初二数学期末试卷带答案
人教版八年级上册数学期末考试试题带答案

人教版八年级上册数学期末考试试卷一、选择题。
(每小题只有一个正确答案)1.下列四个图案中,是轴对称图形的是()A .B .C .D .2.如果线段a ,b ,c 能组成三角形,那么它们的长度比可能是()A .1∶2∶4B .2∶3∶4C .3∶4∶7D .1∶3∶43.石墨烯是现在世界上最薄的纳米材料,其理论厚度仅是0.00000000034m ,这个数用科学记数法表示正确的是()A .3.4×10-9m B .0.34×10-9mC .3.4×10-10mD .3.4×10-11m 4.下列运算中,正确的是()A .22a a a ⋅=B .224()a a =C .236a a a ⋅=D .2323()a b a b =⋅5.如图,点P 是∠AOB 的平分线OC 上一点,PD ⊥OA ,垂足为D ,若PD =2,则点P 到边OB 的距离是()A .4B C .2D .16.若分式13x +有意义,则x 的取值范围是()A .x >3B .x <3C .x ≠-3D .x =37.如图,在△ABC 中,∠A =80°,∠C =60°,则外角∠ABD 的度数是()A .100°B .120°C .140°D .160°8.下列各式是完全平方式的是()A .214x x -+B .21x +C .22x xy y -+D .221a a +-9.已知一个多边形的内角和是1080°,则这个多边形是()A.五边形B.六边形C.七边形D.八边形10.如图所示,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作正△ABC和正△CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ.以下四个结论:①△ACD≌△BCE;②AD=BE;③∠AOB=60°;④△CPQ是等边三角形.其中正确的是()A.①②③④B.②③④C.①③④D.①②③二、填空题11.点()2,1M-关于y轴的对称点的坐标为______.12.如果多边形的每个内角都等于150︒,则它的边数为______.13.如图,△ABC≌△DCB,A、B的对应顶点分别为点D、C,如果AB=6cm,BC=12cm,AC=10cm,DO=3cm,那么OC的长是_____cm.14.在△ABC中,AB=AC,AB的垂直平分线交AC于D,交AB于E,连接BD,若∠ADE =40°,则∠DBC=_____.15.已知13aa+=,则221+=aa_____________________;16.如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β=_____.三、解答题17.解方程:21133xx x-=---.18.先化简,再求值:(3x+2)(3x﹣2)﹣10x(x﹣1)+(x﹣1)2,其中x=﹣1.19.如图:已知∠AOB和C、D两点,求作一点P,使PC=PD,且P到∠AOB两边的距离相等.20.如图,直线EF∥GH,点A在EF上,AC交GH于点B,若∠EAB=110°,∠C=60°,点D在GH上,求∠BDC的度数.21.甲、乙两工程队共同完成一项工程,乙队先单独做1天后,再由甲、乙两队合作2天就完成了全部工程,已知甲队单独完成这项工程所需的天数是乙队单独完成工程所需天数的2倍,则甲、乙两工程队单独完成工程各需多少天?22.如图,已知AB=AC=AD,且AD∥BC,求证:∠C=2∠D.23.如图:在△ABC中∠ACB=90°,AC=BC,AE是BC边上的中线,过点C作CF⊥AE,垂足为F,过B作BD⊥BC交CF的延长线于D.求证:(1)AE=CD.(2)若AC=12cm,求BD的长.24.某体育用品商场预测某品牌运动服能够畅销,就用32000元购进了一批这种运动服,上市后很快脱销,商场又用68000元购进第二批这种运动服,所购数量是第一批购进数量的2倍,但每套进价多了10元.(1)该商场两次共购进这种运动服多少套?(2)如果这两批运动服每套的售价相同,且全部售完后总利润不低于20%,那么每套售价至少是多少元?25.如图所示,已知△ABC中,AB=AC=10厘米,BC=8厘米,点D为AB的中点.如果点P在线段BC上以1厘米/秒的速度由B点向C点运动,同时点Q在线段CA上由C点向A点运动.(1)若点Q与点P的运动速度相等,经过3秒后,△BPD与△CQP是否全等?请说明理由;(2)若点Q与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP 全等?参考答案1.C【解析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,对各项进行判断找出不是轴对称图形即可.【详解】A.不是轴对称图形;B.不是轴对称图形;C.是轴对称图形;D.不是轴对称图形;故选:C .【点睛】考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.B【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析求解.【详解】A 、1+2<4,不能组成三角形;B 、2+3>4,能组成三角形;C 、3+4=7,不能够组成三角形;D 、1+3=4,不能组成三角形.故选B .【点睛】考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.3.C【详解】试题分析:根据科学记数法的概念可知:用科学记数法可将一个数表示10n a ⨯的形式,所以将0.00000000034用科学记数法表示103.410-⨯,故选C .考点:科学记数法4.B【解析】【分析】根据同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘,对各选项分析判断后利用排除法求解.【详解】A 选项:23a a a ⋅=,故是错误的;B选项:()224a a=,故是正确的;C选项:235a a a⋅=,故是错误的;D选项:()3243=⋅,故是错误的;a b a b故选:B.【点睛】考查了同底数幂乘法和幂的乘方,解题关键是运用了同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘.5.C【分析】根据角平分线的性质解答.【详解】解:如图,作PE⊥OB于E,∵点P是∠AOB的角平分线OC上一点,PD⊥OA,PE⊥OB,∴PE=PD=2,故选C.【点睛】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.6.C【解析】【分析】考查分式有意义的条件:分母≠0,即x+3≠0,解得x的取值范围.【详解】∵x+3≠0,∴x≠-3.故选:C.考查的是分式有意义的条件:当分母不为0时,分式有意义.7.C【解析】【分析】根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】由三角形的外角性质得,∠ABD=∠A+∠C=80°+60°=140°.故选C.【点睛】考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.8.A【解析】【分析】根据完全平方式(a2+2ab+b2和a2-2ab+b2)进行判断.【详解】A、是完全平方式,故本选项正确;B、不是完全平方式,故本选项错误;C、不是完全平方式,故本选项错误;D、不是完全平方式,故本选项错误;故选:A.【点睛】考查了对完全平方式的应用,主要考查学生的判断能力.9.D【分析】根据多边形的内角和=(n﹣2)•180°,列方程可求解.【详解】设所求多边形边数为n,∴(n﹣2)•180°=1080°,解得n=8.【点睛】本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.10.A【分析】由已知条件运用等边三角形的性质得到三角形全等,进而得到更多结论,然后运用排除法,对各个结论进行验证从而确定最后的答案.【详解】∵△ABC和△CDE是正三角形,∴AC=BC,CD=CE,∠ACB=∠DCE=60°,∵∠ACD=∠ACB+∠BCD,∠BCE=∠DCE+∠BCD,∴∠ACD=∠BCE,∴△ADC≌△BEC(SAS),故①正确,∴AD=BE,故②正确;∵△ADC≌△BEC,∴∠ADC=∠BEC,∴∠AOB=∠DAE+∠AEO=∠DAE+∠ADC=∠DCE=60°,故③正确;∵CD=CE,∠DCP=∠ECQ=60°,∠ADC=∠BEC,∴△CDP≌△CEQ(ASA).∴CP=CQ,∴∠CPQ=∠CQP=60°,∴△CPQ是等边三角形,故④正确;故选A.【点睛】考查等边三角形的性质及全等三角形的判定等知识点;得到三角形全等是正确解答本题的关键.11.()2,1【分析】关于y 轴对称的点,纵坐标相同,横坐标互为相反数.【详解】∵关于y 轴对称的点,纵坐标相同,横坐标互为相反数∴点()2,1M -关于y 轴的对称点的坐标为()2,1.故答案为:()2,1【点睛】考核知识点:轴对称与点的坐标.理解轴对称和点的坐标关系是关键.12.12【分析】先求出这个多边形的每一个外角的度数,再用360°除以外角的度数即可得到边数.【详解】∵多边形的每一个内角都等于150°,∴多边形的每一个外角都等于180°﹣150°=30°,∴边数n =360°÷30°=12.故答案为12.【点睛】本题考查了多边形的内角与外角的关系,求出每一个外角的度数是解答本题的关键.13.7【解析】【分析】根据△ABC ≌△DCB 可证明△AOB ≌△DOC ,从而根据已知线段即可求出OC 的长.【详解】∵△ABC ≌△DCB ,∴AB=DC ,∠A=∠D ,又∵∠AOB=∠DOC (对顶角相等),∴△AOB ≌△DOC ,∴OC=BO=BD-DO=AC-DO=7.故答案是:7.【点睛】考查了全等三角形的性质解题的关键是注意掌握全等三角形的对应边相等,注意对应关系.14.15°.【分析】先根据线段垂直平分线的性质得出DA=DB ,∠AED=∠BED=90︒,即可得出∠A=∠ABD ,∠BDE =∠ADE ,然后根据直角三角形的两锐角互余和等腰三角形的性质分别求出∠ABD ,∠ABC 的度数,即可求出∠DBC 的度数.【详解】∵AB 的垂直平分线交AC 于D ,交AB 于E ,∴DA=DB ,∠AED=∠BED=90︒,∴∠A=∠ABD ,∠BDE =∠ADE ,∵∠ADE =40︒,∴∠A=∠ABD=9040︒-︒=50︒,∵AB =AC ,∴∠ABC=150652︒-︒=︒,∴∠DBC =∠ABC-∠ABD=15︒.故答案为15︒.【点睛】本题考查线段垂直平分线的性质,等腰三角形的性质.15.7【分析】把已知条件平方,然后求出所要求式子的值.【详解】∵13a a +=,∴219a a ⎛⎫+= ⎪⎝⎭,∴2212+a a +=9,∴221+=a a =7.故答案为7.【点睛】此题考查分式的加减法,解题关键在于先平方.16.240°【详解】已知等边三角形的顶角为60°,根据三角形的内角和定理可得两底角和=180°-60°=120°;再由四边形的内角和为360°可得∠α+∠β=360°-120°=240°.故答案是:240°.17.无解【解析】【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】21133x x x -=---2-x=x-3-1-2x=-3-1-2x=3当x=3时,x-3=0,所以原分式方程无解.【点睛】考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.18.8x -3,-11【解析】【分析】原式利用平方差公式,完全平方公式,以及单项式乘以多项式法则计算,去括号合并即可得到结果.【详解】原式=9x 2-4-10x 2+10x+x 2+1-2x=8x-3当x=-1时,原式=-8-3=-11.【点睛】考查了整式的混合运算,平方差公式,以及完全平方公式,熟练掌握运算法则是解本题的关键.19.见解析【分析】先作CD的垂直平分线和∠AOB的平分线,它们的交点为P点,则根据线段垂直平分线的性质和角平分线的性质得到PC=PD,且P到∠AOB两边的距离相等.【详解】解:如图,点P为所作.【点睛】本复考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.20.50°【分析】先利用平行线求出∠CBG,再用邻补角的定义求出∠CBD,最后用三角形的内角和定理即可得出结论.【详解】解:∵EF∥GH,∴∠CBG=∠EAB,∵∠EAB=110°,∴∠CBG=110°,∴∠CBD=180°﹣∠CBG=70°,在△BCD中,∵∠C=60°,∴∠BDC=180°﹣∠C﹣∠CBD=180°﹣60°﹣70°=50°,即:∠BDC的度数为50°.【点睛】此题主要考查了平行线的性质,邻补角的定义,三角形内角和定理,求出∠CBD=70°是解本题的关键.21.甲需8天,乙需4天【解析】【分析】根据乙队先单独做1天后,再由两队合作2天就完成了全部工程则等量关系为:乙一天的工作量+甲乙合作2天的工作量=1,再设未知数列方程,解方程即可.【详解】设乙队单独完成所需天数x天,则甲队单独完成需2x天,1112(1++=2x x x解得:x=4,当x=4时,分式方程有意义,所以x=4是分式方程的解,所以甲、乙两队单独完成工程各需8天和4天.答:甲、乙两队单独完成工程各需8天和4天.【点睛】考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.22.证明见解析【详解】试题分析:首先根据AB=AC=AD,可得∠C=∠ABC,∠D=∠ABD,∠ABC=∠CBD+∠D;然后根据AD∥BC,可得∠CBD=∠D,据此判断出∠ABC=2∠D,再根据∠C=∠ABC,即可判断出∠C=2∠D.试题解析:∵AB=AC=AD,∴∠C=∠ABC,∠D=∠ABD.∴∠ABC=∠CBD+∠D.∵AD∥BC,∴∠CBD=∠D.∴∠ABC=2∠D.又∵∠C=∠ABC,∴∠C=2∠D.23.(1)见解析;(2)6【分析】(1)根据DB ⊥BC ,CF ⊥AE ,得出∠D =∠AEC ,再结合∠DBC =∠ECA =90°,且BC =CA ,证明△DBC ≌△ECA ,即可得证;(2)由(1)可得△DBC ≌△ECA ,可得CE=BD ,根据BC=AC=12cm AE 是BC 的中线,即可得出12CE BC =,即可得出答案.【详解】证明:(1)证明:∵DB ⊥BC ,CF ⊥AE ,∴∠DCB +∠D =∠DCB +∠AEC =90°.∴∠D =∠AEC .又∵∠DBC =∠ECA =90°,且BC =CA ,在△DBC 和△ECA 中90D AEC DBC ECA BC AC ∠∠∠∠⎪⎩︒⎧⎪⎨====,∴△DBC ≌△ECA (AAS ).∴AE =CD ;(2)由(1)可得△DBC ≌△ECA∴CE=BD ,∵BC=AC=12cm AE 是BC 的中线,∴162CE BC cm ==,∴BD=6cm .【点睛】本题考查了全等三角形的判定和性质,直角三角形斜边上的中线,证明△DBC ≌△ECA 解题关键.24.(1)商场两次共购进这种运动服600套;(2)每套运动服的售价至少是200元【分析】(1)设该商场第一次购进这种运动服x 套,第二次购进2x 套,然后根据题意列分式解答即可;(2)设每套售价是y 元,然后根据“售价-两次总进价≥成本×利润率”列不等式并求解即可.【详解】解:(1)设商场第一次购进x 套运动服,由题意得6800032000102x x-=解这个方程,得200x =经检验,200x =是所列方程的根22200200600x x +=⨯+=;答:商场两次共购进这种运动服600套;(2)设每套运动服的售价为y 元,由题意得600320006800020%3200068000y --+ ,解这个不等式,得200y ≥.答:每套运动服的售价至少是200元.【点睛】本题主要考查了分式方程和一元一次不等式的应用,弄清题意、确定量之间的关系、列出分式方程和不等式是解答本题的关键.25.(1)全等;(2)当点Q 的运动速度为54厘米/秒时,能够使△BPD 与△CQP 全等.【分析】(1)根据时间和速度分别求得两个三角形中的边的长,根据SAS 判定两个三角形全等;(2)根据全等三角形应满足的条件探求边之间的关系,再根据路程=速度×时间公式,先求得点P 运动的时间,再求得点Q 的运动速度.【详解】(1)因为t =3秒,所以BP =CQ =1×3=3(厘米),因为AB =10厘米,点D 为AB 的中点,所以BD =5厘米.又因为PC =BC BP -,BC =8厘米,所以PC =835-=(厘米),所以PC =BD .因为AB =AC ,所以∠B=∠C,所以△BPD≌△CQP(SAS).(2)因为P v≠Q v,所以BP≠CQ,当△BPD≌△CPQ时,因为∠B=∠C,AB=10厘米,BC=8厘米,所以BP=PC=4厘米,CQ=BD=5厘米,所以点P,点Q运动的时间为4秒,所以54Qv 厘米/秒,即当点Q的运动速度为54厘米/秒时,能够使△BPD与△CQP全等.【点睛】考查了全等三角形的判定,等腰三角形的性质.解题时,主要是运用了路程=速度×时间的公式.熟练运用全等三角形的判定和性质,能够分析出追及相遇的问题中的路程关系.。
2023北京密云区初二上期末数学试卷及答案

证明:∵ DB = DF ,
∴ B=
.( )
∵ DE 是 ADF 的角平分线,
∴ ADF =2ADE .
∵ ADF =B+DFB ,( )
即 ADF =2B ,
∴ ADE=B . ∴ DE ∥ BC .
23. 已知 2a2+3a-6=0.求代数式 3a(2a+1)-(2a+1)(2a-1)的值.
24. 已知:在 Rt△ABC 中,ACB = 90,A = 30 ,AB 边的垂直平分线分别交 AC 于点 D,交 AB 于点
【分析】根据等腰三角形的定义,分别以 A, B, C 三个顶点为等腰三角形的顶点可以画出 4 个等腰三角形,
分别以三条边 等腰三角形的底边可以作出 3 个等腰三角形,最多可以作出 7 个不同的等腰三角形
17. 因式分解
.(1)m3 mn2
(2) 2x2 − 8xy + 8 y2
18.
计算:
1 5
−1
+
(
− 3)0 − | −2 |
19
计算:
x
2 +1
−
1 x2 −1
x2
−
x 2x
+1
20. 解分式方程: 10 − x = 1+ 5
x+3
x+3
21. 密云水库是首都的“生命之水”,作为北京重要的水源地,保持水质成为重中之重.如图所示,点 A 和点
2023 北京密云初二(上)期末
数学
考生须知:
1.本试卷共 6 页,共三道大题,28 道小题,满分 100 分.考试时间 120 分钟. 2.在试卷和答题卡上准确填写学校、班级、姓名和考号. 3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效,作图必须使用 2B 铅笔. 4.考试结束,请将本试卷和答题纸一并交回. 一、选择题 (本题共 16 分,每小题 2 分)下面各题均有四个选项,其中只有一个选项是符 合题意的.
人教版数学八年级上册期末考试试卷附答案

人教版数学八年级上册期末考试试题一、选择题(每小题只有一个正确答案。
每小题2分,共12分)1.(2分)下列平面图形中,不是轴对称图形的是()A.B.C.D.2.(2分)计算(﹣2x2y)3的结果是()A.﹣2x5y3B.﹣8x6y3C.﹣2x6y3D.﹣8x5y33.(2分)如果代数式有意义,那么x的取值范围是()A.x≥0B.x≠1C.x>0 D.x≥0且x≠1 4.(2分)一个三角形的三条边长分别为1、2、x,则x的取值范围是()A.1≤x≤3B.1<x≤3C.1≤x<3 D.1<x<35.(2分)如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β的度数是()A.180°B.220°C.240°D.300°6.(2分)如图,已知∠1=∠2,∠B=∠C,下列结论:(1)AB=AC;(2)∠BAE=∠CAD;(3)BE=DC;(4)AD=DE.中正确的个数是()A.1 B.2 C.3 D.4二、填空题(每小题3分,共24分)7.(3分)芝麻作为食品和药物,均广泛使用.经测算,一粒芝麻约有0.00000201千克,用科学记数法表示为.8.(3分)因式分解:ax2﹣ay2=.9.(3分)已知等腰三角形两边的长分别是9和4,则它的周长为.10.(3分)如图,点E,F在AC上,AD=BC,DF=BE,要使△ADF≌△CBE,需添加一个条件是.(只需添加一个条件即可)11.(3分)如图是某超市一层到二层滚梯示意图.其中AB、CD分别表示超市一层、二层滚梯口处地面的水平线,∠ABC=150°,BC的长约为12米,则乘滚梯从点B到点C上升的高度h约为米.12.(3分)将一副直角三角板如图摆放,点C在EF上,AC经过点D.已知∠A=∠EDF =90°,AB=AC.∠E=30°,∠BCE=40°,则∠CDF=.13.(3分)计算+的结果是.14.(3分)如图,在△ABC中,CD是它的角平分线,DE⊥AC于点E.若BC=6cm,DE =2cm,则△BCD的面积为cm2.三、解答题(每题5分,共20分)15.(5分)计算:(π﹣3.14)0+()﹣1﹣|﹣2|﹣(﹣1)2020.16.(5分)计算:(a+3)(a﹣1)+a(a﹣2)17.(5分)已知一个多边形的内角和与外角和之比为9:2,求它的边数.18.(5分)解分式方程:﹣=1.四、解答题(每小题7分,共28分)19.(7分)如图,在平面直角坐标系中.(1)请画出△ABC关于y轴对称的△AB1C1,并写出B1、C1的坐标;(2)直接写出△ABC的面积:S△ABC=;(3)在x轴上找到一点P,使PA+PC的值最小,请标出点P在坐标轴上的位置.20.(7分)如图,已知点A、F、E、C在同一直线上,AB∥CD,∠ABE=∠CDF,AF=CE.(1)从图中任找两组全等三角形;(2)从(1)中任选一组进行证明.21.(7分)已知:a+b=4,ab=2,求下列式子的值:①a2+b2②(a﹣b)222.(7分)如图所示,在△ABC中,BO,CO分别平分∠ABC和∠ACB;BD、CD分别平分∠ABC和∠ACB的外角.(1)若∠BAC=70°,求:∠BOC的度数;(2)探究∠BDC与∠A的数量关系.(直接写出结论,无需说明理由)五、解答题(每小题8分,共16分)23.(8分)学校在假期内对教室内的黑板进行整修,需在规定日期内完成.如果由甲工程小组做,恰好按期完成;如果由乙工程小组做,则要超过规定日期3天.结果两队合作了2天,余下部分由乙组独做,正好在规定日期内完成,问规定日期是几天?24.(8分)如图1,等边△ABC中,AD是BC边上的中线,E为AD上一点(点E与点A 不重合),以CE为一边且在CE下方作等边△CEF,连接BF.(1)猜想线段AE,BF的数量关系:(不必证明);(2)当点E为AD延长线上一点时,其它条件不变.①请你在图2中补全图形;②(1)中结论成立吗?若成立,请证明;若不成立请说明理由.六、解答题(每小题10分,共20分)25.(10分)如图①所示,从边长为a的正方形纸片中剪去一个边长为b的小正方形,再沿虚线AB剪开,把剪成的两张纸片拼成如图②所示的等腰梯形.(1)设图①中阴影部分的面积为S1,图②中阴影部分面积为S2,请直接用含a,b的式子表示S1和S2.(2)请写出上述过程中所揭示的乘法公式;(3)用这个乘法公式计算:①(x﹣)(x+)(x2+);②107×93.26.(10分)在△ABC中,AB=AC=2,∠B=40°,D是线段BC上一动点(不与B、C 两点重合),且∠ADE=40°.(1)若∠BDA=115°,则∠CDE=,∠AED=;(2)当DC等于多少时,△ABD≌△DCE?试说明理由;(3)在D点运动过程中,能使△ADE是等腰三角形吗?若能,请求出使△ADE是等腰三角形时的∠ADB的度数;若不能,请说明理由.答案与解析一、单项选择题1.(2分)下列平面图形中,不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析.【解答】解:A、是轴对称图形,故此选项不合题意;B、是轴对称图形,故此选项不合题意;C、不是轴对称图形,故此选项符合题意;D、是轴对称图形,故此选项不合题意;故选:C.【点评】此题主要考查了轴对称图形,判断轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.2.(2分)计算(﹣2x2y)3的结果是()A.﹣2x5y3B.﹣8x6y3C.﹣2x6y3D.﹣8x5y3【分析】积的乘方法则,把每一个因式分别乘方,再把所得的幂相乘,据此求解即可.【解答】解:(﹣2x2y)3=(﹣2)3(x2)3y3=﹣8x6y3.故选:B.【点评】本题主要考查了幂的乘方与积的乘方,熟记幂的运算法则是解答本题的关键.3.(2分)如果代数式有意义,那么x的取值范围是()A.x≥0B.x≠1C.x>0 D.x≥0且x≠1【分析】代数式有意义的条件为:x﹣1≠0,x≥0.即可求得x的范围.【解答】解:根据题意得:x≥0且x﹣1≠0.解得:x≥0且x≠1.故选:D.【点评】式子必须同时满足分式有意义和二次根式有意义两个条件.分式有意义的条件为:分母≠0;二次根式有意义的条件为:被开方数≥0.此类题的易错点是忽视了二次根式有意义的条件,导致漏解情况.4.(2分)一个三角形的三条边长分别为1、2、x,则x的取值范围是()A.1≤x≤3B.1<x≤3C.1≤x<3 D.1<x<3【分析】已知两边,则第三边的长度应是大于两边的差而小于两边的和,这样就可求出第三边长的范围.【解答】解:根据题意得:2﹣1<x<2+1,即1<x<3.故选:D.【点评】考查了三角形三边关系,本题需要理解的是如何根据已知的两条边求第三边的范围.5.(2分)如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β的度数是()A.180°B.220°C.240°D.300°【分析】本题可先根据等边三角形顶角的度数求出两底角的度数和,然后在四边形中根据四边形的内角和为360°,求出∠α+∠β的度数.【解答】解:∵等边三角形的顶角为60°,∴两底角和=180°﹣60°=120°;∴∠α+∠β=360°﹣120°=240°;故选:C.【点评】本题综合考查等边三角形的性质及三角形内角和为180°,四边形的内角和是360°等知识,难度不大,属于基础题6.(2分)如图,已知∠1=∠2,∠B=∠C,下列结论:(1)AB=AC;(2)∠BAE=∠CAD;(3)BE=DC;(4)AD=DE.中正确的个数是()A.1 B.2 C.3 D.4【分析】先证AB=AC,再证△ABE≌△ACD(AAS)得AD=AE,BE=CD,∠BAE =∠CAD,即可得出结论.【解答】解:∵∠B=∠C,∴AB=AC,故(1)正确;在△ABE和△ACD中,,∴△ABE≌△ACD(AAS),∴AD=AE,BE=CD,∠BAE=∠CAD,故(2)(3)正确,(4)错误,正确的个数有3个,故选:C.【点评】本题考查了全等三角形的判定与性质、等腰三角形的判定等知识,熟练掌握全等三角形的判定与性质是本题的关键.二、填空题(每小题3分,共24分)7.(3分)芝麻作为食品和药物,均广泛使用.经测算,一粒芝麻约有0.00000201千克,用科学记数法表示为 2.01×10﹣6.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00000201=2.01×10﹣6.故答案为:2.01×10﹣6.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.8.(3分)因式分解:ax2﹣ay2=a(x+y)(x﹣y).【分析】首先提取公因式a,再利用平方差公式分解因式得出答案.【解答】解:ax2﹣ay2=a(x2﹣y2)=a(x+y)(x﹣y).故答案为:a(x+y)(x﹣y).【点评】此题主要考查了提取公因式法以及公式法分解因式,正确应用平方差公式是解题关键.9.(3分)已知等腰三角形两边的长分别是9和4,则它的周长为22.【分析】因为等腰三角形的两边分别为4和9,但没有明确哪是底边,哪是腰,所以有两种情况,需要分类讨论.【解答】解:当4为底时,其它两边都为9,即:9、9、4可以构成三角形,周长为22;当4为腰时,其它两边为9和4,因为4+4=8<9,所以不能构成三角形,故舍去.所以答案只有22.故答案为:22.【点评】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.10.(3分)如图,点E,F在AC上,AD=BC,DF=BE,要使△ADF≌△CBE,需添加一个条件是∠D=∠B.(只需添加一个条件即可)【分析】利用全等三角形的判定与性质进而得出当∠D=∠B时,△ADF≌△CBE.【解答】解:当∠D=∠B时,在△ADF和△CBE中∵,∴△ADF≌△CBE(SAS),故答案为:∠D=∠B.(答案不唯一)11.(3分)如图是某超市一层到二层滚梯示意图.其中AB、CD分别表示超市一层、二层滚梯口处地面的水平线,∠ABC=150°,BC的长约为12米,则乘滚梯从点B到点C上升的高度h约为6米.【分析】先过点C作CE⊥AB,交AB的延长线于E,易求∠CBE=30°,在Rt△BCE中可知CE=BC,进而可求CE.【解答】解:过点C作CE⊥AB,交AB的延长线于E,如右图,∵∠ABC=150°,∴∠CBE=30°,在Rt△BCE中,∵BC=12,∠CBE=30°,∴CE=BC=6.故答案是6.【点评】本题考查了含30°角的直角三角形的性质,解题的关键是作辅助线构造直角三角形.12.(3分)将一副直角三角板如图摆放,点C在EF上,AC经过点D.已知∠A=∠EDF =90°,AB=AC.∠E=30°,∠BCE=40°,则∠CDF=25°.【分析】由∠A=∠EDF=90°,AB=AC.∠E=30°,∠BCE=40°,可求得∠ACE的度数,又由三角形外角的性质,可得∠CDF=∠ACE﹣∠F=∠BCE+∠ACB﹣∠F,继而求得答案.【解答】解:∵AB=AC,∠A=90°,∴∠ACB=∠B=45°,∵∠EDF=90°,∠E=30°,∴∠F=90°﹣∠E=60°,∵∠ACE=∠CDF+∠F,∠BCE=40°,∴∠CDF=∠ACE﹣∠F=∠BCE+∠ACB﹣∠F=45°+40°﹣60°=25°.故答案为:25°.13.(3分)计算+的结果是.【分析】利用分式加减法的计算方法进行计算即可.【解答】解:原式=﹣===,故答案为:.14.(3分)如图,在△ABC中,CD是它的角平分线,DE⊥AC于点E.若BC=6cm,DE =2cm,则△BCD的面积为6cm2.【分析】作DF⊥BC于F,根据角平分线的性质求出DF,根据三角形的面积公式计算即可.【解答】解:作DF⊥BC于F,∵CD是它的角平分线,DE⊥AC,DF⊥BC,∴DF=DE=2,∴△BCD的面积=×BC×DF=6(cm2),故答案为:6.【点评】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.三、解答题(每题5分,共20分)15.(5分)计算:(π﹣3.14)0+()﹣1﹣|﹣2|﹣(﹣1)2020.【分析】先算零指数幂、负整数指数幂、绝对值、乘方,再算加减法即可求解.【解答】解:(π﹣3.14)0+()﹣1﹣|﹣2|﹣(﹣1)2020=1+2﹣2﹣1=0.【点评】考查了实数的运算,解决此类题目的关键是熟练掌握零指数幂、负整数指数幂、绝对值、乘方等知识点的运算.16.(5分)计算:(a+3)(a﹣1)+a(a﹣2)【分析】根据整式混合运算的顺序和法则分别进行计算,再把所得结果合并即可.【解答】解:(a+3)(a﹣1)+a(a﹣2)=a2+2a﹣3+a2﹣2a=2a2﹣3;【点评】此题考查了整式的混合运算,在计算时要注意混合运算的顺序和法则以及运算结果的符号,是一道基础题.17.(5分)已知一个多边形的内角和与外角和之比为9:2,求它的边数.【分析】根据多边形的内角和与外角和之间的关系列出有关边数n的方程求解即可.【解答】解:设该多边形的边数为n则(n﹣2)×180°:360=9:2,解得:n=11.故它的边数为11.【点评】本题考查了多边形的内角与外角,解题的关键是牢记多边形的内角和公式与外角和定理.18.(5分)解分式方程:﹣=1.【分析】先去分母,再解整式方程,一定要验根.【解答】解:﹣=1(x+1)2﹣4=x2﹣1x2+2x+1﹣4=x2﹣1x=1,检验:把x=1代入x2﹣1=1﹣1=0,∴x=1不是原方程的根,原方程无解.【点评】本题考查了解分式方程,掌握分式方程一定要验根是解题的关键.四、解答题(每小题7分,共28分)19.(7分)如图,在平面直角坐标系中.(1)请画出△ABC关于y轴对称的△AB1C1,并写出B1、C1的坐标;(2)直接写出△ABC的面积:S△ABC=5;(3)在x轴上找到一点P,使PA+PC的值最小,请标出点P在坐标轴上的位置.【分析】(1)利用关于y轴对称的点的坐标特征写出B1、C1的坐标,然后描点即可;(2)用一个矩形的面积分别减去三个直角三角形的面积去计算△ABC的面积;(3)作A点关于x轴的对称点A′,然后连接A′C交x轴于P点.【解答】解:(1)如图,△AB1C1为所作,B1(﹣2,﹣4),C1(﹣4,﹣1);(2)S△ABC=3×4﹣×2×2﹣×2×3﹣×4×1=5;故答案为5;(3)如图,点P为所作.【点评】本题考查了作图﹣轴对称变换:几何图形都可看做是由点组成,我们在画一个图形的轴对称图形时,也是先从确定一些特殊的对称点开始的.也考查了最短路径问题.20.(7分)如图,已知点A、F、E、C在同一直线上,AB∥CD,∠ABE=∠CDF,AF=CE.(1)从图中任找两组全等三角形;(2)从(1)中任选一组进行证明.【分析】(1)根据题目所给条件可分析出△ABE≌△CDF,△AFD≌△CEB;(2)根据AB∥CD可得∠1=∠2,根据AF=CE可得AE=FC,然后再证明△ABE≌△CDF即可.【解答】解:(1)△ABE≌△CDF,△AFD≌△CEB;(2)∵AB∥CD,∴∠1=∠2,∵AF=CE,∴AF+EF=CE+EF,即AE=FC,在△ABE和△CDF中,,∴△ABE≌△CDF(AAS).【点评】此题主要考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.21.(7分)已知:a+b=4,ab=2,求下列式子的值:②(a﹣b)2.【分析】①根据(a+b)2=a2+2ab+b2,可得a2+b2=(a+b)2﹣2ab,再把a+b=4,ab=2代入计算即可;②根据(a﹣b)2=a2﹣2ab+b2=(a+b)2﹣4ab,再把a+b=4,ab=2代入计算即可.【解答】解:∵a+b=4,ab=2,∴①a2+b2=(a+b)2﹣2ab=42﹣2×2=16﹣4=12;②(a﹣b)2=a2﹣2ab+b2=(a+b)2﹣4ab=42﹣4×2=16﹣8=8.【点评】本题考查完全平方公式的应用,根据题中条件,变换形式即可.22.(7分)如图所示,在△ABC中,BO,CO分别平分∠ABC和∠ACB;BD、CD分别平分∠ABC和∠ACB的外角.(1)若∠BAC=70°,求:∠BOC的度数;(2)探究∠BDC与∠A的数量关系.(直接写出结论,无需说明理由)【分析】(1)根据三角形的角平分线定义和三角形的内角和定理求出∠OBC+∠OCB的度数,再根据三角形的内角和定理即可求出∠BOC的度数;(2)根据三角形外角平分线的性质可得∠BCD=(∠A+∠ABC)、∠DBC=(∠A+∠ACB);根据三角形内角和定理可得∠BDC=90°﹣∠A.【解答】解:(1)∵OB、OC分别是∠ABC和∠ACB的角平分线,∴∠OBC+∠OCB=∠ABC+∠ACB=(∠ABC+∠ACB),∵∠A=70°,∴∠OBC+∠OCB=(180°﹣70°)=55°,∴∠BOC=180°﹣(∠OBC+∠OCB)=125°;(2)∠BDC=90°﹣∠A.理由如下:∵BD、CD为△ABC两外角∠ABC、∠ACB的平分线,∴∠BCD=(∠A+∠ABC)、∠DBC=(∠A+∠ACB),由三角形内角和定理得,∠BDC=180°﹣∠BCD﹣∠DBC,=180°﹣[∠A+(∠A+∠ABC+∠ACB)],=180°﹣(∠A+180°),=90°﹣∠A;【点评】本题考查的是三角形内角和定理,涉及到三角形内角与外角的关系,角平分线的性质,三角形内角和定理,结合图形,灵活运用基本知识解决问题.五、解答题(每小题8分,共16分)23.(8分)学校在假期内对教室内的黑板进行整修,需在规定日期内完成.如果由甲工程小组做,恰好按期完成;如果由乙工程小组做,则要超过规定日期3天.结果两队合作了2天,余下部分由乙组独做,正好在规定日期内完成,问规定日期是几天?【分析】由题意可知甲的工作效率=1÷规定日期,乙的工作效率=1÷(规定日期+3);根据“结果两队合作了2天,余下部分由乙组独做,正好在规定日期内完成”可知甲做两天的工作量+乙做规定日期的工作量=1,由此可列出方程.【解答】解:设规定日期为x天,根据题意,得2(+)+×(x﹣2)=1解这个方程,得x=6经检验,x=6是原方程的解.∴原方程的解是x=6.答:规定日期是6天.【点评】找到关键描述语,找到等量关系是解决问题的关键.本题主要考查的等量关系为:工作时间=工作总量÷工作效率,当题中没有一些必须的量时,为了简便,应设其为1.24.(8分)如图1,等边△ABC中,AD是BC边上的中线,E为AD上一点(点E与点A 不重合),以CE为一边且在CE下方作等边△CEF,连接BF.(1)猜想线段AE,BF的数量关系:AE=BF(不必证明);(2)当点E为AD延长线上一点时,其它条件不变.①请你在图2中补全图形;②(1)中结论成立吗?若成立,请证明;若不成立请说明理由.【分析】(1)利用等边三角形的性质得出AC=BC,CE=CF,∠ACB=∠ECF=60°,进而得出∠ACE=∠BCF,进而判断出△ACE≌△BCF,即可得出结论;(2)①由题意补全图形,即可得出结论;②同(1)的方法,即可得出结论.【解答】解:(1)AE=BF,理由:∵△ABC和△CEF是等边三角形,∴AC=BC,CE=CF,∠ACB=∠ECF=60°,∴∠ACB﹣∠BCE=∠ECF﹣∠BCE,∴∠ACE=∠BCF,在△ACE和△BCF中,,∴△ACE≌△BCF(SAS),∴AE=BF,故答案为:AE=BF;(2)①补全图形如图2所示;②AE=BF仍然成立,理由:∵△ABC和△CEF是等边三角形,∴AC=BC,CE=CF,∠ACB=∠ECF=60°,∴∠ACB+∠BCE=∠ECF+∠BCE,∴∠ACE=∠BCF,在△ACE和△BCF中,,∴△ACE≌△BCF(SAS),∴AE=BF.【点评】此题是三角形综合题,主要考查了等边三角形的性质,全等三角形的判定和性质,判断出△ACE≌△BCF是解本题的关键.六、解答题(每小题10分,共20分)25.(10分)如图①所示,从边长为a的正方形纸片中剪去一个边长为b的小正方形,再沿虚线AB剪开,把剪成的两张纸片拼成如图②所示的等腰梯形.(1)设图①中阴影部分的面积为S1,图②中阴影部分面积为S2,请直接用含a,b的式子表示S1和S2.(2)请写出上述过程中所揭示的乘法公式;(3)用这个乘法公式计算:①(x﹣)(x+)(x2+);②107×93.【分析】(1)图①中的阴影部分的面积为两个正方形的面积差,图②中的阴影部分是上底为2b,下底为2a,高为a﹣b的梯形,利用梯形面积公式可得答案;(2)图①、图②面积相等可得等式;(3)①连续两次利用平方差公式可求结果;②将107×93转化为(100+7)(100﹣7),即可利用平方差公式求出结果.【解答】解:(1)S1=a2﹣b2,S2=(2a+2b)(a﹣b)=(a+b)(a﹣b);(2)a2﹣b2=(a+b)(a﹣b);(3)①原式=(x2﹣)(x2+)=x4﹣;②107×93=(100+7)(100﹣7)=1002﹣72=10000﹣49=9951.【点评】本题考查平方差公式的几何背景,掌握平方差公式的结构特征是解决问题的关键.26.(10分)在△ABC中,AB=AC=2,∠B=40°,D是线段BC上一动点(不与B、C 两点重合),且∠ADE=40°.(1)若∠BDA=115°,则∠CDE=25°,∠AED=65°;(2)当DC等于多少时,△ABD≌△DCE?试说明理由;(3)在D点运动过程中,能使△ADE是等腰三角形吗?若能,请求出使△ADE是等腰三角形时的∠ADB的度数;若不能,请说明理由.【分析】(1)利用等腰三角形的性质和三角形的外角性质解答即可;(2)先求出∠ADB=∠DEC,再由∠B=∠C,AB=DC=2,即可得出△ABD≌△DCE (AAS);(3)分两种情况讨论即可.【解答】解:(1)∵AB=AC,∴∠B=∠C=∠40°,∵∠BDA=115°,∴∠ADC=180°﹣115°=65°,∴∠CDE=∠ADC﹣∠ADE=65°﹣40°=25°,∴∠AED=∠CDE+∠C=25°+40°=65°,故答案为:25°,65°;(2)当DC=2时,△ABD≌△DCE,理由如下:∵∠C=40°,∴∠DEC+∠EDC=140°,∵∠ADE=40°,∴∠ADB+∠EDC=140°,∴∠ADB=∠DEC,在△ABD和△DCE中,,∴△ABD≌△DCE(AAS);(3)△ADE能成为等腰三角形,理由如下:∵∠ADE=∠C=40°,∠AED>∠C,∴△ADE为等腰三角形时,只能是AD=DE或AE=DE,当AD=DE时,∠DAE=∠DEA=(180°﹣40°)=70°,∴∠EDC=∠AED﹣∠C=70°﹣40°=30°,∴∠ADB=180°﹣40°﹣30°=110°;当EA=ED时,∠ADE=∠DAE=40°,∴∠AED=180°﹣40°﹣40°=100°,∴∠EDC=∠AED﹣∠C=100°﹣40°=60°,∴∠ADB=180°﹣40°﹣60°=80°;综上所述,当∠ADB的度数为110°或80°时,△ADE是等腰三角形.【点评】此题考查了等腰三角形的判定与性质,全等三角形的判定与性质,三角形外角的性质等知识点,此题涉及到的知识点较多,综合性较强.21。
数学八年级下册数学期末试卷测试卷附答案

数学八年级下册数学期末试卷测试卷附答案数学八年级下册数学期末试卷及答案一、选择题1.下列各式中,一定是二次根式的是()A。
aB。
1/a^2C。
-a^2D。
a^2+12.下列数组中,能构成直角三角形的是()A。
1.1.3B。
2.3.5C。
0.2.0.3.0.5D。
1/11.1/45.1/33.如图,在ABCD中,点E,F分别在边BC,AD上。
若从下列条件中只选择一个添加到图中的条件中,那么不能使四边形AECF是平行四边形的条件是()A。
AE//CFB。
AE=CFC。
BE=DFD。
∠BAE=∠DCF4.某次数学趣味竞赛共有10组题目,某班得分情况如下表。
全班40名学生成绩的众数是人数。
成绩(分)5.1370.6080.7390.100A。
75B。
70C。
80D。
905.如图,顺次连接四边形ABCD各边中点得四边形EFGH,要使四边形EFGH为矩形,应添加的条件是()A。
AB//DCB。
AC=BDC。
AC⊥BDD。
AB=DC6.如图,在菱形ABCD中,AB=4,∠BAD=120°,O是对角线BD的中点,过点O作OE⊥CD于点E,连结OA。
则四边形AOED的周长为()A。
9+√23B。
9+√3C。
7+√23D。
87.如图,在ABC中,D,E分别是AB,AC的中点,AC=20,F是DE上一点,连接AF,CF,DF=4.若∠AFC=90°,则BC的长度为()A。
24B。
28C。
20D。
128.一个内有进水管和出水管,开始4min内只进水不出水,在随后的8min内既进水又出水,第12min后只出水不进水。
进水管每分钟的进水量和出水量每分钟的出水量始终不变,内水量y(单位:L)与时间x(单位:min)之间的关系如图所示。
根据图象有下列说法:①进水管每分钟的进水量为5L;②4≤x≤12时,y=x+15;③当x=12时,y=30;④当y=15时,x=3,或x=17.其中正确说法的个数是()A。
1个B。
2023北京昌平区初二期末(下)数学试卷及答案

昌平区2022—2023学年第二学期初二年级期末质量抽测数学参考答案及评分标准2023.06一、选择题(本题共8道小题,每小题2分,共16分)题号12345678答案C D D A D B C B 二、填空题(本题共8道小题,每小题2分,共16分)三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题6分,第27、28题,每小题7分)17.解:2450x x --=()()015=+-x x ……………………3分,51=x .12-=x ……………………5分18.证明:∵四边形ABCD 是平行四边形,∴AD ∥BC ,AD=BC .……………………2分∵AE ∥CF ,∴四边形AECF 是平行四边形.……………………3分∴EC=AF .……………………4分∴BC-EC=AD-AF ,即:BE =DF .……………………5分19.(1)解:∵一个一次函数的图象平行于直线x y 21=,∴设这个一次函数的表达式为:.21b x y +=……………………1分∵且经过点()3,2A ,∴3221=+⨯b ,∴2=b .……………………2分∴这个一次函数的表达式为:221+=x y .画出一次函数图像……………………3分题号910111213141516答案4,021==x x 3-=x y 答案不唯一<247240°()()30618220=--x x ()()()3,23,63,4321---D D D(2)()04,-B ……………………4分AAOB y OB S ⋅⋅=∆2163421=⨯⨯=……………………5分20.(1)证明:,1,,1-===m c m b a ……………………1分()114422-⨯⨯-=-=∆m m ac b 442+-=m m ()22-=m ……………………2分()..0,022方程总有两个实数根∴≥∆∴≥-m ……………………3分(2)解:()22-±-=m m x .1,121m x x -=-=……………………4分,01>-∴m 方程有一个根为正数,.1<∴m ……………………5分21.(1)解:∵四边形ABCD 是平行四边形,∴OA =OC ,OB =OD .……………………1分∵BE=DF ,∴OB+BE=OD+DF ,即:OE=OF .……………………2分∴四边形AECF 是平行四边形.(2)证明:∵四边形AECF 是平行四边形,∴FC ∥AE .……………………3分∴∠CFE =∠AEF .∵∠AEF=∠CEF ,∴∠CFE =∠CEF ,……………………4分∴CF=CE .∴平行四边形行AECF 是菱形.……………………5分22.解:任务(1)上述材料证明过程中的“依据1”是对角线互相平分的四边形是平行四边形;…………1分“依据2”是一组对边平行且相等的四边形是平行四边形;…………2分任务(2)证明:∵E 为AB 边的中点,∴AE=BE .∵EF=CE ,∴四边形ACBF 是平行四边形.……………………3分∵∠ACB =90°,∴四边形ACBF 是矩形.……………………4分∴1.2CE AB =……………………5分23.解:设矩形的宽AB 为x 米,那么长BC 为()x 280-米.……………………1分据题意,可得方程整理,得:().750280=-x x ……………………3分整理,得:.0375402=+-x x ,251=x .152=x 502-8015;302-802511====x x x x 时,时,………………5分∵墙长40米,∴152=x 不符合题意舍去∴AB=25,BC =30答:矩形草坪的宽AB 为25米,长BC 为30米.……………………6分24.(1)27;……………………1分(3)……………………5分(4)35至39岁的人获得菲尔兹奖的人数最多.(答案不唯一)……………………6分25.(1)解:∵一次函数的图象经过点(1,0)和点B (2,2),∴0= 22.k b k b +⎧⎨=+⎩,……………………………………1分解得:2-2.k b =⎧⎨=⎩,∴一次函数的表达式为y=2x-2.……………………3分(2)62≤≤m ……………………6分26.①甲的速度为4米/秒,乙的速度为5米/秒;………………2分②离开起点后,甲、乙两人第一次相遇时,距离起点__60___米;……………3分③乙到达终点时,甲距离终点还有68米;……………4分④甲、乙两人之间的距离超过32米的时间范围是44秒<x <89秒.……………6分27.(1)∠PCQ=90°,………………………………1分(1)证明:∵四边形ABCD 是正方形∴AB=BC ①∠ABD =∠DBC =45°②∠BCD =∠DCF=90°,AB ⫽DC∵BP=BP ③∴由①②③△ABP ≌△CBP (SAS )………………………………2分∴∠3=∠4∵∠DCF =90°点Q 是EF 中点∴EQ =CQ =QF ………………………………3分∴∠1=∠2∵AB ⫽DC∴∠3=∠1∴∠2=∠4=∠3=∠1∵∠4+∠PCD=90°∴∠2+∠PCD =90°……………………………4分∴∠PCQ =90°(2)①依题意补全图形;……………………………5分②证明:同理可证∠PCQ=90°∴∠PCM=∠PCD+∠7=90°∵∠PCD+∠8=90°∴∠8=∠7④∵四边形ABCD是正方形∴BC=DC⑤,∠6=∠BDC=45°∵BD⊥DM,∴∠6=∠5=45°⑥由④⑤⑥可得:△BPC≌△DMC(ASA)……………………………6分∴DM=BP∵∠DCB=90°,∠6=45°∴BD=2DC∴BP+DP=2DC∴DM+DP=2DC……………………………7分28.(1)点E,点F…………………………2分①点O关于四边形ABCD的“对称图形”为四边形NMIJ,如图.……………………3分动点T关于四边形ABCD的“对称图形”为四边形SRVU,如图当边SR与IJ重合时,t=6当边UV与MN重合时,t=-6②2≤t≤4或-2≤t≤-1……………………7分。
2024北京海淀区初二(上)期末数学试卷及答案

2024北京海淀初二(上)期末数 学2024.01学校_____________ 班级______________ 姓名______________第1-8题均有四个选项,符合题意的选项只有一个.1.榫卯拼接木艺是中国建筑的智慧结晶,仅靠木头之间的相互作用力就可以让建筑或家具牢固、美观.下列榫卯拼接截面示意图中,是轴对称图形的是A .B .C .D .2.杭州亚运会主火炬以零碳甲醇作为燃料,在亚运史上首次实现废碳再生、循环内零碳排放.甲醇的密度很小,1 cm 3甲醇的质量约为0.000 79 kg ,将0.000 79用科学记数法表示应为 A .47910−⨯ B .47.910−⨯C .57910−⨯D .30.7910−⨯3.下列运算正确的是A. 235a a a ⋅=B. 235()a a =C. 33(2)2a a −=−D. 933a a a ÷=4.如图,点E ,C ,F ,B 在一条直线上,AB ∥ED ,∠A =∠D ,添加下列条件不能..判定△ABC ≌△DEF 的是 A. AC ∥DF B. AB =DE C. EC =BF D. AC =DF5.若正多边形的一个外角是72°,则该正多边形的边数为 A. 4 B. 5 C. 6 D. 76.如图是折叠凳及其侧面示意图. 若AC =BC=18 cm ,则折叠凳的宽AB 可能为 A .70 cm B .55 cm C .40 cm D .25 cm7.下列各式从左到右变形正确的是A. y y x x−=−− B. 1133x x +=+ C. 22142xxx +=−− D. 221xy x y = 8.如图,在△ABC 中,∠BAC =90°,P 是△ABC 内一点,点D ,E ,F 分别是点P 关于直线AC ,AB ,BC 的对称点,给出下面三个结论:① AE =AD ; ② ∠DPE =90°;③ ∠ADC +∠BFC +∠BEA =270°. 上述结论中,所有正确结论的序号是 A.①② B.①③ C.②③ D. ①②③ 二、填空题(本题共16分,每小题2分) 9.若代数式31x −有意义,则实数x 的取值范围是___________. 10.分解因式:32____________________a ab −=.11.在平面直角坐标系xOy 中,已知点A (-1,-1)关于x 轴的对称点'A 的坐标为____________.12.计算:322(69)3a a a −÷=_____________.13.已知等腰三角形的一个内角为40°,则它的顶角度数为_____________°. 14.如图,在△ABC 中,DE 是BC 边的垂直平分线. 若AB =8,AC =13,则△ABD 的周长为____________.15.把一张长方形纸片沿对角线折叠,使折叠后的图形如图所示.若 ∠BAC =35°,则∠CBD =_____________°.16.请阅读关于“乐数”的知识卡片,并回答问题: 乐 数我们将同时满足下列条件的分数称为“乐数”. a . 分子和分母均为正整数; b . 分子小于分母;c . 分子、分母均为两位数,且分子的个位数字与分母的十位数字相同;d .去掉分子的个位数字与分母的十位数字后,得到的分数与原来的分数相等. 例如:1664去掉相同的数字6之后,得到的分数14恰好与原来的分数相等,则1664是一个“乐数”.(1)判断:1339___________(填“是”或“不是”)“乐数”; (2)写出一个分子的个位数字与分母的十位数字同为9的“乐数”_____________.三、解答题(本题共60分,第17题5分,第18题10分,第19-23题每题5分,第24题6分,第25、26题每题7分)17.计算:12+21(3)(2024)2π−⎛⎫−+ ⎪⎝−−−⎭.18.(1)已知2220x x +−=,求代数式2(2)(3)−++x x x 的值.(2)计算: 21121121x x x x x ⎛⎫+÷ ⎪−+−+⎝⎭. 19.小明用自制工具测量花瓶内底的宽.他将两根木条AC ,BD 的中点连在一起(即AO =CO ,BO =DO ),如图所示放入花瓶内底. 此时,只需测量点 与点 之间的距离,即为该花瓶内底的宽,请证明你的结论.20.如图,在△ABC 中,∠C =90°,∠A =30°.在线段AC 上求作一点D ,使得CD =12AD .小明发现作∠ABC 的平分线交AC 于点D ,点D 即为所求. (1)使用直尺和圆规,依小明的思路作出点D (保留作图痕迹); (2)完成下面的证明.证明:∵∠A =30°,∠C =90°, ∴∠ABC =_________°.∵BD 平分∠ABC ,∴∠ABD =∠CBD =12∠ABC =30°. ∴∠ABD =∠A .∴AD=_________.在Rt △BCD 中,∠CBD =30°,∴CD =12BD (____________________________________________)(填推理依据).∴CD =12AD .21. 如图所示的4×4网格是正方形网格,顶点是网格线交点的三角形称为格点三角形. 如图 1,△ABC 为格点三角形. (1)∠ABC =__________°;(2)在图2和图3中分别画出一个以点1C ,2C 为顶点,与△ABC 全等,且位置互不相同的格点三角形.22.列方程解应用题无人配送以其高效、安全、低成本等优势,正在成为物流运输行业的新趋势.某物流园区使用1辆无人配送车平均每天配送的包裹数量是1名快递员平均每天配送包裹数量的5倍.要配送6 000件包裹,使用1辆无人配送车所需时间比4名快递员同时配送所需时间少2天,求1名快递员平均每天可配送包裹多少件? 23.如图,四边形ABCD 中,AB =AC ,∠D =90°,BE ⊥AC 于点F ,交CD 于点E ,连接EA ,EA 平分∠DEF .(1)求证:AF=AD;(2)若BF=7, DE=3,求CE的长.24.小明设计了一个净水装置,将杂质含量为n的水用m单位量的净水材料过滤一次后,水中的杂质含量为1nm+. 利用此净水装置,小明进行了进一步的探究:现有杂质含量为1的水.(1)用2单位量的净水材料将水过滤一次后,水中杂质含量为_______;(2)小明共准备了6a单位量的净水材料,设计了如下的三种方案:方案A是将6a单位量的净水材料一次性使用,对水进行过滤;方案B和方案C均为将6a单位量的净水材料分成两份,对水先后进行两次过滤. 三种方案的具体操作及相关数据如下表所示:①②通过计算回答:在这三种方案中,哪种方案的最终过滤效果最好?(3)当净水材料总量为6a单位量不变时,为了使两次过滤后水中的杂质含量最少,小明应将第一次净水材料用量定为________________(用含a的式子表示).25.如图,在△ABC中,∠ACB=90°,AB=BC,作直线AP,使得45°<∠P AC<90°.过点B作BD⊥AP于D,在DA的延长线上取点E,使DE=BD. 连接BE,CE.(1)依题意补全图形;(2)若∠ABD=α,求∠CBE(用含α的式子表示);(3)用等式表示线段AE,CE,DE之间的数量关系,并证明.26.在平面直角坐标系xOy中,直线l过原点且经过第三、第一象限,l与x轴所夹锐角为n°. 对于点P和x 轴上的两点M,N,给出如下定义:记点P关于直线l的对称点为Q,若点Q的纵坐标为正数,且△MNQ 为等边三角形,则称点P为M,N的n°点.(1)如图1,若点M(2,0),N(4,0),点P为M,N的45°点,连接OP,OQ.①∠POQ=________________°;②求点P的纵坐标;(2)已知点M(m,0),N(m+t,0).①当t=2时,点P为M,N的60°点,且点P的横坐标为-2,则m=____________________;②当m=-2时,点P为M,N的30°点,且点P的横坐标为2,则t=___________________.参考答案一、选择题 (共24分,每小题3分)二、填空题(共16分,每小题2分) 9. 1x ≠; 10. ()()a a b a b +−; 11. (1,1)−; 12. 23a −; 13. 40或100; 14. 21; 15. 20; 16.(1)不是;(2)1995(答案不唯一). 三、解答题(本题共60分,第17题5分,第18题10分,第19-23题每题5分,第24题6分,第25、26题每题7分) 17.(本题满分5分)解:原式=9122−++ ………………………………………………………………4分=12 . …………………………………………………………………………5分18.(1)(本题满分5分)解:原式=22269x x x x −+++ ………………………………………………………2分 =2249x x ++. ………………………………………………………………3分∵2220x x +−=,∴222x x +=. ………………………………………………………………4分 ∴2244x x +=.∴原式=4913+=. 5分(2)(本题满分5分)解:原式=211(1)(1)(1)(1)(1)2x x x x x x xx ⎡⎤+−−+⋅⎢⎥−+−+⎣⎦ ……………………………………3分 =22(1)(1)(1)2x x x x x−⋅−+ …………………………………………………4分 =11x x −+. ………………………………………………………………5分19.(本题满分5分)解:C , D ; …………………………………………………………………………1分 理由如下:连接CD .在△COD 和△AOB 中,AD,,,OC OA COD AOB OD OB =⎧⎪∠=∠⎨⎪=⎩∴△COD ≌△AOB (SAS ). …………………………………………………4分 ∴CD AB =.∴点C 与点D 的距离为该花瓶内底的宽. …………………………………5分20.(本题满分5分)解:(1)…………………………………………………2分∴点D 即为所求.(2)60; ……………………………………………………………………………3分BD ; …………………………………………………………………………4分在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.…………………………………………………………………5分21.(本题满分5分)解:(1)90; …………………………………………………………………………2分 (2)答案不唯一.…………………………………………5分22.(本题满分5分)解:设1名快递员平均每天配送包裹x 件. ……………………………………………1分依题意,得60006000254x x+=. ………………………………………………………3分 解得 150x =. …………………………………………………………4分 经检验,150x =是原分式方程的解且符合题意.答:1名快递员平均每天可配送包裹150件.…………………………………………5分23.(本题满分5分)(1)证明:∵∠D =90°, ∴AD ⊥ED .∵BE ⊥AC 于点F , EA 平分∠DEF , ∴AF =AD . …………………2分(2)解:∵BE ⊥AC 于点F ,B∴∠AFB =90°.在Rt △AFB 和Rt △ADC 中,,,AB AC AF AD =⎧⎨=⎩∴△AFB ≌△ADC (HL ). ………………………………………………3分 ∴BF =CD .∵BF =7,∴CD =7. ………………………………………………………………4分 ∵DE =3,∴CE =CD −DE =7−3=4. …………………………………………………5分24.(本题满分6分)(1)13; …………………………………………………………………………………1分(2)①114a +,()()11412a a ++; ……………………………………………………3分 ② 解:116a −+()()1151a a ++=()()()2516151a a a a +++. ∵0a >,∴250a >,()()()16151a a a +++0>.∴()()()2516151a a a a +++0>. ∴116a +>()()1151a a ++. 同理,可得()()1151a a ++>()()11412a a ++. ∴()()11412a a ++<()()1151a a ++<116a+. ∴方案C 的最终过滤效果最好. ………………………………………………5分 (3)3a. …………………………………………………………………………………6分 25.(本题满分7分) (1)依题意补全图形…………………………………………………………1分(2)解:∵BD ⊥AP 于D ,∴∠BDE =90°. ∵BD =DE ,∴∠DBE =∠DEB =45°. ∵∠ABD =α,∴∠ABE =∠DBE −∠ABD =45°−α. ∵∠ABC =90°,∴∠CBE =∠ABC −∠ABE =45°+α.…………………………………………………3分 (3)AE+CE=2DE . ……………………………………………………………………4分 证明:如图,在AD 延长线上取点F ,使DF=AD ,连接BF . ∵BD ⊥AP ,AD=DF , ∴BA=BF . ∴∠FBD =∠ABD =α. ∵∠DBE =45°, ∴∠EBF =∠DBE+∠DBF =45°+α. ∴∠EBF =∠CBE . ∵AB=BC , ∴BF=BC . ∵BE=BE ,∴△BEF ≌△BEC (SAS ). ∴FE =CE.∵AE =DE −AD , CE =FE =DE+DF , AD =DF ,∴AE+CE =2DE. ………………………………………………………………………7分 26.(本题满分7分)(1)①∠POQ =30°; ………………………………………………………………………1分 ②解:过点P 作P A ⊥y 轴于A ,过点Q 作QB ⊥x 轴于B , ∴∠P AO =∠QBO =90°.∵点P 为线段MN 的45°点,∴PO =QO ,∠AOC =∠BOC =45°,∠POC =∠QOC . ∴∠AOP =∠BOQ . 在△OP A 和△OQB 中,PAO QBO AOP BOQ OP OQ ∠=∠⎧⎪∠=∠⎨⎪=⎩,,, ∴△OP A ≌△OQB (AAS ). ∴AO =BO .E DCBAPBAC .E FDB A P∵△MNQ是等边三角形,点M(2,0),点N(4,0),∴OM=MN=2.∵QB⊥MN,∴112BM MN==.∴AO=BO=3.∴P点纵坐标为3. ………………………………………………………………………4分(2)①m=6;………………………………………………………………………5分②t=3或t=-6.………………………………………………………………………7分。
北京市石景山区2023~2024学年第一学期初二期末数学参考答案
石景山区2023-2024学年第一学期初二期末数学试卷答案及评分参考阅卷须知:为了阅卷方便,解答题中的推导步骤写得较为详细,考生只要写明主要过程即可。
若考生的解法与本解法不同,正确者可参照评分参考给分,解答右端所注分数,表示考生正确做到这一步应得的累加分数 一、选择题(本题共16分,每小题2分)9.1x ≥ 10.mn ;分式的基本性质 11.17 12. 7513.答案不唯一,如AB =DE ;SAS 14.3815. 451 16.等边三角形;.三、解答题(本题共68分,第17-21每小题5分;第22-23每小题6分;24题5分,第25-26每小题6分;第27-28每小题7分)解答应写出文字说明,演算步骤或证明过程.17.解:原式2211=--+2-.18.解:原式2=⨯3⨯==19.解:原方程可化为:()3113231231x x -=-- 去分母,得()331213x --=. 去括号,整理得9513x -=.解得2x =.经检验2x =是原分式方程的解.∴原分式方程的解为2x =.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4分 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5分⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2分 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4分 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5分 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯1分⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2分 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5分20. 证明: ∵∠1=∠2,∴OB=OC (等角对等边).在△AOB 和△DOC 中O A O DA OB D OC O B O C =⎧⎪∠=∠⎨⎪=⎩∴△AOB ≌△DOC (SAS). ∴AB =CD (全等三角形的对应边相等).21.解:由题意,原问题可转化为以下数学问题:已知:Rt △'ABC 中,'ABC ∠=90°,点B 为'DC 的中点, '10DC =,AC ='AC ,BC =1.求AB 和AC 的长.∵'10DC =,点B 为'DC 的中点, ∴1''52BC DC ==. 设AB =x ,则'AC =AC =x +1. 在Rt △AB C’中, ∵222''AB BC AC +=,∴2225(1)x x +=+.解得12x =. ∴AB =12,AC=13.答:水深12尺,芦苇长13尺.22.解:(1)尺规作图,如图所示:⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2分 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5分⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4分 D ACB⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2分⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯1分⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4分 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5分21BC DOA(2)证明:∵BD ⊥AC 于D ,∴∠1+∠C =90°. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分 ∵AB=AC , ∴ABC C ∠=∠.∵180A ABC C ∠+∠+∠=︒, ∴2180A C ∠+∠=︒.∴1902A C ∠+∠=︒. ∴112DBC A ∠=∠=∠. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6分23.解:原式()()()2111111a a a aa a a a +--⎛⎫=-÷ ⎪--⎝⎭-. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2分 ()()()211111a a a a a -=⋅-+-. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分()11a a =+.21a a=+ ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4分∵ 210a a +-=, ∴21a a +=∴ 原式=1.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6分24.解:如图所示,作点M 关于AD 的对称点'M ,连接'M F 交AD 于点P ,点P⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2分1DACBC连接MP ,'MM .∵点M 与点'M 关于AD 对称,∴直线AD 是'MM 的垂直平分线. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分 ∴'MP M P =. ∴'MPA M PA ∠=∠. ∵'M PA FPD ∠=∠,∴MPA FPD ∠=∠. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5分25.解:设该用户在4G 网络环境下载的速度是每秒x 兆,在5G 网络环境下载的速度是每秒11.5x 兆. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯1分根据题意列方程,得92092010511.5x x=-. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分 解得:8x =.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5分经检验,8x =是原分式方程的解且符合实际意义. 11.5892⨯=.答:该用户在5G 网络环境下载文件的速度是每秒92兆.26.解:(1)第5个:666655⨯=+. (2)第n 个等式可以表示为:()()1111n n n n n n++⋅+=++.(3)证明:∵()()2111n n n n n++⋅+=, ()()1111n n n n n n n n+++++=+ =()1(1)n n n++=()21n n+,∴()()1111n n n n n n++⋅+=++. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6分⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯1分⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6分⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分27.解:(1)①补全图形如图所示:②判断:CD=DB + CF .证明:过点E 作EG ⊥CB 交CB 的延长线于G . ∵∠ACB =90°,EG ⊥CB 于G , ∴∠ACD =∠EGD =90°. ∵DE =AD ,∠ADC =∠EDG , ∴△ACD ≌△EGD .∴AC =EG ,CD =GD .∵AC =BC ,∴BC =EG . ∵BE ⊥BF , ∴∠FBE =90°, ∴∠CBF +∠GBE =90°.∵在△EGB 中,∠GEB +∠GBE =90°, ∴∠CBF =∠GEB . ∵∠FCB =∠BGE =90° ∴△BCF ≌△EGB . ∴CF =GB . ∵DG =DB +BG , ∴CD=DB + CF .⋯⋯⋯⋯⋯⋯⋯⋯⋯1分C EFDBACF A ⋯⋯⋯⋯⋯⋯⋯⋯⋯4分(2)画出图形如下:数量关系:CD= CF - DB .(3)答案不唯一,只要合理有价值即可.如:点D 在线段CB 上,且DB >CD ,判断CD ,DB ,CF 之间的数量关系. 如:判定AF 与CD 的数量关系并证明等.28.解:(1)13P P ,. (2)如图所示:(34AE ≤.ABD FEC ⋯⋯⋯⋯⋯⋯⋯⋯⋯6分⋯⋯⋯⋯⋯⋯⋯⋯⋯5分⋯⋯⋯⋯⋯⋯⋯⋯⋯7分⋯⋯⋯⋯⋯⋯⋯⋯⋯2分BA⋯⋯⋯⋯⋯⋯⋯⋯⋯5分 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7分。
2023北京西城区初二(下)期末数学试题及答案
2023北京西城初二(下)期末数 学2023.7注意事项:1.本试卷共8页,共两部分,四道大題,26道小题.其中第一大题至第三大题为必做题,第四大道为选做道,计入总分,考试时间100分钟.2.在试卷和答题卡上准确填写学校、班级、姓名和学号.3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效.4.在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答.5.考试结束,请将考试材料一并交回.第一部分 选择题一、选择题(第1-8题均有四个选项,符合题意的选项只有一个)1. 下列各式中,是最简二次根式的是( )2. 以下列各组数为边长,能构成直角三角形的是( )A. 2,3,3B. 2,3,4C. 2,3,5D. 233. 下列计算,正确的是( )3=-=23=⨯2÷=4. 下列命题正确的是( )A. 对角线相等的四边形是平行四边形B. 对角线相等且互相平分的四边形是菱形C. 对角线垂直且互相平分的四边形是矩形D. 对角线垂直、相等且互相平分的四边形是正方形5. 在Rt ABC △中,90ACB ∠=︒,D 为斜边AB 的中点.若8AC =,6BC =,则CD 的长为( )A. 10B. 6C. 5D. 46. 小雨在参观故宫博物馆时,被太和殿窗棂的三交六椀菱花图案所吸引,他从中提取出一个含60︒角的菱形ABCD (如图1所示).若AB 的长度为a ,则菱形ABCD 的面积为( )C. 2a 27. 台风影响着人们的生产和生活.人们为研究台风,将研究条件进行一定的合理简化,把近地面风速画在一个以台风中心为原点,以台风半径为横轴,风速为纵轴的坐标系中,并在图中标注了该台风的12级、10级和7级风圈半径,如12级风圈半径是指近地面风速衰减至32.7m /s 时,离台风中心的距离约为150km .那么以下关于这场台风的说法中,正确的是( )A. 越靠近台风中心位置,风速越大B. 距台风中心150km 处,风速达到最大值C. 10级风圈半径约为280kmD. 在某个台风半径达到最大风速之后,随台风半径的增大,风速又逐渐衰减8. 在平面直角坐标系xOy 中,矩形OABC ,()0,3A ,()2,3B ,()2,0C ,点M 在边OA 上,1OM =.点P 在边AB 上运动,连接PM ,点A 关于直线PM 的对称点为A '.若PA x =,MA A B y +'=',下列图像能大致反映y 与x 的函数关系的是( ).A. B.C. D.第二部分 非选择题二、填空题9. 在实数范围内有意义,则实数x 的取值范围是______.10. 0=,则=a ______,b =______.11. 若ABC 的周长为6,则以ABC 三边的中点为顶点的三角形的周长等于______.12. 某商场招聘员工,现有甲、乙两人参加竞聘,通过计算机、语言和商品知识三项测试,他们各自成绩(百分制)和各项占比如下表所示,那么从甲、乙两人各自的平均成绩看,应该录取:______测试项目计算机语言商品知识在平均成绩中的占比50%30%20%甲的成绩708090乙的成绩90807013. 如图,直线y mx n =+与直线y kx b =+的交点为A ,则关于x ,y 的方程组,y mx n y kx b =+⎧⎨=+⎩的解是______.14. 小杰利用教材中的剪纸活动设计了一个魔术.他将一个长方形纸片对折两次,剪下一个45︒角(图1),展平后得到一个带正方形孔洞的魔术道具(图2),这个正方形孔洞ABCD 的边长为2cm (图4).他试图将一个直径为3cm 的圆形铁环(铁环厚度忽略不计)穿过这个孔洞,没有成功,于是他对这个道具进行折叠、旋转(图5、图6),并调整纸片产生一个新的“孔洞”(图3).请你计算调整前后的孔洞最“宽”处的“宽度”来说明魔术的效果.图4中的“宽度”BD =______cm ;图6中的“宽度”BD ''=______cm .15. 如图,在ABCD Y 中,BE 平分ABC ∠交AD 于点E ,CF 平分BCD ∠交AD 于点F ,BE 与CF 的交点在ABCD Y 内.若5BC =,3AB =,则EF =______.16. 在ABC 中,3BC =,BD 平分ABC ∠交AC 于点D ,DE BC ∥交AB 于点E ,EF AC ∥交BC 于点F .有以下结论:①四边形EFCD 一定是平行四边形;②连接DF 所得四边形EBFD 一定是平行四边形;③保持ABC ∠的大小不变,改变BA 的长度可使BF FC =成立;④保持BA 的长度不变,改变ABC ∠的大小可使BF FC =成立.共中所有的正确结论是:______.(填序号即可)三、解答题17. 计算:(1(2)+--.18. 在平面直角坐标系xOy 中,直线:26m y x =+与x 轴的交点为A ,与y 轴的交点为B ,将直线m 向右平移3个单位长度得到直线l .(1)求点A ,点B 的坐标,画出直线m 及直线l ;(2)求直线l 的解析式;(3)直线l 还可以看作由直线m 经过其他方式的平移得到的,请写出一种平移方式.19. 尺规作图:过直线外一点作这条直线的平行线.已知:如图,直线l 及直线l 外一点P .求作:直线m ,使得m l ∥,且直线m 经过点P .;作法:①在直线l 上取一点A ,连接AP ,以点A 为圆心,AP 的长为半径画弧,交直线l 于点B ;②分别以点P ,点B 为圆心,AP 的长为半径画弧,两弧交于点C (不与点A 重合);③经过P ,C 两点作直线m .直线m 就是所求作的直线.(1)使用直尺和圆规,依作法补全图形(保留作图痕迹);(2)完成下面的证明.证明:连接BC .∵AP = = = ,∴四边形PABC 是(填“矩形”“菱形”或“正方形”)( )(填推理的依据).∴m l ∥( )(填推理的依据).20. 如图,在ABCD Y 中,AE BC ⊥于点E ,CF AD ⊥于点F .(1)求证:四边形AECF 是矩形;(2)连接BD ,若30CBD ∠=︒,5BC =,BD =DF 的长.21. 已知甲、乙两地相距60km ,小徐和小马两人沿同一条公路从甲地到乙地,小徐骑自行车3h 到达.小马骑摩托车比小徐晩1h 出发,骑行30km 时追上小徐,停留h n 后继续以原速骑行.在整个行程中,两人与甲地的距离y 与小徐骑行时间x 的对应关系分别如图中线段OA 和折线段BCDE 所示,DE 与OA 的交点为F .(1)线段OA 所对应的函数表达式为 ,相应自变量x 的取值范围是 ,线段BC 所对应的函数表达式为 ,相应自变量x 的取值范围是 ;(2)小马在BC 段的速度为 km/h ,n = ;(3)求小马第二次追上小徐时与乙地的距离.22. 某校为了解课外阅读情况,在初二年级的两个班中,各随机抽取部分学生调查了他们一周的课外阅读时长(单位:小时),并对数据进行了整理、描述和分析.下面给出了部分信息.a .甲班学生课外阅读时长(单位:小时):7,7,8,9,9,11,12b .乙班学生课外阅读时长的折线图:c .甲、乙两班学生阅读时长的平均数、众数、中位数:平均数中位数众数甲班m9t乙班9n9根据以上信息,回答下列问题:(1)写出表中m ,t ,n 的值;(2)设甲、乙两班数据的方差分别为21s ,22s ,则21s 22s (填“>”“=”或“<”).23. 在平面直角坐标系xOy 中,对于非零的实数a ,将点(),P x y 变换为,y P ax a ⎛⎫⎪⎝⎭'称为一次“a -变换”.例如,对点()2,3P 作一次“3-变换”,得到点()6,1P '.已知直线24y x =-+与x 轴交于点A ,与y 轴交于点B .若对直线l 上的各点分别作同样的“a -变换”,点A ,B 变换后的对应点分别为A ',B '.(1)当2a =-时,点A '的坐标为 ;(2)若点B '的坐标为()0,6,则a 的值为 ;(3)以下三个结论:①线段AB 与线段A B ''始终相等;②BAO ∠与B A O ∠''始终相等;③AOB 与A OB ''△的面积始终相等.其中正确的是 (填写序号即可),并对正确的结论加以证明.24. 在菱形ABCD 中,60ABC ∠=︒,M ,N 两点分别在AB ,BC 边上,BM BN =.连接DM ,取DM 的中点K ,连接AK ,NK .(1)依题意补全图1,并写出AKN ∠的度数;(2)用等式表示线段NK 与AK 的数量关系,并证明;(3)若6AB =,AC ,BD 的交点为O ,连接OM ,OK ,四边形AMOK 能否成为平行四边形?若能,求出此时AM 的长;若不能,请说明理由.四、选做题25. 在单位长度为1的正方形网格中,如果一个凸四边形的顶点都是网格线交点,我们称其为格点凸四边形.如图,在平面直角坐标系xOy 中,矩形ORST 的四个顶点分别为()0,0O ,()0,5R,()8,0T ,()8,5S .已知点()2,4E ,()0,3F ,()4,2G .若点P 在矩形ORST 的内部,以P ,E ,F ,G 四点为顶点的格点凸四边形的面积为6,所有符合题意的点P 的坐标为 .26. 在平面直角坐标系xOy 中,对于正方形ABCD 和它的边上的动点P ,作等边OPP '△,且O ,P ,P '三点按顺时针方向排列,称点P '是点P 关于正方形ABCD 的“友好点”.已知(),A a a -,(),B a a ,(),C a a -,(),D a a --(其中0a >).(1)如图1,若3a =,AB 的中点为M ,当点P 在正方形的边AB 上运动时,①若点P 和点P 关于正方形ABCD 的“友好点”点P '佮好都在正方形的边AB 上,则点P '的坐标为 ;点M 关于正方形ABCD 的“友好点”点M '的坐标为 ;②若记点P 关于正方形ABCD 的“友好点”为(),P m n ',直接写出n 与m 的关系式(不要求写m 的取值范围);(2)如图2,()1,1E --,()2,2F .当点P 在正方形ABCD 的四条边上运动时,若线段EF 上有且只有一个点P 关于正方形ABCD 的“友好点”,求a 的取值范围;(3)当24a ≤≤时,直接写出所有正方形ABCD 的所有“友好点”组成图形的面积.参考答案第一部分 选择题一、选择题(第1-8题均有四个选项,符合题意的选项只有一个)题号12345678答案BDCDCBDA第二部分 非选择题二、填空题9. 2x ≥.10. 1,5-.11. 3.12.乙.13. 13x y =⎧⎨=⎩14. 4.15. 1.16.①③.三、解答题17. (1)2=+=+=.(2)+--225=--1=-.18. (1)解:对于直线:26m y x =+,当0x =时,6y =当0y =时,260x +=,解得3x =-,∴()30A -,,()06B ,,经过()30A -,,()06B ,两点的直线即为直线m ,然后将直线m 向右平移3个单位长度得到直线l ,所以m l ∥,且直线l 经过()00O ,;作出直线m 及直线l 的图象如图所示:(2)解:因为直线:26m y x =+向右平移3个单位长度得到直线l ,所以直线():236l y x =-+,即直线l 的解析式为2y x =;(3)解:∵直线:26m y x =+,直线:2l y x =,∴直线m 向下平移6个单位长度得到直线l (答案不唯一).19. (1)如图,直线m 即为所求作;(2)证明:连接BC ,∵AP AB PC BC ===,∴四边形PABC 是菱形.(四条边相等的四边形是菱形).∴m l ∥(菱形的对边平行).故答案为:AB ;PC ;BC ;菱形;四条边相等的四边形是菱形;菱形的对边平行.20. (1)证明:如图3.∵四边形ABCD 是平行四边形,∴AD BC ∥.∴180AEC EAF ∠+∠=︒,∵AE BC ⊥于点E ,CF AD ⊥于点F ,∴90AEC ∠=︒,90AFC ∠=︒.∴18090EAF AEC ∠=︒-∠=︒.∴90AEC EAF AFC ∠=∠=∠=︒.∴四边形AECF 是矩形.(2)如图4,作DG BC ⊥,交BC 的延长线于点G .∵在Rt DBG △中,90DGB ∠=︒,30DBG ∠=︒,BD =,∴2BDDG ==6BG ==.∵5BC =,∴1CG BG BC =-=.同理可得四边形FCGD 是矩形.∴1DF CG ==.21. (1)解:由题意得,线段OA 是小徐的函数图象,折线段BCDE 是小马的函数图象,∴小徐的骑行速度为60320km /h ÷=,∴线段OA 所对应的函数表达式为20y x =,其中相应自变量x 的取值范围是03x ≤≤;在20y x =中,当2030y x ==, 1.5x =,∴在小徐出发1.5h 时,小马追上小徐,∴小马的骑行速度为3060km/h 1.51=-,∴线段BC 所对应的函数表达式为()6016060y x x =-=-,其中相应自变量x 的取值范围是1 1.5x ≤≤;故答案为:20y x =,03x ≤≤,6060y x =-,1 1.5x ≤≤;(2)解:由(1)得小马在BC 段的速度为60km/h ,2 1.50.5n =-=,故答案为:60,0.5;(3)解:设小马在小徐出发t 小时后第二次追上小徐,由题意得,()2030602t t =+-,解得 2.25t =,∴小马在小徐出发2.25小时后第二次追上小徐,∴小马第二次追上小徐时与乙地的距离为60 2.252015km -⨯=.22. (1)平均数1(778991112)97=++++++=,故9m =,出现次数最多的有7和9,故7,9t =;由图知,乙班中位数为9,故9n =.(2)222222221122(79)(79)(89)(99)(99)(119)(129)77s ⎡⎤=-+-+-+-+-+-+-=⎣⎦222222222146(59)(79)(99)(99)(99)(109)(149)77s ⎡⎤=-+-+-+-+-+-+-=⎣⎦∴2212S S <.23. (1)直线24y x =-+与x 轴交于点A ,令0y =,即240x -+=,解得2x =,(2,0)A ∴,当2a =-时,点A '的坐标为0(22,)2-⨯-,即(4,0)-;故答案为(4,0)-(2)直线24y x =-+与y 轴交于点B ,令0x =时,4y =,(0,4)B ∴,若点B '的坐标为()0,6,即4(0,)a a ⨯,46a ∴=,解得23a =,经检验23a =是分式方程的解,则a 的值为23;故答案为23(3)③正确,理由如下:证明:∵直线24y x =-+与x 轴交于点A ,与y 轴交于点B ,∴()2,0A ,()0,4B .∵点A ,B 变抰后的对应点分别为A ',B ',∴()2,0A a ',40,B a ⎛⎫⎪⎝⎭'.∵12442AOB S =⨯⨯=△,14242A OB S a a ''=⨯⨯=△,∴A OB AOB S S ''= ,即③正确.故答案为③24. (1)解:补全图形如图所示:.延长AK 与CD 交于点E ,连接NM ,NA ,NE .∵在菱形ABCD 中,60ABC ∠=︒,∴AB BC CD AD ===,AB DC ,120BCD ∠=︒.∴MAK DEK ∠=∠.K 为DM 的中点,∴MK DK =.∵AKM EKD ∠=∠,∴AMK EDK ≅△△.∴AK EK =,AM ED =.∴AB AM DC ED -=-,即BM CE =.∵BM BN =,60ABC ∠=︒,∴BMN 为等边三角形.∴MN BM BN ==,60BMN ∠=︒.∴MN CE =,AM NC =,180120AMN BMN ∠=︒-∠=︒.∴AMN NCE ∠=∠.∴AMN NCE ≅△△.∴AN NE =,∵AK EK =,∴NK AE ⊥,即90AKN ∠=︒.(2)解:NK ,证明如下:延长AK 与CD 交于点E ,连接NM ,NA ,NE .∵在菱形ABCD 中,60ABC ∠=︒,∴AB BC CD AD ===,AB DC ,120BCD ∠=︒.∴MAK DEK ∠=∠.∵K 为DM 的中点,∴MK DK =.∵AKM EKD ∠=∠,∴AMK EDK ≅△△.∴AK EK =,AM ED =.∴AB AM DC ED -=-,即BM CE =.∵BM BN =,60ABC ∠=︒,∴BMN 为等边三角形.∴MN BM BN ==,60BMN ∠=︒.∴MN CE =,AM NC =,180120AMN BMN ∠=︒-∠=︒.∴AMN NCE ∠=∠.∴AMN NCE ≅△△.∴AN NE =,MAN CNE ∠=∠.∵ANC ABC BAN ∠=∠+∠,ANC ANE CNE ∠=∠+∠,∴60ANE ABC ︒∠=∠=∴ANE 为等边三角形,60NAK ∠=︒,在Rt ANK △中,90AKN ∠=︒,60NAK ∠=︒,可得30ANK ∠=︒,∴2AN AK=∴NK ==.(3)解:如图:四边形AMOK 能成为平行四边形,理由如下:∵菱形ABCD 的对角线AC ,BD 的交点为O ,∴BO OD =.∵DM 的中点为K ,∴OK 为DMB 的中位线.∴2BM OK =.∵四边形AMOK 为平行四边形,∴AM OK =.∴23AB AM BM AM OK AM =+=+=.∵6AB =,∴123AM AB ==.四、选做题25. 解:如图,111421214223222EFG S =⨯-⨯⨯-⨯⨯-⨯⨯=V ,113232P EG S =⨯⨯= ,∴11336EFG P EG P EFG S S S =+=+=四边形 ,此时,格点1P 的坐标为()5,4,过格点1P 作EG 的平行线,过格点23,P P ,则有:2313P EG P EG P EG S S S === ,∴26P EFG S =四边形,36P EFG S =四边形,∴()26,3,P ()37,2,P 又()411112422213,222P FG S =⨯+⨯-⨯⨯-⨯⨯= ∴41336EFG P FG P EFG S S S =+=+=四边形 ∴()42,1,P 所以,以P ,E ,F ,G 四点为顶点的格点凸四边形的面积为6的点P 有四处,坐标为()()()()6,3,5,4,7,2,2,1,故答案为:()()()()6,3,5,4,7,2,2,1.26. (1)①);32⎫⎪⎪⎭;如图,OP OP PP ''==∴PM P M '=,3OM =,30MOP MOP ¢Ð=Ð=°∴2OP MP ¢¢=∴Rt OMP ¢ 中,222OM MP OP ¢¢+=,2223(2)MP MP ¢¢+=,解得MP '=∴P ;如图,过点M '作M F x '⊥轴,垂足为F ,则90OFM ¢Ð=°,3OM ¢=,∴9030M OF MOM ¢¢Ð=°-Ð=°∴1322M F OM ¢¢==∴OF ===∴32M ⎫'⎪⎪⎭②6n +.如图,直线P M ''交x 轴于点G ,∵60POP MOM ¢¢Ð=Ð=°∴POP MOP MOM MOP ¢¢¢¢Ð-Ð=Ð-Ð即POM P OM ¢¢Ð= 又,OP OP OM OM ¢¢==∴POM P OM ¢¢@ ∴90OM P OMP ¢¢Ð=Ð=°∵906030M OG ¢Ð=°-°=°,∴90903060OGM M OG ¢¢Ð=°-Ð=°-°=°,点(,)P m n '在直线M G '上,设直线解析式为(0)y kx b k =+≠,则332b b +=+=解得6k b ⎧=⎪⎨=⎪⎩∴6n +;(2)如上图,由(1)知若 (),A a a -,则OM OM a ¢==,Rt OM G ¢ 中,12M G OG ¢=,2221()2a OG OG +=,解得OG =,即点,0)G ,由(1)知点P 在线段AB 上时,直线P M ''与x 轴相交锐角为60︒,可设直线M G '为y q =-+,代入,0)G a ,解得2q a =,故点P '在直线2y a =-+上,即A B ''解析式为2y a =-+;如下图所示,同理可得,直线C D ''解析式为2y a =-,经过()1,1E --,则1(1)2a -=--,解得a =;如下图所示时,直线A B ''的解析式为2y a =+,经过()2,2F,则222a =+解得1a =+.1a <+.(3)如图,当2a =时,点P '轨迹所在四边形A B C D ''''的面积为2(22)16´=,当4a =时,点P '轨迹所在四边形的面积为2(24)64´=,故24a ≤≤时,正方形ABCD 的所有“友好点”组成图形的面积为641648-=.。
初二数学下册期末考试试卷(含-答案)人教版
明.)20。
如图,在四边形ABCD 中,AB =AD ,CB =CD ,E 为AB 的中点,在AC 上求作点P ,使EP +BP 的值最小。
(1)画出点P 的位置(保留作图痕迹,不写画法);(2)若AD =6,∠DAC =30°,求EP+BP 的最小值。
21.,办场时买来的80头小羊经过精心饲养,七个月就可以出售了。
下表数据是这些羊出售时的体重:(1)求这些“大耳羊"在出售时平均体重是多少? (2)“大耳羊”购进时每只成本平均为420元,饲养时每只成本平均为1060元,若按每千克32元的价格可以全部售完,在不计其它成本的情况下,求该农民合作组织饲养这批“大耳羊”可以获得多少利润(利润=总售价-购羊成本-饲养成本).22.某车间计划生产100件产品,由于采用新技术,每天可多生产4件,这样实际生产148件产品的时间与计划生产100件产品所需要的时间相等,求计划生产100件产品所需要的时间是多少天?23。
如图,反比例函数的图象经过边长为3正方形OABC 的顶点B ,点P (m ,n )为该函数图象上的一动点,过点P 分别作x 轴、y 轴的垂线,垂足分别为E 、F ,设矩形OEPF 和正方形OABC 不重合部分的面积为S (即图中阴影部分的面积). (1)求k 的值;(2)当m =4时,求n 和S 的值; (3)求S 关于m 的函数解析式.24.如图,四边形ABCD 是直角梯形,∠B =90°,AB =8cm,AD =24cm,BC =26cm 。
点P 从A 出发,以1cm/s 的速度向点D 运动;点Q 从点C 出发,以3cm/s 的速度向B 运动,若它们同时出发,运动时间为t 秒,并且当其中一个动点到达端点时,另一动点也随之停止运动,运动时间为t 秒.(1)当t =3时,求出P 、Q 两点运动的路程分别是多少?(3)四边形PQCD 有可能为菱形吗?试说明理由。
八年级(初二)数学参考答案与评分建议一、选择题(本大题共8小题,每小题3分,共24分.)1. B ; 2.C ; 3.A ; 4.A ; 5.C ; 6.D ; 7.B; 8.C .二、填空题(本大题共8小题,每小题3分,共24分.)9.; 10.; 11.6; 12. 1;13。
初二期末数学试卷附答案
一、选择题(每题4分,共20分)1. 下列各数中,有理数是()A. √3B. πC. -3/4D. 2.5答案:C2. 下列各数中,无理数是()A. 1/2B. √4C. √9D. √-1答案:D3. 若a、b为实数,且a + b = 0,则下列等式中正确的是()A. a = bB. a = -bC. ab = 0D. a² = b²答案:B4. 已知函数f(x) = 2x - 1,则f(3)的值为()A. 5B. 4C. 3答案:A5. 在直角坐标系中,点A(2, 3)关于y轴的对称点坐标是()A. (-2, 3)B. (2, -3)C. (-2, -3)D. (2, 3)答案:A二、填空题(每题4分,共20分)6. 已知x² - 5x + 6 = 0,则x的值为______。
答案:2,37. 若|a| = 5,则a的值为______。
答案:±58. 下列函数中,奇函数是______。
答案:f(x) = x³9. 若∠ABC = 90°,AB = 3,BC = 4,则AC的长度为______。
答案:510. 已知等差数列{an}中,a₁ = 3,公差d = 2,则aₙ =______。
答案:3 + 2(n - 1)三、解答题(共60分)11. (12分)解下列方程:(1) 2x² - 5x + 2 = 0(2) 3(x - 1)² - 4 = 0(1) x₁ = 1,x₂ = 2(2) x₁ = 1/3,x₂ = 112. (12分)已知函数f(x) = 2x² - 3x + 1,求:(1) 函数的对称轴(2) 函数的顶点坐标答案:(1) 对称轴为x = 3/4(2) 顶点坐标为(3/4, -1/8)13. (12分)在直角坐标系中,已知点A(2, 3),B(4, 5),C(6, 7),求:(1) 线段AB的长度(2) 线段AC的斜率答案:(1) 线段AB的长度为√2(2) 线段AC的斜率为114. (12分)已知等差数列{an}中,a₁ = 3,公差d = 2,求:(1) 第10项的值(2) 前n项和Sₙ的表达式答案:(1) 第10项的值为21(2) Sₙ = n(3 + 21(n - 1))/215. (12分)已知函数f(x) = |x - 2| + 1,求:(1) 函数的图像(2) 函数的最小值答案:(1) 函数的图像为V形,顶点坐标为(2, 1)(2) 函数的最小值为1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初二数学期末试卷带答案考试范围:xxx ;考试时间:xxx 分钟;出题人:xxx 姓名:___________班级:___________考号:___________1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.要使有意义,则x 的取值范围是( )A .x≥0B .x≥4C .x≤4D .x≥﹣42.将函数y=﹣3x+1的图象沿y 轴向上平移2个单位长度后,所得图象对应的函数关系式为( ) A .y=﹣3x+3 B .y=﹣3x ﹣1C .y=﹣3(x+2)+1D .y=﹣3(x ﹣2)+13.有三个足球队自发组织比赛,规则规定由抽签决定比赛程序:三张签上分别写上“A”、“A”和“B”,抽到“A”的两个队通过比赛后胜者进入决赛,抽到“B”的直接进入决赛.那么每个队直接进入决赛的可能性是( ) A . B . C . D .无法确定4.下列说法错误的是( )A .关于某直线对称的两个图形一定能完全重合B .全等的两个三角形一定关于某直线对称C .轴对称图形的对称轴至少有一条D .线段是轴对称图形5.(2013广东茂名)商店某天销售了13双运动鞋,其尺码统计如下表:则这13双运动鞋尺码的众数和中位数分别是( ) A .39码、39码 B .39码、40码C.40码、39码D.40码、40码6.如图,如图,平分于点,点是射线上的一个动点,若PA=10,则的最小值为()。
A.5 B.10 C.15 D.207.x=2是方程ax-3(x-1)=5的根,则a=( )A.3 B.4 C.-1 D.-48.下列方程是一元二次方程()A. B. C. D.9.函数中自变量x的取值范围是.10.如图,在△ABC中AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE交于点H,已知EH=EB=3,AE=4,则CH的长是()A.1 B.2 C.3 D.4二、判断题11.如图,在等腰直角△ABC中,∠ACB=90°,AC=BC,D为AB中点,DE⊥DF.(1)写出图中所有全等三角形,分别为(用“≌”符号表示)(2)求证:ED=DF.,12.如图,已知抛物线y=ax2+bx+c与x轴的一个交点为A(3,0),与y轴的交点为B(0,3),其顶点为C,对称轴为x=1.(1)求抛物线的解析式;(2)已知点M为y轴上的一个动点,当△ABM为等腰三角形时,求点M的坐标;(3)将△AOB沿x轴向右平移m个单位长度(0<m<3)得到另一个三角形,将所得的三角形与△ABC重叠部分的面积记为S,用m的代数式表示S.13.如图,A(0,1),M(3,2),N(4,4).动点P从点A出发,沿轴以每秒1个单位长的速度向上移动,且过点P的直线l:y=-x+b也随之移动,设移动时间为t秒.(1)当t=3时,求l的解析式;(2)若点M,N位于l的异侧,确定t的取值范围;(3)直接写出t为何值时,点M关于l的对称点落在坐标轴上.14.判断下列命题的真假,写出它们的逆命题,并判断逆命题的真假.(1)长方形是轴对称图形;(2)任何一条直线都是由无数个点组成的;(3)等腰三角形的两个底角相等;(4)如果两个数互为倒数,那么它们的积为1;(5)如果a+b>0,那么a>0,b>0.15.先化简,再求值:(1),其中;(2),其中。
三、填空题16.若△ABC的三边长分别是a、b、c,且a、b、c满足(a+b)2-2ab=c2,则△ABC为________三角形.17.等腰三角形的顶角是120°,底边上的中线长为4cm,则它的腰长是;18.人的眼睛可以看见的红光的波长为0.000 077cm,将0.000 077 cm用四舍五入法精确到0.000 01 cm,并用科学记数法表示为________________ cm.19.若,则3a2-b的值为.20.有一个等腰三角形,三边长分别为3x-2,4x-3,6-2x,求这个等腰三角形的周长.四、计算题21.(2014春•石城县校级期末)某市自来水公司为限制单位用水,每月只给某单位计划内用水3000吨,计划内用水每吨收费0.5元,超计划部分每吨按0.8元收费.(1)写出该单位水费y(元)与每月用水量x(吨)之间的函数关系式:①用水量小于等于3000吨;②用水量大于3000吨.(2)某月该单位用水3200吨,水费是元;若用水2800吨,水费元.(3)若某月该单位缴纳水费1540元,则该单位用水多少吨?22.计算:.五、解答题23.如图,在平行四边形ABCD中,AE、BF分别平分∠DAB和∠ABC,交CD于点E、F,AE、BF相交于点M.(1)试说明:AE⊥BF;(2)判断线段DF与CE的大小关系,并予以说明.24.如下图,在△ABC中,AB=AC,∠A=36°,BD、CE分别是∠ABC、∠ACB的平分线,则图中等腰三角形的个数为()A.12 B.10 C.9 D.8参考答案1 .C.【解析】试题分析:要使有意义,必须满足4-x≥0,即x≤4,故答案选C.考点:二次根式有意义的条件.2 .A【解析】试题分析:∵将函数y=﹣3x+1的图象沿y轴向上平移2个单位长度,∴平移后所得图象对应的函数关系式为:y=﹣3x+1+2=﹣3x+3.故选:A考点:一次函数图象与几何变换.3 .B【解析】共有三张签,其中写上“B”(抽到“B”的直接进入决赛)的只有一种,求每个队直接进入决赛的可能性,根据可能性的计算方法:求一个数是另一个数的几分之几,用除法解答即可.解:共有三张签,抽到“B”的直接进入决赛.那么每个队直接进入决赛的可能性是1÷3=.故选B.4 .B.【解析】试题分析: A.两个关于某直线对称的图形是全等的,此说法正确;B.平面内两个全等的图形不一定关于某直线对称,此说法错误;C.轴对称图形的对称轴至少有一条,此说法正确;D.线段是轴对称图形,此说法正确.故选;B.考点:轴对称的性质.5 .A【解析】这13双运动鞋尺码数据中出现次数最多的是39,将这组数据按从小到大的顺序排列,最中间的数是第7个数39,所以这13双运动鞋尺码的众数和中位数分别是39码、39码.6 .B【解析】试题分析:当PQ⊥OM时,则PQ为最小值,根据角平分线的性质可得:PQ=PA=10.考点:角平分线的性质7 .B【解析】本题考查的是一元一次方程的根的定义由题意把x=2代入方程ax-3(x-1)=5即可求得结果。
由题意得,,解得,故选B.8 .C.【解析】试题分析:一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.因此,A、方程含有两个未知数,故不是;B、方程未知数的最高次数是3,故不是;C、符合一元二次方程的定义;D、不是整式方程.故选C.考点:一元二次方程的定义.9 .【解析】解:由题意得,,解得10 .A 【解析】试题分析:本题可先根据AAS判定△AEH≌△CEB,可得出AE=CE,从而得出CH=CE﹣EH=4﹣3=1.解:在△ABC中,AD⊥BC,CE⊥AB,∴∠AEH=∠ADB=90°;∵∠EAH+∠AHE=90°,∠DHC+∠BCH=90°,∵∠EHA=∠DHC(对顶角相等),∴∠EAH=∠DCH(等量代换);∵在△BCE和△HAE中,∴△AEH≌△CEB(AAS);∴AE=CE;∵EH=EB=3,AE=4,∴CH=CE﹣EH=AE﹣EH=4﹣3=1.故选A.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA,AAS、HL,要熟练掌握并灵活应用这些方法.11 .(1)△AED≌△CFD;△CED≌△BFD;△ACD≌△BCD或△ACD≌△CBD(2)证明见解析.【解析】试题分析:(1)利用等腰直角三角形的性质和三角形全等的判定解答即可;(2)根据等腰直角三角形的性质和三角形全等的判定证明即可.试题解析:(1)△AED≌△CFD;△CED≌△BFD;△ACD≌△BCD或△ACD≌△CBD;(2)∵AC=BC,AD=BD,∴∠CDA=90°,∠FCD=45°∴AD=CD∵∠CDA=∠ADE+∠EDC,∠EDF=∠CDF+∠EDC.∵∠EDF=∠CDA=90°,∴∠ADE=∠CDF.在△AED与△CFD中,∴△AED≌△CFD∴DE=DF.【点评】本题考查了等腰直角三角形的性质和全等三角形的判定与性质,关键是根据等腰直角三角形的性质和三角形全等的判定证明.12 .(1)y=﹣x2+2x+3(2)(0,0)、(0,﹣3)、(0,3+3)、(0,3﹣3)(3)当0<m≤时,S=﹣m2+3m;当<m<3时,S=m2﹣3m+.【解析】试题分析:(1)根据对称轴x=1、与x轴的一个交点为A(3,0)、与y轴的交点为B(0,3)可得关于a、b、c的方程组,解出即可(2)分①MA=M;②AB=AM;③AB=BM三种情况讨论可得点M的坐标.(3)记平移后的三角形为△PEF.由待定系数法可得直线AB的解析式为y=﹣x+3.易得直线EF的解析式为y=﹣x+3+m.根据待定系数法可得直线AC的解析式.连结BE,直线BE交AC于G,则G(,3).在△AOB沿x轴向右平移的过程中.分二种情况:①当0<m≤时;②当<m<3时;讨论可得用m的代数式表示S.试题解析:(1)由题意可知,,解得,经检验均为方程组的解,故抛物线的解析式为y=﹣x2+2x+3.(2)①当MA=MB时,M(0,0);②当AB=AM时,M(0,﹣3);③当AB=BM时,M(0,3+3)或M(0,3﹣3).所以点M的坐标为:(0,0)、(0,﹣3)、(0,3+3)、(0,3﹣3).(3)平移后的三角形记为△PEF.设直线AB的解析式为y=kx+b,则,解得.则直线AB的解析式为y=﹣x+3.△AOB沿x轴向右平移m个单位长度(0<m<3)得到△PEF,易得直线EF的解析式为y=﹣x+3+m.设直线AC的解析式为y=k′x+b′,则,解得.则直线AC的解析式为y=﹣2x+6.连结BE,直线BE交AC于G,则G(,3).在△AOB沿x轴向右平移的过程中.①当0<m≤时,如图1所示.设PE交AB于K,EF交AC于M.则BE=EK=m,PK=PA=3﹣m,联立,解得,即点M(3﹣m,2m).故S=S△PEF﹣S△PAK﹣S△AFM=PE2﹣PK2﹣AF•h=﹣(3﹣m)2﹣m•2m=﹣m2+3m.②当<m<3时,如图2所示.设PE交AB于K,交AC于H.因为BE=m,所以PK=PA=3﹣m,又因为直线AC的解析式为y=﹣2x+6,所以当x=m 时,得y=6﹣2m , 所以点H (m ,6﹣2m ). 故S=S △PAH ﹣S △PAK =PA•PH ﹣PA 2=﹣(3﹣m )•(6﹣2m )﹣(3﹣m )2 =m 2﹣3m+.综上所述,当0<m≤时,S=﹣m 2+3m ;当<m <3时,S=m 2﹣3m+. 考点:1、抛物线的对称轴;2、待定系数法求函数解析式;3、分类思想、方程思想的应用13 .(1)y =-x +4;(2)4<t <7;(3)t =1时,落在y 轴上;t =2时,落在x 轴上 【解析】试题分析:(1)利用一次函数图象上点的坐标特征,求出一次函数的解析式;(2)分别求出直线l 经过点M 、点N 时的t 值,即可得到t 的取值范围; (3)找出点M 关于直线l 在坐标轴上的对称点E 、F ,如解答图所示.求出点E 、F 的坐标,然后分别求出ME 、MF 中点坐标,最后分别求出时间t 的值.试题解析:(1)直线y =-x +b 交y 轴于点P (0,b ),由题意,得b >0,t ≥0,b =1+t . 当t =3时,b =4, 故y =-x +4.(2)当直线y =-x +b 过点M (3,2)时, 2=-3+b , 解得:b =5, 5=1+t , 解得t =4.当直线y =-x +b 过点N (4,4)时, 4=-4+b , 解得:b =8, 8=1+t , 解得t =7.故若点M ,N 位于l 的异侧,t 的取值范围是:4<t <7.(3)如图,过点M 作MF ⊥直线l ,交y 轴于点F ,交x 轴于点E ,则点E 、F 为点M 在坐标轴上的对称点.过点M作MD⊥x轴于点D,则OD=3,MD=2.已知∠MED=∠OEF=45°,则△MDE与△OEF均为等腰直角三角形,∴DE=MD=2,OE=OF=1,∴E(1,0),F(0,-1).∵M(3,2),F(0,-1),∴线段MF中点坐标为(,).直线y=-x+b过点(,),则=-+b,解得:b=2,2=1+t,解得t=1.∵M(3,2),E(1,0),∴线段ME中点坐标为(2,1).直线y=-x+b过点(2,1),则1=-2+b,解得:b=3,3=1+t,解得t=2.故点M关于l的对称点,当t=1时,落在y轴上,当t=2时,落在x轴上.【点睛】本题是动线型问题,考查了坐标平面内一次函数的图象与性质.难点在于第(3)问,首先注意在x轴、y轴上均有点M的对称点,不要漏解;其次注意点E、F坐标以及线段中点坐标的求法.14 .(1)原命题是真命题;逆命题:轴对称图形是长方形;是假命题.(2)原命题是真命题;逆命题:由无数个点组成的图形是一条直线;是假命题.(3)原命题是真命题;逆命题:有两个角相等的三角形是等腰三角形;是真命题.(4)原命题是真命题;逆命题:如果两个数的积为1,那么这两个数互为倒数;是真命题.(5)原命题是假命题;逆命题:如果a>0,b>0,那么a+b>0;是真命题.【解析】先根据我们以往的知识判断原命题的真假,再根据逆命题的定义,将原命题的题设和结论部分互换,变成新的命题.15 .(1);;(2);-5.【解析】(1)原式= =;当时,原式==;(2)原式= =;当,时,原式= =.16 .直角【解析】由(a+b)2-2ab=c2得a2+2ab+b2-2ab=c2,即a2+b2=c2,根据勾股定理的逆定理可以判断△ABC为直角三角形.17 .8cm【解析】如图,AB=AC,AD是底边BC的中线,∴AD⊥BC,AD=4cm,∠BAC=120°,∵∠BAC=120°,AB=AC∴∠B=∠C=(180°-∠BAC)÷2=30°∴AB=2AD=8cm(30°角所对的直角边是斜边的一半).故答案为:8.18 .【解析】试题分析:先精确到.000077≈0.00008,利用科学计数法(从左边第一个不为零的数查起)得.考点:科学计数法19 .10【解析】试题分析:根据非负数的和为0的性质可知a+b=0,b-2=0,因此可解得a=-2,b=2,因此可求=12-2=10.考点:1.非负数,2.代数式的求值20 .9或【解析】试题分析:题中已知三边的长,而没有指明哪个是腰,哪个是底边,故应该分情况进行分析,从而求解.试题解析:①当3x-2是底边时,则腰长为:4x-3,6-2x∵三角形为等腰三角形∴4x-3=6-2x,∴x=1.5,∴4x-3=3,6-2x=3,∴3x-2=2.5∴等腰三角形的周长=3+3+2.5=8.5②当4x-3是底边时,则腰长为:3x-2,6-2x∵三角形为等腰三角形∴3x-2=6-2x,∴x=1.6,∴3x-2=2.8,6-2x=2.8,∴4x-3=3.4∴等腰三角形的周长=2.8+2.8+3.4=9③当6-2x是底边时,则腰长为:3x-2,4x-3∵三角形为等腰三角形∴3x-2=4x-3,∴x=1,∴3x-2=1,4x-3=1,∵1=1∴6-2x=4∵1+1<4∴不能构成三角形故答案为:8.5或9.考点: 1.等腰三角形的性质;2.三角形三边关系.21 .(1)①y=0.5x(x≤3000);②y=0.8x﹣900(x>3000);(2)y=0.5×2800=1400;(3)3050吨.【解析】试题分析:(1)题目给出了每吨的不同收费,根据具体的情况,写出不同的函数关系式,注意要由自变量的取值范围;(2)计算水费时要根据不同的情况,代入相应的函数关系式计算即可;(3)要首先判断此月超过3000吨,可代入第二个函数关系式进行求解.解:(1)①y=0.5x(x≤3000);②y=3000×0.5+(x﹣3000)×0.8=1500+0.8x﹣2400=0.8x﹣900(x>3000);(2)当x=3200时,y=3000×0.5+200×0.8=1660,当x=2800时,y=0.5×2800=1400;(3)某月该单位缴纳水费1540>1500元,说明该月用水已超过3000吨,∴1540=0.8x﹣900,解得x=3050(吨).答:该单位用水3050吨.考点:一次函数综合题.22 .0【解析】解:原式==023 .(1)证明见解析(2)DF=CE,理由见解析【解析】试题分析:(1)利用平行四边形的性质得到AD∥BC,然后得到∠DAB+∠ABC=180°,然后根据角的平分线得出∠DAB=2∠BAE,∠ABC=2∠ABF,等量代换得出∠BAE+∠ABF=90°即可;(2)先猜想DF=CE,利用角的平分线和平行线的性质可得DE=AD,CF=BC,然后利用线段的和差关系可得出结论.试题解析:(1)∵在平行四边形ABCD中,AD∥BC,∴∠DAB+∠ABC=180°.∵AE、BF分别平分∠DAB和∠ABC,∴∠DAB=2∠BAE,∠ABC=2∠ABF.∴2∠BAE+2∠ABF=180°.即∠BAE+∠ABF=90°.∴∠AMB=90°.∴AE⊥BF.(2)DF=CE,∵在平行四边形ABCD中,CD∥AB,∴∠DEA=∠EAB.又∵AE平分∠DAB,∴∠DAE=∠EAB.∴∠DEA=∠DAE.∴DE=AD.同理可得,CF=BC.又∵在平行四边形ABCD中,AD=BC,∴DE=CF.∴DE﹣EF=CF﹣EF.即DF=CE.考点:1.平行四边形的性质2.等腰三角形的判定3.角的和差关系.24 .D【解析】试题分析:由在△ABC中,AB=AC,∠A=36°,根据等边对等角,即可求得∠ABC与∠ACB的度数,又由BD、CE分别为∠ABC与∠ACB的角平分线,即可求得∠ABD=∠CBD=∠ACE=∠BCE=∠A=36°,然后利用三角形内角和定理与三角形外角的性质,即可求得∠BEF=∠BFE=∠ABC=∠ACB=∠CDF=∠CFD=72°,由等角对等边,即可求得答案.∵在△ABC中,AB=AC,∠A=36°,∴∠ABC=∠ACB=72°,∵BD、CE分别为∠ABC与∠ACB的角平分线,∴∠ABD=∠CBD=∠ACE=∠BCE=∠A=36°,∴AE=CE,AD=BD,BF=CF,∴△ABC,△ABD,△ACE,△BFC是等腰三角形,∵∠BEC=180°-∠ABC-∠BCE=72°,∠CDB=180°-∠BCD-∠CBD=72°,∠EFB=∠DFC=∠CBD+∠BCE=72°,∴∠BEF=∠BFE=∠ABC=∠ACB=∠CDF=∠CFD=72°,∴BE=BF,CF=CD,BC=BD=CF,∴△BEF,△CDF,△BCD,△CBE是等腰三角形.∴图中的等腰三角形有8个.故选D.考点:此题考查了等腰三角形的判定与性质、三角形内角和定理以及三角外角的性质点评:解题的关键是求得各角的度数,掌握等角对等边与等边对等角定理的应用.。