向量组线性相关性的概念

合集下载

第二节 向量组的线性相关性

第二节 向量组的线性相关性

定理四 任意n+1个n维向量都是线性相关的.
[证]设n+1个n维向量为: 1=(a11,a12,,a1n) 2=(a21,a22,,a2n)
n=(an1,an2,,ann) n+1=(an+1,1,an+1,2,,an+1,n)
构造向量组: 1=(a11,a12,,a1n,0) 2=(a21,a22,,a2n,0)
故1,2,,n线性无关
例5 讨论向量组1=(1,1,1),2=(0,2,5), 3=(1,3,6)的线性相关性,若线性相关,试写
出其中一向量能由其余向量线性表示的表
达式.
解: 若有k1,k2,k3,使k11+k22+k33=0
即k1(1,1,1)+k2(0,2,5)+k3(1,3,6)=(0,0,0)
k1(1+2)+k2(2+3)+k3(3+1)=0 即(k1+ k3)1+(k1+k2)2+(k2+ k3)3=0 由已知1,2,3线性无关,则
k1 k3 0 1 0 1
k1 k2 0 1 1 0 =2 0
k2 k3 0 0 1 1
齐次方程组只有零解: k1=k2=k3=0
1+2,2+3,3+1线性无关.
若r维向量组1,2,,m线性无关,则r+1维 向量组1,2,,m也线性无关.
[证]反证法
若1,2,,m线性相关
即有不全为零的数k1,k2,,km,使
k11+k22++kmm=0
即 k1(a11,a12,,a1r,a1,r+1)+ k2(a21,a22,,a2r,a2,r+1)+ +km(am1,am2,,amr,am,r+1)=(0,0,,0)

向量组的线性相关性

向量组的线性相关性

证明
(略)
(1)
1 , 2 , n线性无关
1 1
齐次线性方程组 x 只有零解 r ( , , ) n
1 2 n
x2 2 xn n 0
a11
当m=n时
a12 a1n

a21 a22 a2 n 0 an1 an 2 ann
思考题
试证明 : (1) 一个向量 线性相关的充要条件是 0; ( 2) 一个向量 线性无关的充要条件是 0; ( 3) 两个向量 , 线性相关的充要条件是
k或者 k , 两式不一定同时成立 .
思考题解答
证明 (1)、(2)略. (3)充分性 , 线性相关, 存在不全为零的数 , y , 使 x
第二节
向量组的线性相关性
一、线性相关性的概念
定义4
给定向量组A : 1 , 2 , , m , 如果存在不 k1 1 k2 2 km m 0
全为零的数k1 , k2 ,, km 使
则称向量组 A 是线性相关的,否则称它线性无关.
注意
1. 若 1 , 2 ,, n 线性无关, 则只有当
例1 n 维向量组 T T T e1 1,0,,0 , e 2 0,1,,0 ,,e n 0,0,,1
称为n 维单位坐标向量组 ,讨论其线性相关性 .
的矩阵 解 n维单位坐标向量组构成 E (e1 , e2 , , en ) 是n阶单位矩阵. 由 E 1 0,知R( E ) n.
1 2 3 4 2 3
这与a , a , a 线性无关矛盾,故结论成立.
2 3 4
四、小结
1. 向量、向量组与矩阵之间的联系,线性方 程组的向量表示;线性组合与线性表示的概念; 2. 线性相关与线性无关的概念;线性相关性 在线性方程组中的应用;(重点) 3. 线性相关与线性无关的判定方法:定义, 两个定理.(难点)

向量组的线性相关性

向量组的线性相关性
m 元齐次线性方程组 Ax = 0 有只有非零解. 矩阵A = (a1, a2, …, am ) 的秩<=向量的个数 m ..
二、线性相关性的判定
定理4 向量组a1, a2, …, am 线性相关的充分 必要条件是它所构成的矩阵A=(a1, a2, …, am) 的 秩小于向量个数m;向量组线性无关的充分必要 条件是R(A)=m.
作业 P110 3(1),4,10,11(1)
说明 (1)向量组 A:a1, a2, …, am 线性无关
当且仅当k1=k2= … =km=0时, k1a1 + k2a2 + … + kmam =0 才成立.
一、线性相关性的概念
(2)若向量组只包含一个向量a: a线性相关 a=0 a线性无关 a≠0
(3)含两个向量的向量组:a1, a2 线性相关 a1, a2 的分量对应成比例 几何意义:两向量共线
从而向量组 b1, b2, b3 线性无关.
二、线性相关性的判定
例3 已知向量组 a1, a2, a3 线性无关,且 b1 = a1+a2, b2 = a2+a3, b3 = a3+a1,
试证明向量组 b1, b2, b3 线性无关.
证四 转化为矩阵的秩的问题.
1 0 1
已知
(b1
,
b2
,
b3
k1a1 k2a2 kmam 0.
一、线性相关性的概念
因k1, k2, …, km中至少有一个不为0,
不妨设 k1 0,则有
a1


k2 k1
a2




k3 k1
a3


线性相关性:如何判断向量组是否线性相关及其应用

线性相关性:如何判断向量组是否线性相关及其应用

线性相关性:如何判断向量组是否线性相关及其应用线性相关性:如何判断向量组是否线性相关及其应用2023年,随着科技的不断发展,线性代数在各行各业中的应用不断扩展,尤其是在数据科学、机器学习和人工智能领域中。

而线性相关性作为线性代数中的一个重要概念,在这些领域中也得到了广泛应用。

本文将重点讨论线性相关性的概念、判断方法和应用,以帮助读者更好地理解和使用线性相关性。

一、概念线性相关性是指向量组中存在线性关系,即其中至少存在一个向量可以表示为其它向量的线性组合的形式,或者说存在一个向量可以由其它向量线性表示。

具体地,对于向量组$V={\mathbf{v_1},\mathbf{v_2},\cdots,\mathbf{v_n}}$,若存在一个非零向量$\mathbf{v}$,满足$\mathbf{v}=\sum\limits_{i=1}^n c_i\mathbf{v_i}$,其中$c_i$为任意实数,则称向量组$V$是线性相关的,否则称其线性无关。

二、判断方法下面介绍两种判断向量组线性相关的方法,分别为行列式法和向量空间法。

1.行列式法行列式法是最常用的判断向量组线性相关的方法,其基本思想是求出向量组的行列式,如果其值为0,则向量组线性相关,否则其线性无关。

具体地,对于向量组$V={\mathbf{v_1},\mathbf{v_2},\cdots,\mathbf{v_n}}$,可以将其写成矩阵形式,即:$$ A=\begin{bmatrix} v_{11}&v_{12}&\cdots&v_{1n}\\v_{21}&v_{22}&\cdots&v_{2n}\\ \vdots&\vdots&\ddots&\vdots\\ v_{n1}&v_{n2}&\cdots&v_{nn} \end{bmatrix} $$然后求出其行列式$|A|$,若$|A|=0$,则向量组$V$是线性相关的,否则其线性无关。

4-2 向量的线性相关性

4-2 向量的线性相关性
第 二 节 向量组的线性相关性
主要内容
线性相关与线性无关的定义 向量组线性相关的充要条件 向量组的线性相关性的判定定理
1
一 、线性相关与线性无关的定义
1. 定义 给定向量组 A: a1, a2, ... ,am , ,a
如果存在不全为零的实数 如果存在不全为零的实数 k1, k2, ..., km , 使
因为 λ1, ... , λm − 1, −1 这 m 个数不全为 0 (至少 −1 ≠ 0),所以向量组线性相关 证毕 至少 ,所以向量组线性相关.
6
向量组的线性相关与线性无关的概念也 可移用于线性方程组. 可移用于线性方程组 当方程组中有某个方程是其余方程的线性组合时, 当方程组中有某个方程是其余方程的线性组合时 这个方程就是多余的, 方程组(各个方程)是线性相关的; 这个方程就是多余的 称方程组(各个方程)是线性相关的 当方程组中没有多余的方程, 当方程组中没有多余的方程 称该方程组 (各个方程)线性无关(或线性独立). 各个方程)线性无关(或线性独立)
12
证法二 利用方程组有解的条件
把已知的三个向量等式写成一个矩阵等式
1 0 1 (b1 , b2 , b3 ) = (a1 , a 2 , a 3 ) 1 1 0 , 记作 B = AK . 0 1 1 设 Bx = 0,以 B = AK 代入得 A(Kx) = 0 . ,
8
1 0 0 0 1 0 例 4 n 维向量组 e1 = , e2 = , L, en = M M M 0 0 1
称为n维单位坐标向量组,试讨论它的线性相关性 试讨论它的线性相关性. 称为n维单位坐标向量组 试讨论它的线性相关性

3.2线性相关性

3.2线性相关性
a11 a12 a1 s 0 a a a2 s 0 21 22 x1 + x2 + + xs 0 a a a n1 n2 ns a11 x1 + a12 x2 + + a 1 s x s 0 a21 x1 + a22 x2 + + a 2 s x s 0 即 an1 x1 + an 2 x2 + + a ns x s 0 (3.3)
a11 a21 A 1 , 2 , , s a n1 a12 a22 an 2 a1 s x1 a2 s x2 ,x ans xs
• 证明:设x1a1+x2a2 +…+xsas=0(3.2),即
第二节 向量组的线性相关性
一、向量组线性相关性的概念 二、向量组线性相关性的判定 三、向量组线性相关性的性质
• 一、向量组线性相关性的概念
• 定义4 给定向量组A: 1, 2,…, s, 如果存在不全 为零的数k1, k2,…, ks, 使 k11+k22 +…+kss=0 • 称向量组A是线性相关的, 否则称它线性无关。
• • • •
引理 设有列向量组a1, a2 , …, as, 其中 a1=(a11, a21, …, an1)T, a2 =(a12, a22, …, an2)T, …, as=(a1s, a2s, …, ans)T(s个n维列向量) 则向量组a1, a2 , …, as线性相关齐次线性方程组 Ax=0 (3.1) • 有非零解, 其中

向量组线性相关性

向量组线性相关性

向量组线性相关性
向量组线性相关性是指向量组之间的关系,它可以用来度量两个
或多个随机向量之间的相似程度。

它是将某种矩阵投射到更高维空间
中进行分析所必需的一种工具。

对于定量分析,它是一种快速而有效
的方法,可以帮助研究人员快速识别观察值之间的特征,如:相关性、回归和分类等。

此外,线性相关性也与潜在因素有关。

线性相关性可用于发现隐
藏的潜在变量,同时,当没有显式的潜在变量可以使用时,它也可以
用作预测。

例如,如果一个研究者想要预测一组观察值的趋势或变化,他/她可以使用线性相关性来找出隐藏的关系,从而建立一个有效的模
型来描述观察值之间的关系。

由于它可以用于识别数据之间的关系,因此,线性相关性在机器
学习任务中也是一种有用的工具,它可以帮助研究人员构建有效的模型,并用于预测新的数据。

例如,在机器学习领域中,线性回归就是
一种线性相关性模型,可以用于分析和预测数据集中观察值之间的关系。

因此,线性相关性是一个非常有用的工具,可用于大量因素和研
究设计中,从而帮助研究人员发现观察值之间的关系,有助于他们建
立有效的模型,并可以用于预测分析和推断。

三章向量组的相关性

三章向量组的相关性

自然语言处理
在自然语言处理中,向量组相关 性可以用于表示文本中的词义和 语义关系。例如,通过分析词向 量的相似性和相关性,可以实现 文本分类、情感分析、信息抽取 等功能。
感谢您的观看
THANKS
向量组相关性性质的推论
推论1
如果向量组A线性相关,则存在不全为零的标量$k_1, k_2, ..., k_n$,使得$k_1a_1 + k_2a_2 + ... + k_na_n = 0$。
推论2
如果向量组A线性无关,则其秩等于其维数,即$rank(A) = dim(A)$。
推论3
如果向量组A线性相关,则存在一个向量可以由其他向量线性表 示,即存在$a_i$,使得$a_i = k_1a_1 + k_2a_2 + ... + k_{i1}a_{i-1} + k_{i+1}a_{i+1} + ... + k_na_n$。
力学问题。
02
电磁学
在电磁学中,向量组相关性可以用于研究电场、磁场和电荷、电流之间
的关系。例如,通过分析电磁场的矢量性质和变化规律,可以解决电磁
学中的各种问题。
03
相对论
在相对论中,向量组相关性可以用于描述时空结构、物质运动和能量之
间的关系。例如,通过研究光速矢量、四维矢量等概念,可以解释相对
论中的一些重要现象。
解释
线性无关表示向量组中的向量互相独立,即不存在任何依赖关系。
ห้องสมุดไป่ตู้
向量组相关性的判定定理
定理
如果向量组中有零向量,则该向量组 线性相关;如果向量组中没有零向量 ,且任意两个向量都不共线,则该向 量组线性无关。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档