钢结构桥梁设计及思考、设计经验总结
深入分析桥梁结构,工作总结与经验分享

深入分析桥梁结构,工作总结与经验分享深入分析桥梁结构,工作总结与经验分享作为桥梁工程师,我们的工作就是不断的思考、研究和创新来设计并建造最为优异的桥梁结构。
在这个过程中,我们需要深入了解并分析桥梁结构本身的特性,进而找到最为适合的设计方案。
在本文中,我将分享我的工作经验及总结,希望可以对所有从事桥梁工程的同行们提供一些思路。
一、桥梁结构的特性桥梁结构是连接两个不同地点的一种特殊建筑,具有很高的技术含量和工程难度。
在设计桥梁结构时,需要考虑许多因素,比如:跨度、跨径、荷载、材料、地域气候等。
同时,商品化和标准化也是现代化桥梁设计的趋势,大部分桥梁设计都使用标准化的分析方法和工具,以减少设计和施工的风险。
二、桥梁结构的分析方法在设计桥梁结构时,需要使用分析工具和方法,以计算桥梁的强度和稳定性。
常用的分析方法包括:有限元分析、力学分析、历史数据分析等。
1.有限元分析有限元分析是一种基于数学计算的工程分析方法。
它可以分析对象的结构性能,从而优化设计、改进材料选择和加强结构安全性能。
在桥梁设计中,有限元分析通过计算桥梁结构的受力、变形和应力,来优化桥梁设计。
2.力学分析力学分析是一种依据物理原理的桥梁分析方法。
它通过力学原理,计算桥梁的强度和稳定性,以保证结构的安全性。
在桥梁设计中,力学分析可以用来计算荷载、变形、应力和材料的强度等。
3.历史数据分析历史数据分析是通过研究和分析历史数据,来确定桥梁结构是否稳定和安全。
在桥梁设计中,历史数据分析可以用来比较不同类型桥梁的安全性以及评估桥梁的寿命。
三、我的工作经验及总结在我的工作中,我发现以下几点是关键的:1.合理的设计方案合理的设计方案是桥梁工程的基础,需要根据实际情况而设计。
在设计方案时,需要充分考虑桥梁的结构特性,选用合适的材料及先进的技术,使桥梁更稳定、更安全。
2.预测并解决问题在桥梁建设过程中,预测潜在问题并及时解决是至关重要的。
我们需要及时评估桥梁的安全性能,查找潜在问题,并对其进行修复。
钢结构桥梁的设计与施工技巧

钢结构桥梁的设计与施工技巧钢结构桥梁作为公路、铁路和城市交通建设中的重要组成部分,具有承载能力强、施工快捷、使用寿命长等优点。
然而,在设计和施工过程中,存在一些关键技巧和要点需要注意,以确保钢结构桥梁的安全性、稳定性和耐久性。
本文将从设计和施工两个方面探讨钢结构桥梁的相关技巧,以提供给读者一些有益的知识。
一、设计技巧1. 确定适当的桥梁类型:钢结构桥梁有多种类型,如梁桥、拱桥、斜拉桥等。
在设计过程中,需要根据具体情况选择适合的桥梁类型,并考虑到地质条件、交通流量和使用要求等因素。
2. 采用合理的桥墩布置:桥梁的桥墩布置直接影响到桥梁的稳定性和结构安全。
在设计过程中,应合理布置桥墩的位置和数量,确保桥墩的稳固性和桥面的平直度。
3. 优化梁段设计:梁段是钢结构桥梁中承载主要荷载的部分,其设计应合理优化,以达到结构强度、刚度和稳定性的要求。
同时,要考虑梁段制造工艺的可行性和施工的便利性。
4. 控制自重和跨度比:钢结构桥梁的自重与跨度比是一个重要的设计参数。
一般来说,自重与跨度比越小,桥梁的稳定性和承载能力越高。
因此,在设计过程中,应该合理控制自重和跨度的比值,以提高桥梁的安全性和抗震性。
二、施工技巧1. 严格控制质量:钢结构桥梁的施工质量直接关系到其使用寿命和安全性。
在施工过程中,应严格按照设计要求进行施工,严把质量关。
特别要注意焊接工艺的控制,避免焊接缺陷和热变形。
2. 确保现场安全:钢结构桥梁的施工过程中存在许多危险因素,如高空作业、起重操作等。
施工方应制定完善的安全操作规范,加强现场管理,确保施工过程的安全性。
3. 合理利用施工设备:在钢结构桥梁的施工中,合理利用适当的施工设备可以提高施工效率和质量。
施工方应根据具体要求选择合适的设备,并进行相关培训,以保证设备的正常运行和施工效果。
4. 加强施工现场沟通:钢结构桥梁的施工涉及到多个专业的施工人员和机构,需要加强沟通和协作,确保施工过程的连贯性和协调性。
连续刚构桥设计总结

连续刚构桥设计总结《连续刚构桥设计总结》做连续刚构桥设计这么久了,现在想想,真像是一场漫长又充满惊喜与挑战的旅程。
整体感受就是,连续刚构桥设计既复杂又有趣。
它就像一个巨大的拼图,每一块都得严丝合缝才能保证整个桥的稳固与有效运行。
在具体收获方面,结构计算是重中之重。
最开始的时候,我总是在计算荷载取值上犯迷糊。
就好比盖房子一样,不知道房子里要放多少东西,这个重量(荷载)取不准,后续的设计全都白搭。
后来我才明白,要严格按照规范来取值,而且不同地区的情况还不一样,像沿海地区要考虑台风荷载,地震频发地区得重视地震荷载。
对于梁体的应力计算也是相当复杂,应力过大就像身体承受过重的压力会崩溃一样,必须控制在合理范围内。
重要发现可不能不提梁高的确定。
这个梁高啊,不仅仅影响美观,更关键的是影响整个桥的力学性能。
刚开始我没有太重视,就是按照常规简单取值。
但是实际操作的时候发现,梁高稍微变动一点,梁体的弯矩、剪力等内力就有很大的变化。
这就像是多米诺骨牌一样,一个小小的参数变动引发那么多连锁反应。
所以说啊,梁高的确定一定要综合考虑各种因素,在美观、经济性和力学性能之间做好平衡。
反思起来呢,我觉得我过于依赖现成的经验和软件。
有时候看到别人类似的设计就想直接套用。
后来才知道这是很危险的做法。
每个桥的建设环境、要求都不同,就像每个人的体型、需求不同,不能直接穿别人的衣服。
要深刻理解基本原理,而不是被别人的成果牵着走。
也不能完全迷信软件,软件计算结果也需要自己去判断合理性。
总结启示就是,连续刚构桥设计没有捷径可走。
每一个数据、每一个结构部件的设计都需要反复权衡、试验。
就像一个厨师做菜,不能只看菜谱,得根据食材的具体情况、食客的口味喜好等调整烹饪方式。
在连续刚构桥设计中要重视每一个环节,坚持学习新的设计理念和方法,这样才能设计出安全、美观、经济的桥。
还有个点刚刚才想起来,关于桥梁的耐久性设计的。
如果在一开始设计的时候没有考虑周全,那后期维修的成本简直不可估量。
桥梁钢结构设计

桥梁钢结构设计钢结构在桥梁设计中扮演着重要的角色。
其高强度、耐久性和施工便利等特点使得钢结构成为桥梁建设中的首选材料之一。
本文将介绍桥梁钢结构的设计原理和要点,以及在实际工程中的应用。
一、桥梁钢结构设计原理桥梁钢结构设计的核心原则是确保结构的稳定性、安全性和经济性。
根据桥梁的跨度、荷载条件和地理环境等因素,设计师需要确定合适的结构形式和材料。
1. 结构形式选择桥梁结构形式包括梁式桥、拱桥、斜拉桥等。
不同形式的桥梁适用于不同的跨度和荷载条件。
梁式桥适用于中小跨度,而拱桥和斜拉桥适用于大跨度。
2. 荷载计算设计师需要根据桥梁所承受的荷载类型和强度要求,进行荷载计算。
常见的荷载包括自重、行车荷载、风荷载等。
根据荷载计算结果,设计师可以确定不同部位所需的钢材强度和尺寸。
3. 钢材选择选择合适的钢材是桥梁钢结构设计中的关键步骤。
钢材的强度、抗腐蚀性和可焊性等性能需要满足设计要求,并考虑到材料的经济性和可供性等因素。
二、桥梁钢结构设计要点在桥梁钢结构设计中,需要注意以下几个重要要点:1. 构件布置钢结构的构件布置应满足结构的力学需求和施工要求。
合理的构件布置可以减小桥梁自重,提高结构的强度和刚度。
2. 连接方式连接方式直接影响桥梁结构的安全性和耐久性。
常见的连接方式包括焊接、螺栓连接等。
对于焊接连接,需要进行焊缝设计和检验,确保焊缝质量符合要求。
3. 施工工艺桥梁钢结构的施工工艺需考虑到结构的可靠性和施工效率。
焊接质量的控制、构件的安装顺序和工艺等方面的考虑都是确保施工顺利进行的重要因素。
三、桥梁钢结构设计实践桥梁钢结构的设计理论与实践相结合,才能真正体现出其价值和应用前景。
以下是几个成功案例的介绍:1. 老黑山大桥老黑山大桥是中国的一座拱桥,横跨了秦岭山脉。
该桥梁采用了钢结构,有效地解决了大跨度与山地复杂地质条件下的建设难题。
该桥梁的设计基于50年设计寿命,采用了高强度钢材和先进的施工工艺,确保了桥梁的稳定性和安全性。
钢结构桥梁的设计与施工

钢结构桥梁的设计与施工一、引言钢结构桥梁作为现代交通建设中不可或缺的一部分,其设计与施工是确保桥梁安全、耐久和有效运营的关键。
本文将重点探讨钢结构桥梁的设计与施工过程,并提供相关的技术和方法。
二、钢结构桥梁设计1. 桥梁设计前的必备条件在进行钢结构桥梁设计之前,需要明确以下几个必备条件:- 桥梁跨度和长度- 通行荷载要求- 地质条件和地基特征- 桥梁所处环境条件(如海洋、河流、高山等)- 钢材质量标准和规范要求2. 结构形式选择根据具体的工程要求和条件,需要选择合适的结构形式,常见的钢结构桥梁形式有:- 桁架桥- 悬索桥- 斜拉桥- 弯曲桥3. 荷载与抗震设计在进行桥梁设计时,需要充分考虑荷载和抗震设计的因素。
荷载设计要依据桥梁预计的通行车辆类型、荷载大小和频率来确定。
抗震设计则需要根据所处地区的地震烈度和设计地震力来确定桥梁的抗震性能。
4. 材料选择与设计计算钢材是钢结构桥梁设计中的主要材料,其质量和性能直接影响桥梁的安全与耐久。
在选择钢材时,需要根据桥梁的跨度、荷载要求和环境条件来确定。
设计计算阶段包括轴力计算、弯矩计算和剪力计算等,以确保桥梁的结构强度和稳定性。
三、钢结构桥梁施工1. 施工准备在进行钢结构桥梁施工前,需要进行详细的施工准备工作,包括:- 研究和制定详细的施工方案- 确保材料和设备的供应和质量- 制定施工进度和安全计划- 搭建施工场地和搭设临时设施2. 钢结构制作与安装钢结构桥梁的施工过程中,钢桥梁制作和安装是关键环节。
制作过程包括:- 钢材加工和焊接- 钢构件预制和组装- 质量检查和测试安装过程包括:- 起吊和定位- 连接和固定- 对接和焊接3. 施工监管和质量控制在施工过程中,必须进行严格的监管和质量控制,以确保钢结构桥梁的施工质量符合设计和规范要求。
常用的监管和控制措施包括:- 施工现场巡视和监测- 焊缺陷和质量检验- 非破坏性检测- 施工记录和质量报告四、钢结构桥梁的维护与检修钢结构桥梁的维护和检修是保障其服务寿命和安全运行的重要环节。
钢桁架桥梁设计总结

钢桁架桥梁设计总结区别于混凝土梁部一般设计流程,特编写钢桥设计流程,为初次设计钢梁提供一点参考与设计思路。
一.钢桥设计最终目的:1.确定用最少的钢材但受力最优的杆件截面2.确定传力简洁顺畅的连接方式二.在确定钢桥方案后,一般钢桥包括的计算:钢桥的设计是一个迭代循环的过程,但是截面的选取顺序还是以主桁优先。
1.主桁截面的粗选(初估联结系与桥面后)2.主桁截面的检算3.联结系的检算4.桥面的检算5.主桁、联结系、桥面稳定后的主桁、联结系以及桥面的最终检算6.连接计算(各部分杆件之间的连接方式以及节点板、拼接板、焊缝与螺栓计算)7.预拱度计算及实现方式8.伸缩缝的计算设计三.主桁的粗选3.1选取的原则:按照钢材的容许应力为屈服应力的1/1.7确定主桁需要的截面面积,从而粗选主桁截面。
以Q370为例:对于拉杆:拉杆受强度、疲劳控制,应力为370/1.7=217.6Mpa,拉杆应力计算采用扣除螺栓消弱后的净面积,并考虑杆件由于刚接的次应力,所以拉杆杆件需要面积采用:杆件内力/150对于压杆:压杆受强度、稳定控制,检算稳定时考虑容许应力折减,所以压杆一般由稳定控制。
检算压杆,采用毛面积,粗选截面时压杆杆件需要面积采用:杆件内力/160。
杆件越长截面越小,压杆容许应力折减越多,所以对于长细杆,可以采用压杆杆件需要面积:杆件内力/140。
粗选主桁后,控制大的指标,读取主桁的支反力、刚度条件是否符合规范。
3.2内力控制组合主力:恒载+活载+支座沉降3.3计算模型平面一次成桥模型建模方式:a、cad中导入主桁杆件b、施加荷载,注意二恒的取值,平面一次成桥模型的二恒:(整体二恒+初估联结系+初估桥面)/主桁片数3.4截面迭代用编写好的excel读取midas模型中的主力最大最小轴力迭代截面,迭代次数一般大于3次。
(参考286截面选取excel)按照粗选后的截面,先总体分析主桁的整体受力特性,为下一步主桁截面检算及截面优化修改打下基础。
钢结构课程设计心得
钢结构课程设计心得篇一:钢结构课程设计心得体会1钢结构课程设计心得体会两周的课程设计结束了,通过这次课程设计,我不仅巩固了以前所学到的知识,而且掌握了许多以前没有学懂的知识。
在设计的过程中也遇到了不少的问题,不过经过一遍遍的思考以及和老师同学们的讨论都一一得到了解决,基本达到了再实践中检验所学知识的目的。
古人有云:“过而能改,善莫大焉”。
说的就是错误并不可怕,人类能不断的进化发展,靠的便是一个个错误,在错误面前不骄不躁,不断思考,不断改正,才能不断的获取新的知识。
虽然改正错误的过程是冗长而艰辛的,但是在改正错误的过程中我也发现了成功的真谛,用汗水浇灌收获的果实才是最令人感觉幸福而满足的。
遇到困难也需迎难而上,披荆斩棘,诗云:“不经一番寒彻骨,那得梅花扑鼻香。
”如果中途荒废,那样便永远不可能成功,以后步入社会仍然适用。
课程设计是一门专业设计课,它不仅仅教会了我很多专业方面的知识,也教给了我很多运用知识的能力,曾经有一个马拉松运动员把具体很远的路程划分为一段段百米间隔,通过实现一个个小的目标,最终在不知不觉中实现了远大的目标。
同时,课程设计让我感触很深。
使我对以往所学的抽象的理论有了一个逐渐清晰的认识,包括整体稳定性计算,局部稳定性计算等,也发现了以前忽视的小细节,比如节点的设计要求和钢材之间的接法。
我认为这次课程设计不仅仅充实我的专业知识,更重要的是教给我很多学习的方法以及处事的道理。
而这是以后最实用的。
在步入社会以后,也要勇于接受社会的挑战,实践总结,再实践,再总结,在这个循环的过程中不断的充实自己,提高自身,实现个人的不断进步。
回顾这次课程设计,至今仍感受良多,从最初的一脸茫然,到最后的加班加点甚至通宵达旦,回忆起来,苦楚多多,不过回头看看一份洋洋洒洒的课程设计,心中仍是喜悦异常,痛并快乐着。
从理论到实践,在这段日子里,可以说得是苦多于甜,但是可以学到很多很多的东西,同时不仅可以巩固了以前所学过的知识,而且学到了很多在书本上所没有学到过的知识。
钢结构与桥梁设计
钢结构与桥梁设计钢结构在桥梁设计中起着重要的角色。
其独特的特点使得钢结构成为桥梁设计领域中的首选材料。
本文将探讨钢结构在桥梁设计中的应用和重要性,并介绍一些常见的钢结构桥梁设计方法。
一、钢结构在桥梁设计中的优势钢结构因其高强度、轻质、易加工等特点而在桥梁设计中广泛应用。
相比于传统的混凝土桥梁,钢结构桥梁具有以下优势:1. 高强度:钢材具备很高的强度和刚度,能够承受更大的荷载和变形,因此能够为桥梁提供更好的支撑和稳定性。
2. 轻质:相比于混凝土桥梁,钢结构桥梁的自重轻,可以减少对桥墩和地基的负荷,从而降低了施工难度和成本。
3. 可塑性:钢材具备较好的可塑性和可变形性,能够适应各种复杂的桥梁形状和设计需求。
4. 施工周期短:由于钢结构的制造和安装相对简单,相较于混凝土桥梁,钢结构桥梁的施工周期通常要短得多,能够有效地缩短工期。
5. 可回收利用:钢结构可以回收利用,降低了对资源的消耗,符合可持续发展的要求。
二、常见的钢结构桥梁设计方法1. 梁桥设计:梁桥是一种常见且简单的钢结构桥梁设计方法。
它由一系列的钢梁构成,梁与梁之间通过横梁连接。
梁桥的设计依据主要为梁的受力性能和桥梁的跨度需求。
2. 拱桥设计:拱桥是一种美观且结构稳定的设计方法,其通过弧形的钢拱承载桥面上的荷载。
拱桥设计需要考虑拱的形状、跨度、高度等因素,以及拱与桥面之间的连续性设计。
3. 斜拉桥设计:斜拉桥是一种由斜拉索组成的钢结构桥梁设计方法。
斜拉索通过拉力将桥面承载的荷载传递到桥塔上,从而实现了大跨度的设计需求。
斜拉桥设计需要考虑斜拉索的数量、角度、长度等因素。
4. 悬索桥设计:悬索桥是一种由主悬索和横向拉索组成的设计方法,它通过主悬索将桥面的荷载传递到桥塔上。
悬索桥设计需要考虑主悬索的高度、跨度、支座等因素,以及横向拉索的数量和角度。
总结:钢结构在桥梁设计中具有独特的优势,其高强度、轻质、易加工等特点使其成为桥梁设计领域的首选材料。
常见的钢结构桥梁设计方法包括梁桥设计、拱桥设计、斜拉桥设计和悬索桥设计。
钢结构桥梁的设计与施工技术
钢结构桥梁的设计与施工技术一、概述钢结构桥梁因其高强度、高耐久性和施工便捷性而在桥梁工程领域中被广泛运用。
本文将介绍钢结构桥梁设计与施工技术的重要方面,包括设计原则、结构类型、材料选择、制造和施工过程等。
二、设计原则1.承载能力分析:钢结构桥梁的设计首先要确定承载能力需求,并通过结构分析确定有效的构造形式,确保桥梁能够承受正常运输和异常负荷。
2.结构稳定性:钢结构桥梁在设计过程中,要考虑结构的稳定性,包括抗弯、抗剪、抗扭和抗压等方面,通过合理的断面设计和构造形式来保证桥梁结构的稳定性。
3.耐久性设计:考虑到桥梁要在恶劣环境条件下使用多年,设计中要充分考虑抗腐蚀、防火、防震以及维护性等方面的要求,选择合适的材料和防护措施。
4.美观设计:桥梁作为城市的重要交通设施,其外观设计也应兼顾功能和美观,要与周围环境相协调,符合城市规划和建筑要求。
三、结构类型1.梁桥:梁桥是一种常见的钢结构桥梁形式,由上承面板、下承面板和纵向梁组成,可以采用简支梁、连续梁或悬臂梁等形式。
2.拱桥:拱桥是一种古老而精巧的桥梁结构,由一条或多条几何形状合理的弯曲构件组成,可以通过增加拱肋和加强杆件来提高承载能力。
3.斜拉桥:斜拉桥采用了钢索和塔柱相互搭配的结构形式,具有较好的荷载分配和承载能力,同时也具备较好的抗风性能和美观性。
四、材料选择1.钢材:钢结构桥梁的主要构件使用高强度钢材,如Q345和Q420等,具有较好的强度和韧性,能够满足桥梁的承载能力要求。
2.防腐蚀材料:由于桥梁常处于潮湿的环境中,需要采用防腐蚀材料,如防腐涂料和镀锌等,以延长桥梁的使用寿命和维护周期。
五、制造与施工1.构件制造:钢结构桥梁的构件制造一般采用预制方式,通过工厂进行构件的制造和质量控制,然后运输到现场进行拼装安装。
2.基础施工:桥梁施工的第一步是进行基础的施工,包括桩基和桥墩的建设,确保桥梁的稳定性和承载能力。
3.钢结构安装:安装工作包括预制构件的组装、吊装和焊接,需要严格按照设计要求和相关规范进行操作,确保安全和质量。
钢结构设计与施工实践经验总结
钢结构设计与施工实践经验总结随着工业化的快速发展,钢结构的应用越来越广泛。
作为一种具有高强度、良好的可塑性和可重复使用性的建筑材料,钢结构在现代建筑中扮演着重要的角色。
然而,钢结构的设计与施工并非易事,需要设计师和施工人员具备一定的经验。
本文从设计与施工两方面总结了一些钢结构的实践经验。
一、设计经验总结1. 充分了解结构的使用需求:在进行钢结构设计之前,设计师需要充分了解建筑的使用需求,包括使用功能、承重要求等。
只有确定了结构的具体要求,才能制定出合理的设计方案。
2. 精确计算荷载:荷载是钢结构设计中必须考虑的因素之一。
设计师需要进行精确的荷载计算,包括静态荷载和动态荷载。
在计算过程中,应充分考虑不同工况下的荷载变化。
3. 选择合适的构件和连接方式:在进行钢结构设计时,设计师需要根据具体使用需求选择合适的构件和连接方式。
不同的构件和连接方式对结构的强度和稳定性有重要影响,需要综合考虑多种因素进行选择。
4. 考虑结构的变形和振动:钢结构的变形和振动是设计中必须考虑的问题。
结构的变形和振动会对使用性能和安全性产生影响,设计师需要进行相应的分析和计算,采取适当的措施进行控制。
5. 精确绘制施工图纸:施工图纸是钢结构施工的重要依据,需要精确绘制。
设计师应详细标注构件的尺寸、材质、连接方式等信息,并与施工人员进行充分的沟通。
二、施工经验总结1. 确保施工工艺的合理性:钢结构施工需要遵循一定的工艺流程,施工人员应确保施工工艺的合理性。
将施工流程细分为不同的工序,严格按照施工图纸和设计要求操作。
2. 保持施工现场的整洁和安全:施工现场的整洁和安全是施工工作的基础。
施工人员需要保持现场的整洁,定期清理杂物,确保施工安全。
3. 确保精确测量和定位:钢结构施工需要精确测量和定位。
施工人员应使用合适的测量工具,确保构件的尺寸和位置的准确性。
4. 控制焊接质量:焊接是钢结构施工中常用的连接方式之一。
施工人员需要掌握焊接技术,保证焊接质量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
钢结构桥梁设计及思考、设计经验总结钢结构桥梁优势:钢结构拥有轻型化、抗震性能好;工业化和装配化程度高、可循环利用等优点;随着大跨桥梁的大规模应用,大量采用钢结构是我国交通基础设施未来发展的必然趋势.钢结构桥梁劣势:钢结构造价偏高;耐腐蚀性能不足等;桥梁造价应综合考虑建设成本、安全耐久、管理养护等各种因素,钢结构桥梁自重较轻,节约了下部结构造价,同时施工速度较快,工期较短。
钢结构耐腐蚀性能不足的问题可采取涂装长效高性能防腐涂料、采用耐候钢等方法解决。
全钢结构含钢箱梁、钢桁梁。
钢混组合梁结构含:钢板组合梁桥、钢箱组合梁桥、波形钢腹板桥梁。
>>>钢桁梁桥案例贵阳高速公路:鸭池河大桥一主跨800m钢桁梁斜拉桥(72+72+76+800+76+72+72)=124Om双塔双索面半漂浮体系的混合梁斜拉桥,边跨为预应力混凝土箱梁,中跨为钢桁梁结构,边中跨比为0.275。
钢桁梁结构采用“N”型桁架,横向两片主桁,中心间距为27.0m,桁高7.0m,节间长度为8.0m。
湖北宜昌至张家界高速公路:白洋长江公路大桥一主跨100Om钢桁梁悬索桥主桥采用单跨100Om双塔钢桁梁悬索桥。
主桁架采用华伦式,中心距36m,桁高7.5m,小节间长度7.5m,两节间设一吊点,4节间作为一节段整体吊装,标准吊装节段长度30m,端吊装节段14.2m,跨中吊装节段10.58m。
>>>钢混组合梁桥材料优势:充分利用钢材和混凝土的材料优势,混凝土提高了钢梁的稳定性。
结构优势:减小结构高度、提高结构刚度、减小结构在活荷载下的挠度。
施工便捷:工厂化生产、现场安装质量高、施工费用低、施工速度快。
环保节能:大幅减少水泥用量,减小对环境污染。
缺点:存在抗扭刚度较弱、适用跨度不大的缺点。
1、钢板组合梁桥云南某高速公路项目全长107Km,所在区域位于高烈度地震区,基本地震动峰值加速度.3~0.4g,多座桥梁采用30m-50m钢混组合梁通用图设计。
0结构形式设计选择0组合小箱梁断面存在梁高矮,钢结构后期养护不便利问题;0工字梁组合断面施工过程中梁的侧倾及钢腹板的稳定问题较为突出;0设计优化组合箱梁和工字梁的优势,将工字钢梁两片组合为一福一起预制吊装,形成工字梁组合断面。
0架设方案施工:采用桥面吊机将两片钢梁和桥面板组成一福后,整体预制吊装架设。
0负弯矩区结构设计关键技术0抗拔不抗剪连接新技术对于负弯矩区段,应用清华大学聂建国院士的创新技术-抗拔不抗剪连接新技术,有效解决负弯矩区开裂的难题。
2、波形钢腹板组合梁桥目前,湖北境内公司已完成波形钢腹板组合梁桥共计6座,主跨跨径范围为70m~110m,在甘肃、广东珠海分别完成各一座,主跨跨径分别为100m和160m,组合箱梁均为变截面,悬臂浇筑施工。
0波形钢腹板组合梁桥设计关键技术1、根据抗剪强度与剪切屈曲稳定性合理选择波形钢腹板的厚度与形状。
波形钢腹板在纵向由于折皱效应,其纵向抗拉压刚度小,故设计时认为波形钢腹板不承受轴向力:即近似认为抗弯惯矩计算可仅考虑混凝土顶、底板,而剪力则完全由钢腹板承担,且剪应力在腹板上作均匀分布。
2、折形腹板间的连接临时栓接+焊接形式3、波形钢腹板与混凝土顶板的连接:波形钢板与混凝土顶板的连接采用埋入式连接,即在波形钢板的顶端焊接钢板,钢板上焊接穿孔板,使之与混凝土板结合在一起。
4、波形钢腹板与混凝土底板的连接:目前我院设计采用了两种方式:一是常规的埋入式;另一种为托底式连接。
波形钢腹板与混凝土底板的连接-埋入式波形钢腹板与混凝土顶板的连接波形钢腹板与混凝土底板连接-托底式U对部版预制T梁和小箱梁指标统计:云南、陕西等高速组合梁指标统计:一组高速钢板组合梁与T梁、小箱梁上部结构重量比较表:通过以上表对比可看出:30m跨组合梁总重相比T梁减轻36%,40m 跨组合梁总重相比T梁减轻41%,50m跨组合梁总重相比T梁减轻43%。
同时高速抗震结构内力分析对比:由上表可知,相比混凝土T梁,上构采用组合梁,E1、E2地震作用下桥墩内力大幅降低,降低比例为11.5%~26.8%。
因此,在高烈度地区,上部结构采用组合梁形式更具优势。
U高烈度地震区高速钢混组合梁经济性:从经济性上看,对于地震动峰值加速度0.4g的情况,由于上部组合梁支承反力的减小,地震作用下结构内力大幅减少,总体上组合梁造价低约8.2%左右,具有优势。
u一般地区陕西高速钢混组合梁经济性:综合上、下部结构后,总体上40m、50m钢混组合梁较预制T梁造价分别增加了13.1%、18.9%ou70-160m波形钢腹板经济性分析:u与常规混凝土梁相比,波形钢腹板混凝土用量减少10%-25%,预应力用量减少15%左右,钢材用量增加40%左右,同时下部结构总量可减少20%左右;u在75~130m跨径范围内,波形钢腹板与连续刚构经济性相当;u在130~160m范围内,波形钢腹板造价高约13%;u另外考虑到波形钢腹板桥梁抗扭性能较弱,对跨径90〜16Om范围的曲线桥梁,建议仍采用预应力混凝土连续刚构桥。
优先选用钢结桥梁的工程:0钢结构桥梁自重轻,尤其在特大跨径桥梁、高地震烈度区桥梁中优势明显、应该优先选用0弯坡斜等特殊形状的桥梁,受力条件复杂、适宜钢材各向同性的优势发挥,应优先采用U加强钢结构桥梁的构造设计:钢结构桥梁断面尺寸小,构造设计对桥梁结构的安全和耐久性影响显著。
应针对钢结构桥梁的构造特点,重点做好细部构造设计。
1.基本构造1)钢箱梁由顶板、底板、腹板、中隔板(含横肋)、支点隔板、及其相应的加劲肋组成,对于平曲线半径大的桥梁,顶板一般采用U型加劲肋,底板采用开口T肋或板肋,一般对于半径小的桥梁、因U肋加工难度较大,故一般顶底板采用开口加劲肋,钢箱梁梁高取跨径的1/20〜1/30,简支梁一般取大值。
2)顶板的作用是直接承受荷载(第二体系和第三体系),作为钢箱梁的上翼缘共同抵抗外力(纵向),作为支点横梁的上翼缘共同抵抗外力(横向),规范要求顶板厚大于14mm,结合参考图纸一般取16〜20mm,在连续梁负弯矩区存在局部加厚,根据计算确定。
3)底板作为钢箱梁的下翼缘共同抵抗外力(纵向),作为支点横梁的下翼缘共同抵抗外力(横向),板厚大于12mm。
4)顶板加劲肋、一般采用U肋或开口加劲肋,U肋间距约为600mm,开口肋间距约为300mm,与钢箱梁上翼缘板共同承受外力,等效顶板厚约为8mm(也有取6mm的),作为桥面板的弹性支撑,将荷载传递给横隔板,减少顶板宽厚比,增加局部稳定的容许压应力,下图列出了加劲肋开口肋与闭口肋优缺点,加劲肋构造尺寸要满足规范5.1.5条、5.1.6条规定。
5)底板加劲肋间距不传递车辆荷载,间距可以比顶板加劲肋大,加劲肋构造尺寸要满足规范5.1.5条、5.1.6条规定。
6)腹板及其加劲肋:连接顶底板平面形成整体断面,主要起抗剪作用,在弯矩、剪力和集中荷载作用下,腹板受力与钢板梁类似,需要设置横向加劲肋和纵向加劲肋,抵抗腹板的弯剪失稳和局部压皱,腹板板厚一般为14mm~22mm腹板间距为3m~6m,不建议大于6m,纵向加劲肋一般采用板肋,布置方式参见《公路钢结构桥梁设计规范》JTGD64-2015第5.3.3条的规定,横向加劲肋一般采用T肋,一般在每个横隔板之间布置一道,加劲肋构造尺寸要满足规范5.1.5条、5.1.6条规定。
7)中横隔板有框架式、实腹式横隔板及桁架式横隔板,隔板刚度需满足《公路钢结构桥梁设计规范》JTGD64-2015第8.5条的规定,板厚一般为Iomm〜20mm,对于小跨桥梁,一般多采用实腹式横隔板,间距为2〜3.5m,梁高小于2m的间距可以采用2m,梁高大于2m,间距可以采用2〜3.5m,根据《现代钢桥》(上册)吴冲著)参考书籍得知横隔板定义开口率,横隔板可视为实腹式,主要考虑剪应力;,可简化为仅受轴力的杆件;横隔板受力性质介于实腹式和桁架式之间,作为框架处理,考虑轴力和抗弯。
实腹式横隔板适用于尺寸较小的钢箱梁,制作简单,应用最广。
桁架式适用于截面较大的箱梁,可以减轻横隔板的自重。
8)支点隔板主要是横向传递荷载给支座,支点隔板须连续,边支点布置2〜3道支点隔板、中支点布置3〜4道横隔板,板厚一般取24mm 〜30mm。
9)悬臂挑梁,当横隔板间距为3m时,在1.5m处增加一道,当横隔板间距为2m时,悬臂挑梁间距同隔板间距,有些设计院的将悬臂挑梁之间采用装饰板密封,不过大部分桥,都是外露出来。
10)支撑加劲肋需要满足15规范5.3.4条规定。
2.传力途径受力体系划分:第一体系:结构整体体系,传力途径为4和5,与该变形对应的应力称之为第一体系应力。
第二体系:对应的传力途径为2和3,与该变形对应的应力称之为第二体系应力。
第三体系:对应传力途径1,即支撑在两邻顶板纵肋之间的桥面板的横向变形,与该变形对应的应力称之为第三体系应力。
传力路径1:即第三体系,由于薄膜应力效应,本体系应力一般不考虑。
传力路径2:属于第二体系,忽略横隔板对纵肋的转角约束影响,按简支梁和多跨连续梁包络计算,局部加载冲击系数取L4,本体系应力不应超过60Mpa o传力路径3:属于第二体系,按横肋模型和横隔板模型分别计算,局部加载冲击系数取L4,本传力途径应力计算一般较小,可忽略。
传力路径4:主梁纵向受力体系,为第一体系,顶底板有效宽度根据15钢结构规范5.1.8条计算,冲击系数根据自振频率计算,顶板本体系顶板应力需要考虑2号途径应力6,将两者进行组合相加(偏安全考虑),如顶板第一体系应力为87MPa,第二体系应力为49MPa,两者叠加为1.1X(87+49×1.8)=175MPa(偏保守考虑),底板应力为IooMPa,综合设计经验组合应力一般不超过240MPa(规范要求对于16mm以下的钢板是275MPa,16mm〜40mm是270MPa),对于小曲线半径桥梁需要考虑扭转剪应力与弯曲应力的组合。
传力路径5:主梁横向受力体系,为第一体系,顶底板有效宽度根据15钢结构规范5.1.8条计算,应进行横隔梁的验算及支座顶加劲板局部计算。
3.钢箱梁部分细节设计I)U肋的选取,目前中国钢结构规范对U肋的选取没有相关参数,可以参考的是《桥梁钢结构用U形肋冷弯型钢》(中华人民共和国黑色冶金行业标准YB/T4624-2017)的行业标准,U肋为现场板单元加工构件,也可以自行设计。
过焊孔参考欧标,其与美国标准和日本标准有点区别,这里不再阐述。
图5.U形肋过焊孔2)连接方式钢箱梁目前主要是焊接与栓接两种工艺,目前而言,焊接相对多些,但是焊接质量控制是个问题,焊接参考《焊缝符号表示法》GB/T324-2008要求,同时满足15版桥梁钢结构设计规范第6章连接的构造与计算章节要求,栓接一般在U肋分段处采用,防止桥面疲劳破坏,需要计算螺栓个数,一般采用等强度理论计算,可参考86版钢结构及木结构规范。