称性:经过一定的变换(操作)后,若物理规 律的形式保持不变,则称物理规律具有这种变换下的对称性。
空气阻力: f = –v,在时间反演下变为 f = v 不具有时间反演对称性
匀角速转动参照系 惯性离心力或科里奥利力 牛顿定律不成立
物理定律不具有匀速转动的对称性
傅科摆
物理定律不具有标度对称性
材料的强度并不恰好与其尺寸成比例
一只蚂蚁能够举起超过自身体重400倍的东西,如果将蚂蚁按 比例放大到人的尺度,举起同样比例的重物将会把它压垮
物理定律具有空间平移对称性、空间转动对称性、时间平移对 称性。 伽利略变换,洛伦兹变换下,物理定律具有对称性。
时间反演变换 t变为 –t, v 变为 –v,f,m不变 在微观尺度上,物理定律是对称的 宏观尺度,有些物理定律是对称的,有些不对称
加速度 a = dv/dt 保持不变
牛顿第二定律具有时间反演对称性
液-固转变
例1: Benard 对流
T1
T2
加热
T2 >T1
当温差达到一定数值时,产生Benard 对流,液体对称性迅速 下降,产生了对称性的自发破缺。
例2:宇宙早期处在极高温度下,质子中子和它们的反粒子与 光子处于热平衡状态,它们的数量大致相等。
当温度降低到1013 K,光子的平均能量远小于质子和中子的 m0c2,质子对和中子对不再产生,大量的质子和中子在与他们 的反粒子碰撞中湮灭,最后只剩下多余的中子和质子,(对称性 破缺的产物)。
2.内特尔定律
如果运动规律在某一不明显依赖于时间的情况下具有不变性, 必相应存在一个守恒定律
3. 对称性与动量、角动量和能量守恒定律
据估计现在质子和中子数与光子数的比值大约是 1: 1010, 即不对称性是微乎其微的,只有 1/ 1010, 然而这对称性破缺的残 渣却构成了大千世界和人类本身.
对称性的破缺
星系,太阳,地大统一理论正企图解决,尚无结果
例3:生物界的不对称性: 生命的微观过程最显著的一个特征,是分子水平上的对称性破缺
生活中的对称图形 空间反演对称性
反映对称性
旋转对称性
自然界中没有两个完全一样的雪花!
生 物 界 的 对 称 性
广义的对称性
五行相生相克图
正八面体
Escher骑士图案
巴赫短曲
文学中的对称性——回文
将这首诗从头朗诵到尾, 再反过来, 从尾到头去朗诵, 分别都是一首绝妙好诗. 它们可以 合成一首“对称性”的诗,其中每一首相当于一首“手性”诗.
如果对称操作(变换)是近似的,那么物理规律也是近似的
牛顿定律具有伽利略变换下的对称性,但伽利略变换是近似的, 所以牛顿定律也是近似的。
5.7.2 对称性的破缺
系统的对称操作越多,对称性越高 由于某种原因,系统的对称性降低, 即出现了某种对称性的缺失,就称 系统发生了对称性的破缺。 对称性破缺的标志是有序性的产生, 出现了表征系统状态的新物理量。
流游鹤鸥冷幽日悠 溪径伴飞井林落悠 远踏闲满寒古观绿 棹花亭浦泉寺山水 一烟仙渔碧孤四傍 篷上客舟映明望林 开走来泛台月回偎
偎回月台泛来走开 林望明映舟客上篷 傍四孤碧渔仙烟一 水山寺泉浦亭花棹 绿观古寒满闲踏远 悠落林井飞伴径溪 悠日幽冷鸥鹤游流
标度变换对称性
分形
共性: 被研究对象通过某种方式与最初的状态等价 被研究的对象称为系统,系统可以处于不同的状态。 系统从一个状态变到另一个状态的过程,叫做变换或操作 两个状态观察不出任何区别,称这两个状态等价
对称性的普遍定义 1951年,德国数学家威尔(H. Weyl)
一个系统经过一个操作(变换)变换到它的等价状态,则称 系统具有这种操作(变换)下的对称性,这个操作称为系统的 对称操作。
空间反演操作 (x, y, z)(-x, -y, -z)
反映操作
(x, y, z) (x, y, -z)
绕着z轴逆时针旋转/2 (x, y, z)(-y, x, z)