逐点比较法直线插补

合集下载

实验一 逐点比较法圆弧和直线插补实验

实验一 逐点比较法圆弧和直线插补实验

Y B(xe,ye)
M(xm,ym)
Rm R
A(x0,y0)
O 图3 圆弧插补原理图 X
圆弧插补原理参见上图,对于第一象限逆圆,设圆弧的起点为 A(x0,y0),终点为 B(xe,ye), 圆弧半径为 R。加工点为 M(xm,ym),它与圆心的距离为 Rm,则
(1)偏差计算
Fm
=
Rm2
− R2
=
xm2
p102=p102-p104 p101=p101+1 x-0.1 else p102=p102+p103 p101=p101+1 y0.1
;计算新的偏差值(Fi+1=Fi-ya) ;步数计数器加一 ;X方向进分别是(-0.1 -0.5 -1.0) ;偏差判别(若P102小于0表示刀具在直线下方) ;计算新的偏差值(Fi+1=Fi+xa) ;步数计数器加一 ;Y方向进给分别是(0.1 0.5 1.0)
endif
endwhile
close
(3)根据直线插补编成格式,编写所给圆弧插补程序。 各组的圆弧的插补任务是: u 第一组:圆弧半径 50,第二象限顺圆;
第二组:圆弧半径 50,第二象限逆圆; 第三组:圆弧半径 60,第三象限顺圆; 第四组:圆弧半径 60,第三象限逆圆; 第五组:圆弧半径 70,第四象限顺圆; 第六组:圆弧半径 70,第四象限逆圆; open prog7 clear linear inc p101=0 p102=0 p103=0 p104=50 while(p101!>100) if(p102!<0) y0.5 p101=p101+1 p102=p102-2*p104+1 p104=p104-1 else -x0.5 p101=p101+1 p102=p102-2*p103+1 p103=103-1 endif endwhile close

直线逐点比较插补原理的实现

直线逐点比较插补原理的实现

逐点比较插补原理的实现1 数字程序控制基础数字程序控制,就是计算机根据输入的指令和信息,控制生产机械按规定的工作程序、运动轨迹、运动距离和运动速度等规律自动地完成工作的自动控制。

世界上第一台数控机床是1992年由MIT伺服机构实验室开发出来的,主要的目的是为了满足高精度和高效率加工复杂零件的需要一般来说,三维轮廓零件,即使二维轮廓零件的的加工也是很困难的,而数控机床则很容易实现早期的数控(NC)以数字电路技术为基础,现在的数控(CNC)以计算机技术为基础。

数控系统由输入装置、输出装置、控制器、插补器等四部分组成。

随着计算机技术的发展,开环数字程序控制得到了广泛的应用,如各类数控机床、线切割机低速小型数字绘图仪等,它们都是利用开环数字程序控制原理实现控制的设备。

开环数字程序控制的结构如图1.1所示。

图1.1 开环数字程序控制的结构图这种结构没有反馈检测元件,工作台由步进电机驱动。

步进电机接收驱动电路发来的指令作相应的运动,把刀具移动到与指令脉冲相当的位置,至于刀具是否到达了指令脉冲规定的位置,它不作任何检查,因此这种控制的可靠性和精度基本上由步进电机和传动装置来决定。

开环控制结构简单、可靠性高、成本低、易于调整和维护等,应用最为广泛。

2 步进电机控制技术步进电机又叫脉冲电机,它是一种将电脉冲信号转换为角位移的机电式数模转换器。

在开环数字程序控制系统中,输出部分常采用它作为驱动元件。

步进电机接收计算机发来的指令脉冲,控制步进电机作相应的转动,步进电机驱动数控系统的工作台或刀具。

显然,指令脉冲的总数就决定了数控系统的工作台或刀具的总移动量,指令脉冲的频率就决定了移动的速度。

因此,指令脉冲能否被可靠地执行,基本上取决于步进电机的性能。

2.1 步进电机的工作原理步进电机的工作就是步进转动。

在一般的步进电机工作中,电源都是采用单极性的直流电源。

要使步进电机转动,就必须对步进电机定子的各相绕组以适当的时序进行通电。

例题:逐点比较法

例题:逐点比较法

-、逐点比较法1、直线L1:起点坐标O (0, 0),终点坐标A (4, 6)(1)分析1)直线L1为第一象限内直线2)插补总步数:M=x e+y e=4+6=103)若偏差任0,则刀具向+A x方向进给一步,偏差f i+1j = f.. - y e4)若偏差f<0,则刀具向+A y方向进给一步,偏差f. .+1= f.. + x e(2)列表计算(3)2、直线L2:起点坐标O (0, 0),终点坐标A (-6, 3)(1)分析1)直线L2为第二象限内直线2)插补总步数:M=l x e l+y e=6+3=93)若偏差任0,则刀具向-A x方向进给一步,偏差f i+1j = f.. - y e4)若偏差f<0,则刀具向+A y方向进给一步,偏差f, .+1= f.. +lx e\ (2)(3)3、直线L3:起点坐标O (0, 0),终点坐标A (-5, -8)(1)分析1)直线L3为第三象限内直线2)插补总步数:M=l x e l+l y e l=5+8=133)若偏差任0,则刀具向-A x方向进给一步,偏差f,+1. = f.. -\y\4)若偏差f<0,则刀具向-A y方向进给一步,偏差f,,+1 = f.. +\x\(2)列表计算(3)绘制进给脉冲图(略)4、直线L4:起点坐标O (0, 0),终点坐标A (7, -4)(1)分析1)直线L4为第四象限内直线2)插补总步数:M=x+\y\=7+4=113)若偏差任0,则刀具向+A x方向进给一步,偏差f i+1j = f.. -\y\4)若偏差f<0,则刀具向-A y方向进给一步,偏差f. .+1= f.. + x e(2)(3)5、圆弧NR1:起点坐标A (4, 0),终点坐标E (0, 4)(1)分析1)圆弧NR1为第一象限逆圆2)插补总步数:M=\(x0-x e)\+\(y0-y e)\=4+4=83)若偏差任0,则刀具向-A x方向进给一步,偏差f,+1 . = f.. ~2x. + 14)若偏差f<0,则刀具向+A y方向进给一步,偏差f, .+1 = f.. + 2y.+ 1 (2)列表计算(3)绘制进给脉冲图(略)6、圆弧NR2:起点坐标A (0, 5),终点坐标E (-5, 0)(1)分析1)圆弧NR2为第二象限逆圆2)插补总步数:M=l(x0-x e)l+l(j0-j e)l=5+5=103)若偏差任0,则刀具向-颂方向进给一步,偏差f.,+1 = f.. - 2y.+ 14)若偏差f<0,则刀具向-A x方向进给一步,偏差f,+1 . = f.. ~2x. + 1 (2)列表计算(3)绘制进给脉冲图(略)7、圆弧NR3:起点坐标A (-6, 0),终点坐标E (0, -6)(1)分析1)圆弧NR3为第三象限逆圆2)插补总步数:M=l(x0-x g)l+l(y0-y g)l=6+6=123)若偏差任0,则刀具向+A x方向进给一步,偏差f i+1j = f.. + 2x. + 14)若偏差f<0,则刀具向-A y方向进给一步,偏差f. .+1 = f.. - 2y. + 1 (2)列表计算(3)8、圆弧NR4:起点坐标A (0, -7),终点坐标E (7, 0)1)圆弧NR4为第四象限逆圆2)插补总步数:M=\(x Q-x e)\+\(y Q-y e)\=7+7=143)若偏差任0,则刀具向+A y方向进给一步,偏差f.,+1 =f.. + 2y.+ 14)若偏差f<0,则刀具向+A x方向进给一步,偏差f i+1j =加+ 2x. + 1(2)(3)9、圆弧SR1:起点坐标A (0, 4),终点坐标E (4, 0)(1)分析1)圆弧SR1为第一象限顺圆2)插补总步数:M=\(x0-x e)\+\(y0-y e)\=4+4=83)若偏差f N0,则刀具向-A y方向进给一步,偏差f, .+1 = f.. ~2y.+ 14)若偏差f<0,则刀具向+A x方向进给一步,偏差f.+1. = f.. + 2x. + 1(2)(3)绘制进给脉冲图(略)10、圆弧SR2:起点坐标A (-5,0),终点坐标E (0,5)(1)分析1)圆弧SR2为第二象限顺圆2)插补总步数:M=\(x0-x e)\+\(y0-y e)\=5+5=103)若偏差f N0,则刀具向+A x方向进给一步,偏差f,+1. = f.. + 2x. + 14)若偏差f<0,则刀具向+A y方向进给一步,偏差f, .+1 = f.. + 2y.+ 1 (2)列表计算(3)绘制进给脉冲图(略)11、圆弧SR3:起点坐标A (0, -6),终点坐标E (-6, 0)(1)分析1)圆弧SR3为第三象限顺圆2)插补总步数:M=l(x0-x e)l+l(y0-y e)l=6+6=123)若偏差任0,则刀具向+颂方向进给一步,偏差f i+1j = f,. + 2y.+ 14)+1= "j - 2x.+ 1 (2)列表计算(3)12、圆弧SR4:起点坐标A (7, 0),终点坐标E (0, -7)(1)分析1)圆弧SR4为第四象限顺圆2)插补总步数:M=l(x0-x e)l+l(y0-y e)l=7+7=143)若偏差任0,则刀具向-A x方向进给一步,偏差f. .+1 = f.j - 2x. + 14)+1.(3二、数值积分法(DDA)1、直线L1:起点坐标O (0, 0),终点坐标A (4, 6)(1)分析1)直线L1为第一象限内直线2)x e=4=100B;y e=6=110B3)取积分累加器容量N=3位4)x被积函数寄存器J vx= x e;y被积函数寄存器J vy= y e5)初始时:x累加器J Rx= 0;y累加器J Ry= 06)当J Rx累加超过3位溢出时,则在x方向分配一进给脉冲+A x7)当J Ry累加超过3位溢出时,则在y方向分配一进给脉冲+颂(2)列表计算:(3)绘制进给脉冲图(略)2、直线L2:起点坐标O(0,0),终点坐标A(-6,3)(1)分析1)直线L2为第二象限内直线2)x e=l-6l=110B;y e=3=011B3)取积分累加器容量N=3位4)x被积函数寄存器J vx= x e;y被积函数寄存器J vy= y e5)初始时:x累加器J Rx= 0;y累加器J Ry= 06)当J Rx累加超过3位溢出时,则在x方向分配一进给脉冲-A x 7)当J Ry累加超过3位溢出时,则在y方向分配一进给脉冲+A y (2)列表计算二进制累加:累加N3):累加(3)绘制进给脉冲图(略)3、直线L3:起点坐标O(0,0),终点坐标A(-5,-8)(1)分析1)直线L3为第三象限内直线2)x e=|-5|=101B;y e=|-8|=1000B3)取积分累加器容量N=4位4)x被积函数寄存器J vx= x e;y被积函数寄存器J vy= y e5)初始时:x累加器J Rx= 0;y累加器J Ry= 06)当J Rx累加超过4位溢出时,则在x方向分配一进给脉冲-A x 7)当J Ry累加超过4位溢出时,则在y方向分配一进给脉冲-A y (2)列表计算二进制累加:(3)绘制进给脉冲图(略)4、直线L4:起点坐标O (0, 0),终点坐标A (7, -4)(1)分析1)直线L4为第四象限内直线2)x e=7=111B;y e=l-4l=100B3)取积分累加器容量N=3位4)x被积函数寄存器J vx= x e;j被积函数寄存器J vy= y e5)初始时:x累加器J Rx= 0;j累加器J Ry= 06)当J Rx累加超过3位溢出时,则在x方向分配一进给脉冲+A x 7)当J Ry累加超过3位溢出时,则在j方向分配一进给脉冲-颂(2)列表计算二进制累加:N3):(3)绘制进给脉冲图(略)5、圆弧NR1:起点坐标A (4, 0),终点坐标E (0, 4)(1)分析1)圆弧NR1为第一象限逆圆2)x0=4=100B;y0=0=000B3)取积分累加器容量N=3位4)初始时:x被积函数寄存器J vx= y0;y被积函数寄存器J vy= x05)初始时:x累加器J Rx= 0;y累加器J Ry= 06)当J Rx累加超过3位溢出时,则在x方向分配一进给脉冲-A x,相应在J vy中对x 坐标的修正为减一7)当J Ry累加超过3位溢出时,则在y方向分配一进给脉冲+A y,相应在J vx中对y 坐标的修正为加一(2)列表计算(3)绘制进给脉冲图(略)7、圆弧NR3:起点坐标A (-6, 0),终点坐标E (0, -6)(1)分析1) 圆弧NR3为第三象限逆圆 2) 扁=I-6I=110B ; y 0=0=000B 3) 取积分累加器容量N=3位4) 初始时:x 被积函数寄存器J vx = y 0; y 被积函数寄存器J vy = x 0 5) 初始时:x 累加器J Rx = 0; y 累加器J Ry = 06) 当J Rx 累加超过3位溢出时,则在x 方向分配一进给脉冲+A x ,相应在J vy 中对x 坐标的修正为减一7) 当J Ry 累加超过3位溢出时,则在y 方向分配一进给脉冲-颂,相应在J vx 中对y坐标的修正为加一(2)列表计算_8_ 9 10 11 12 1314(-44) (-4,4) (-5,3) (-5,3)(-3+4=7 7+4=11 (3)停止累加2+4=6 6+4=10(2) 2+5=7 7+5=12(4) 4+6=10(2) 2+6=8(0)停止累加0 1 0 1 1 1 0(3) 绘制进给脉冲图(略)8、圆弧NR4:起点坐标A (0, -7),终点坐标E (7, 0)(1)分析1) 圆弧NR4为第四象限逆圆 8) x 0=0=000B ; j 0=|-7l=111B 9) 取积分累加器容量N=3位10) 初始时:x 被积函数寄存器J vx = y 0; y 被积函数寄存器J vy = x 0 11) 初始时:x 累加器J Rx = 0; y 累加器J Ry = 012) 当J Rx 累加超过3位溢出时,则在x 方向分配一进给脉冲+A x ,相应在J vy 中对 x 坐标的修正为加一2) 当J Ry 累加超过3位溢出时,则在y 方向分配一进给脉冲+A y ,相应在J vx 中对y 坐标的修正为减一(2)列表计算10 11 12 13 14 15(-4,-6) (-3,-6) (-2,-6) (-1,-7+6=13(5) 5+6=11(3) 3+6=9 (1) 1+6=7 7+6=13 (5)停止累加1 1 1 0 1 0停止累加(3)绘制进给脉冲图(略)9、圆弧SR1:起点坐标A (0, 4),终点坐标E (4, 0)(1)分析1) 圆弧SR1为第一象限顺圆 2) x 0=0=000B ; j 0=4=100B 3) 取积分累加器容量N=3位4) 初始时:x 被积函数寄存器J vx = y 0; y 被积函数寄存器J vy = x 0 5) 初始时:x 累加器J Rx = 0; y 累加器J Ry = 06) 当J Rx 累加超过3位溢出时,则在x 方向分配一进给脉冲+A x ,相应在J vy 中对x坐标的修正为加一7) 当J Ry 累加超过3位溢出时,则在y 方向分配一进给脉冲-颂,相应在J vx 中对y坐标的修正为减一(2)列表计算11 12 13 1415(7, -4) (7, - 3) (7, - 2)-6+5=11⑶3+7=10(2) 2+7=9(1) 1+7=8(0) 0+7=7 7+7=14(6)停止累加1 1 0 1 0(3)绘制进给脉冲图(略)10、圆弧SR2:起点坐标A (-5, 0),终点坐标E (0, 5)(1)分析1)圆弧SR2为第二象限顺圆 2) x 0=l-5l=101B ; j 0=0=000B 3) 取积分累加器容量N=3位4) 初始时:x 被积函数寄存器J vx = y 0; y 被积函数寄存器J vy = x 0 5) 初始时:x 累加器J Rx = 0; y 累加器J Ry = 06) 当J Rx 累加超过3位溢出时,则在x 方向分配一进给脉冲+A x ,相应在J vy 中对x 坐标的修正为减一7) 当J Ry 累加超过3位溢出时,则在y 方向分配一进给脉冲+A y ,相应在J vx 中对y 坐标的修正为加一(2)列表计算12 13 1415(4,2)g (41) (4,1) (4,0)3+4=7 7+4=11(3) 3+4=7 7+4=11(3)停止累加1 0 1 0(3)绘制进给脉冲图(略)11、圆弧SR3:起点坐标A (0, -6),终点坐标E (-6, 0)(1)分析1)圆弧SR3为第三象限顺圆 2) x 0=0=000B ; y 0=l-6l=110B 3) 取积分累加器容量N=3位4) 初始时:x 被积函数寄存器J vx = y 0; y 被积函数寄存器J vy = x 0 5) 初始时:x 累加器J Rx = 0; y 累加器J Ry = 06) 当J Rx 累加超过3位溢出时,则在x 方向分配一进给脉冲-A x ,相应在J vy 中对x 坐标的修正为加一7) 当J Ry 累加超过3位溢出时,则在y 方向分配一进给脉冲+A y ,相应在J vx 中对y 坐标的修正为减一(2)列表计算141514(-6,-1)15(-6,0)停止累加0(3)绘制进给脉冲图(略)12、圆弧SR4:起点坐标A (7, 0),终点坐标E (0, -7)(1)分析1)圆弧SR4为第四象限顺圆2)x0=7=111B;j0=0=000B3)取积分累加器容量N=3位4)初始时:x被积函数寄存器J vx= y0;y被积函数寄存器J vy= x05)初始时:x累加器J Rx= 0;y累加器J Ry= 06)当J Rx累加超过3位溢出时,则在x方向分配一进给脉冲-A x,相应在J vy中对x 坐标的修正为减一7)当J Ry累加超过3位溢出时,则在y方向分配一进给脉冲-A y,相应在J vx中对y 坐标的修正为加一(2)列表计算(3)绘制进给脉冲图(略)。

逐点比较法的概念基本原理及特点

逐点比较法的概念基本原理及特点

逐点比较法的概念基本原理及特点早期数控机床广泛采用的方法,又称代数法、醉步伐,适用于开环系统。

1.插补原理及特点原理:每次仅向一个坐标轴输出一个进给脉冲,而每走一步都要通过偏差函数计算,判断偏差点的瞬时坐标同规定加工轨迹之间的偏差,然后决定下一步的进给方向。

每个插补循环由偏差判别、进给、偏差函数计算和终点判别四个步骤组成。

逐点比较法可以实现直线插补、圆弧插补及其它曲安插补。

特点:运算直观,插补误差不大于一个脉冲当量,脉冲输出均匀,调节方便。

逐点比较法直线插补(1)偏差函数构造对于第一象限直线OA上任一点(X,Y):X/Y = Xe/Ye若刀具加工点为Pi(X i,Y i),则该点的偏差函数F i可表示为若F i= 0,表示加工点位于直线上;若F i> 0,表示加工点位于直线上方;若F i< 0,表示加工点位于直线下方。

(2)偏差函数字的递推计算采用偏差函数的递推式(迭代式)既由前一点计算后一点Fi =Yi Xe -XiYe若F i>=0,规定向+X 方向走一步Xi+1 = Xi +1Fi+1 = XeYi –Ye(Xi +1)=Fi –Ye若F i<0,规定+Y 方向走一步,则有Yi+1 = Yi +1Fi+1 = Xe(Yi +1)-YeXi =Fi +Xe(3)终点判别直线插补的终点判别可采用三种方法。

1)判断插补或进给的总步数:;2)分别判断各坐标轴的进给步数;3)仅判断进给步数较多的坐标轴的进给步数。

(4)逐点比较法直线插补举例对于第一象限直线OA,终点坐标Xe=6 ,Ye=4,插补从直线起点O开始,故F0=0 。

终点判别是判断进给总步数N=6+4=10,将其存入终点判别计数器中,每进给一步减1,若N=0,则停止插补。

逐点比较法圆弧插补3.逐点比较法圆弧插补(1)偏差函数任意加工点P i(X i,Y i),偏差函数F i可表示为若F i=0,表示加工点位于圆上;若F i>0,表示加工点位于圆外;若F i<0,表示加工点位于圆内(2)偏差函数的递推计算1)逆圆插补若F≥0,规定向-X方向走一步若F i<0,规定向+Y方向走一步2)顺圆插补若F i≥0,规定向-Y方向走一步若F i<0,规定向+y方向走一步(3)终点判别1)判断插补或进给的总步数:⎩⎨⎧+-=-+-=-=++12)1(122211iiiiiiiXFRYXFXX⎩⎨⎧++=-++=+=++12)1(122211iiiiiiiYFRYXFYY⎩⎨⎧+-=--+=-=++12)1(122211iiiiiiiYFRYXFYY⎩⎨⎧++=-++=+=++12)1(122211iiiiiiiXFRYXFXXbabaYYXXN-+-=baxXXN-=bayYYN-=2) 分别判断各坐标轴的进给步数;(4)逐点比较法圆弧插补举例对于第一象限圆弧AB ,起点A (4,0),终点B (0,4)4.逐点比较法的速度分析fN V L式中:L —直线长度;V —刀具进给速度;N —插补循环数;f —插补脉冲的频率。

§1.4--逐点比较法——直线插补

§1.4--逐点比较法——直线插补

电子教案教学程序教学内容及教学双边活动与教学方法导入新课讲授探究总结在刀具按要求轨迹运动加工零件轮廓的过程中,不断比较刀具与被加工零件轮廓之间的相对位置,并根据比较结果决定下一步的进给方向,使刀具向减小误差的方向进给。

其算法最大偏差不会超过一个脉冲当量δ。

§1.4 逐点比较法——直线插补一、概述初称区域判别法,又称代数运算法或醉步式近似法。

这种方法应用广泛,能实现平面直线、圆弧、二次曲线插补,精度高。

每进给一步需要四个节拍:(1)偏差判别:判别加工点对规定图形的偏离位置,决定拖板进给的走向。

(2)坐标进给:控制某个坐标工作台进给一步,向规定的图形靠拢,缩小偏差。

(3)偏差计算:计算新的加工点对规定图形的偏差,作为下一步判别的依据。

(4)终点判断:判断是否到达终点。

若到达则停止插补,若没,再回到第一节拍。

介绍讲授图示分析讲授法理解记忆教学程序教学内容及教学双边活动与教学方法新课讲授探究总结二、直线插补1.偏差计算公式如图所示第一象限直线OA,起点O为坐标原点,编程时,给出直线的终点坐标A ,直线方程为:●偏差判别:(1)动点m在直线上:(2)动点m在直线上方:(3)动点m在直线下方:偏差判别函数●坐标进给(1)动点m在直线上:,可沿+⊿x轴方向,也可沿+⊿y方向;(2)动点m在直线上方:,沿+⊿x方向;(3)动点m在直线下方:,沿+⊿y方向。

举例板图分析总结e e(,)x ym e m ey x x y-=m e m ey x x y-=m e m ey x x y->m e m ey x x y-<m m e m eF y x x y=-mF<mF≥mF=教学程序教学内容及教学双边活动与教学方法探究总结例题讲授●新偏差计算+⊿x轴方向进给+⊿y轴方向进给●终点比较用Xe +Ye 作为计数器,每走一步对计数器进行减1计算,直到计数器为零为止。

2.终点判别法分别计数法双向计数法单向计数法3.插补运算过程插补计算时,每走一步,都要进行以下4个步骤(又称4个节拍)的算术运算或逻辑判断:方向判定:根据偏差值判定进给方向。

逐点比较法直线插补程序

逐点比较法直线插补程序

逐点比较法直线插补程序
一、实验目的
1、进一步理解逐点比较法直线插补的原理
2、掌握在计算机环境中完成直线逐点比较法插补的软件实现方法。

二、实验设备
1、计算机及其操作系统
2、VB 6.0软件
三、实验原理
机床数控系统依据一定方法确定刀具运动轨迹,进而产生基本廓形曲线,如直线、圆弧等。

其它需要加工的复杂曲线由基本廓形逼近,这种拟合方式称为“插补”(Interpolation)。

“插补”实质是数控系统根据零件轮廓线型的有限信息(如直线的起点、终点,圆弧的起点、终点和圆心等),在轮廓的已知点之间确定一些中间点,完成所谓的“数据密化”工作。

四、实验方法
本次实验是在VB6.0环境下完成了直线逐点比较法插补的软件实现。

软件中实现,主要分为两部分,一是人际交互,用户采集数据和演示其插补过程;二是插补的计算过程,此为这次实验的核心。

逐点比较法的插补有四个工作节拍:偏差判别、进给、偏差计算和终点判别,第一象限直线插补的偏差判别公式如下:
Fi = Xe Yi -Y e Xi
Fi≥0时,偏差判别公式为Fi+1= Fi-Y e,向X正方向进给
Fi< 0时,偏差判别公式为Fi+1= Fi+Xe,向Y正方向进给
其工作流程图如下所示:
根据流程编写合理的界面和控制主程序代码。

第02章 逐点比较法直线插补原理

第02章 逐点比较法直线插补原理
+XF方i 向0走一步,到达新加工点,即:
xi xi 1
若 Fi,1 则向yYi 轴xe发出(一xi个进1给) y脉e冲,F刀i 具从y该e 点向
+YF方i 向0走一步,到达新加工点,即:
yi1 yi 1
Fi1 ( yi 1)xe xi ye Fi xe
第2章 直线插补原理
由此得出递推公式( ☺重点掌握☺)
① 偏差判别:根据偏差判断应该向哪个坐标方向 进给;
② 坐标进给:根据判别结果,沿相应的坐标方向 进给;
③ 新偏差计算:根据偏差函数,计算进给后的偏 差,作为下次偏差判别的依据;
④ 终点比较:判断是否达到终点,若达到终点则 结束本次插补程序,否则转①继续执行。
第2章 直线插补原理
2.2.3 逐点比较法的特点
逐点比较法的关键是找出容易计算的偏差函数 (直线、圆弧、抛物线、螺旋线等),然后再 比较误差。
逐点比较法运算直观,插补误差不大于一个脉 冲当量。
逐点比较法是我国数控机床中广泛采用的一种 插补方法,它能实现直线、圆弧和非圆二次曲 线的插补,插补精度较高。
第2章 直线插补原理
2.2.3 逐点比较法直线插补原理
——根据给定的信息进行数字计算,在计算过 程中不断向各个坐标发出相互协调的进给脉冲, 使被控机械部件按指定的路线移动。
2.1.3 插补要解决的问题
让单独的坐标分别运动合成理想的轨迹,还是几个坐 标同时进给?
判断往哪一个坐标方向进给,使下一步误差更小? 进给多少?
第2章 直线插补原理
如果同时进给?
偏差函数的递推计算(第一象限为例)
若 Fi 0 ,规定向-X方向走一步:
xi1 xi 1
Fi1
(xi

逐点比较法第一象限直线圆弧插补

逐点比较法第一象限直线圆弧插补

逐点比较法第一象限直线,圆弧插补编程逐点比较法是以折线来逼近给定的轨迹,就是每走一步控制系统都要将加工点与给定的图形轨迹相比较,以决定下一步进给的方向,使之逼近加工轨迹。

逐点比较法以折线来逼近直线或圆弧,其最大的偏差不超过一个最小设定单位。

只要将脉冲当量取得足够小,就可以达到精度要求。

逐点比较插补法在脉冲当量为0.01mm,系统进给速度小于3000mm/min时,能很好的满足要求。

一、逐点比较法直线插补如下图所示设直线 oA 为第一象限的直线,起点为坐标原点o (0 , 0) ,终点坐标为, A( ) , P() 为加工点。

若 P 点正好处在直线 oA 上,由相似三角形关系则有即点在直线 oA 上方 ( 严格为直线 oA 与 y 轴正向所包围的区域 ) ,则有即若 P 点在直线 oA 下方 ( 严格为直线 oA 与 x 轴正向所包围的区域 ) ,则有图 3 — 1 逐点比较法第一象限直线插补即令则有:①如,则点 P 在直线 oA 上,既可向 +x 方向进给一步,也可向 +y 方向进给一步;②如,则点 P 在直线 oA 上方,应向 +x 方向进给一步,以逼近oA 直线;③如,则点 P 在直线 oA 下方,应向 +y 方向进给一步,以逼近 oA 直线一般将及视为一类情况,即时,都向 +x 方向进给一步。

当两方向所走的步数与终点坐标相等时,停止插补。

这即逐点比较法直线插补的原理。

对第一象限直线 oA 从起点 ( 即坐标原点 ) 出发,当 F 时, +x 向走一步;当 F<0 时,y 向走一步。

特点:每一步都需计算偏差,这样的计算比较麻烦。

递推的方法计算偏差:每走一步后新的加工点的偏差用前一点的加工偏差递推出来。

采用递推方法,必须知道开始加工点的偏差,而开始加工点正是直线的起点,故。

下面推导其递推公式。

设在加工点 P( ) 处,,则应沿 +x 方向进给一步,此时新加工点的坐标值为新加工点的偏差为即若在加工点 P( ) 处,,则应沿 +y 方向进给一步,此时新加工点的坐标值为,新加工点的偏差为即综上所述,逐点比较法直线插补每走一步都要完成四个步骤 ( 节拍 ) ,即:(1) 位置判别根据偏差值大于零、等于零、小于零确定当前加工点的位置。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§2—1 逐点比较法逐点比较法是我国数控机床中广泛采用的一种插补方法,它能实现直线、圆弧和非圆二次曲线的插补,插补精度较高。

逐点比较法,顾名思义,就是每走一步都要将加工点的瞬时坐标同规定的图形轨迹相比较,判断其偏差,然后决定下一步的走向,如果加工点走到图形外面去了,那么下一步就要向图形里面走;如果加工点在图形里面,那么下一步就要向图形外面走,以缩小偏差。

这样就能得出一个非常接近规定图形的轨迹,最大偏差不超过一个脉冲当量。

在逐点比较法中,每进给一步都须要进行偏差判别、坐标进给、新偏差计算和终点比较四个节拍。

下面分别介绍逐点比较法直线插补和圆弧插补的原理。

一、 逐点比较法直线插补如上所述,偏差计算是逐点比较法关键的一步。

下面以第Ⅰ象限直线为例导出其偏差计算公式。

图 2-1 直 线 差 补 过 程A(x e ,y e )P(x i ,y i )F>0F<0OYX图2-1 直线插补过程点击进入动画观看逐点比较法直线插补如图2—1所示,假定直线OA 的起点为坐标原点,终点A 的坐标为e e i j A(x ,y ),P(x ,y )为加工点,若P 点正好处在直线OA 上,那么下式成立:e j i e x y - x y 0=若任意点i j P(x ,y )在直线 OA 的上方(严格地说,在直线OA 与y 轴所成夹角区域内),那么有下述关系成立:jei ey y x x >亦即:e j i e x y - x y 0>由此可以取偏差判别函数ij F 为:ij e j i e F x y - x y =由 ij F 的数值(称为“偏差”)就可以判别出P 点与直线的相对位置。

即: 当 ij F =0时,点i j P(x ,y )正好落在直线上;当 ij F >0时,点i j P(x ,y )落在直线的上方;当ij F <0时,点i j P(x ,y )落在直线的下方。

从图2—1看出,对于起点在原点,终点为A ( e e x ,y )的第Ⅰ象限直线OA 来说,当点P 在直线上方(即ij F >0)时,应该向+x 方向发一个脉冲,使机床刀具向+x 方向前进一步,以接近该直线;当点P 在直线下方(即ij F <0)时,应该向+y 方向发一个脉冲,使机床刀具向+y 方向前进一步,趋向该直线;当点P 正好在直线上(即 ij F =0)时,既可向+x 方向发一脉冲,也可向+y 方向发一脉冲。

因此通常将ij F >0和 ij F =0归于一类,即ij F ≥0。

这样从坐标原点开始,走一步,算一次,判别ij F ,再趋向直线,逐点接近直线OA ,步步前进。

当两个方向所走的步数和终点坐标A ( e e x ,y )值相等时,发出终点到达信号,停止插补。

对于图2—1的加工直线OA ,我们运用上述法则,根据偏差判别函数值,就可以获得如图中折线段那样的近似直线。

但是按照上述法则进行ijF 的运算时,要作乘法和减法运算,这对于计算过程以及具体电路实现起来都不很方便。

对于计算机而言,这样会影响速度;对于专用控制机而言,会增加硬件设备。

因此应简化运算,通常采用的是迭代法,或称递推法,即每走一步后新加工点的加工偏差值用前一点的加工偏差递推出来。

下面推导该递推式:已经知道,加工点的坐标为(i j x ,y )时的偏差为:ij e j i e F x y - x y =若ij F ≥0时,则向x 轴发出一进给脉冲,刀具从这点即(i j x ,y )点向x方向前进一步,到达新加工点P ( i+1j x ,y ), i+1i x =x +1,因此新加工点P(i+1j x ,y )的偏差值为i 1,j e j i+1e e j i e e j i e ij e F x y -x y x y (x +1)y =x y -x y F e y y =--=-+=即:i+1,j ij e F F y -= (2-1)如果某一时刻,加工点P (i j x ,y )的ij F <0,则向y 轴发出一个进给脉冲,刀具从这一点向y 方向前进一步,新加工点P (i j+1x ,y )的偏差值为i,j+1e j+1i e e j i e e j i e i,j e F x y -x y x (y 1)x y =x y - x y F x e x =+-+==+即:i,j+1ij e F F x =+(2-2)根据式(2—1)及式(2—2)可以看出,新加工点的偏差完全可以用前一加工点的偏差递推出来。

综上所述,逐点比较法的直线插补过程为每走一步要进行以下4个节拍(步骤),即判别、进给、运算、比较。

(1) 判别。

根据偏差值确定刀具位置是在直线的上方(或线上),还是在直线的下方。

(2) 进给。

根据判别的结果,决定控制哪个坐标(x 或y )移动一步。

(3) 运算。

计算出刀具移动后的新偏差,提供给下一步作判别依据。

根据式(2—1)及式(2—2)来计算新加工点的偏差,使运算大大简化。

但是每一新加工点的偏差是由前一点偏差ij F 推算出来的,并且一直递推下去,这样就要知道开始加工时那一点的偏差是多少。

当开始加工时,我们是以人工方式将刀具移到加工起点,即所谓“对刀”,这一点当然没有偏差,所以开始加工点的ij F =0。

(4) 比较。

在计算偏差的同时,还要进行一次终点比较,以确定是否到达了终点。

若已经到达,就不再进行运算,并发出停机或转换新程序段的信号。

下面以实例来验证图2—1。

设欲加工直线OA ,其终点坐标为e x =5*,e y =3*,则终点判别值可取为 8e e E =x +y =5+3=8(终点判别方法详见下述)。

开始时偏差 F =0∞,加工过程的运算节拍如表2—1所示。

图2-2 逐点比较法直线插补过程表2-1 逐点比较法直线插补运算举例序号工作节拍第1拍:判别第2拍:进给第3拍:运算第4拍:比较1 F00=0 +∆x F10= F00-y e=0-3= -3 E7= E8-1=72 F10(= -3)<0 +∆y F11 = F10+x e= -3+5=2E6= E7-1=63 F11(= 2)>0 +∆x F21= F11-y e=2-3= -1 E5= E6-1=54 F 21(= -1) <0 +∆y F 22= F 21+x e = -1+5=4 E 4= E 5-1=45 F 22(= 4)>0 +∆x F 32= F 22-y e =4-3= 1 E 3= E 4-1=36 F 32(= 1)>0 +∆x F 42 = F 32-y e =1-3= -2 E 2= E 3-1=27 F 42(= -2)<0 +∆y F 43= F 42+x e = -2+5=3 E 1=E 2-1=18 F 43(= 3)>0 +∆xF 53= F 43-y e =3-3=0 E 0=E 1-1=0到达终点二、 逐点比较法圆弧插补加工一个圆弧,很容易联想到把加工点到圆心的距离和该圆的名义半径相比较来反映加工偏差。

这里,我们以第Ⅰ象限逆圆弧为例导出其偏差计算公式。

设要加工图2—3所示第Ⅰ象限逆时针走向的圆弧,半径为R ,以原点为圆心,起点坐标为A(00x ,y ),对于圆弧上任一加工点的坐标设为P( i j x ,y ),P 点与圆心的距离 P R 的平方为 222Pi j R =x +y ,现在讨论这一加工点的加工偏差。

OYX F < 0RR pEP(x i ,y i )F > 0A(x 0,y 0)图 2 - 2 圆 弧 差 补 过 程图2-3 圆弧插补过程点击进入动画观看逐点比较法圆弧插补若点P(i j x ,y )正好落在圆弧上,则下式成立:22222i j 00x +y =x +y =R若加工点P(i j x ,y )在圆弧外侧,则P R >R ,即:2222i j 00x +y >x +y若加工点P(i j x ,y )在圆弧内侧,则P R <R ,即:2222i j 00x +y >x +y将上面各式分别改写为下列形式:2222i 0j 0(x -x )+(y -y )=0(加工点在圆弧上) 2222i 0j 0(x -x )+(y -y )>0(加工点在圆弧外侧)2222i 0j 0(x -x )+(y -y )<0(加工点在圆弧内侧)取加工偏差判别式为:2222ij i 0j 0F =(x -x )+(y -y )运用上述法则,利用偏差判别式,即获得图2—2折线所示的近似圆弧。

若P(i j x ,y )在圆弧外或圆弧上,即满足ij F ≥0的条件时,应向x 轴发出一个负向运动的进给脉冲(—Δx),即向圆内走一步。

若P( i j x ,y )在圆弧内侧,即满足ij F <0的条件,则向y 轴发出一个正向运动的进给脉冲(+Δy),即向圆弧外走一步。

为了简化偏差判别式的运算,仍用递推法来推算下一步新的加工偏差。

设加工点P(i j x ,y )在圆弧外侧或圆弧上,则加工偏差为2222ij i 0j 0F =(x -x )+(y -y )0x 坐标需向负方向进给一步(—Δx),移到新的加工点P(i+1j x ,y )位置,此时新加工点的x 坐标值为 i x -1,y 坐标值仍为 i y ,新加工点P( i+1j x ,y )的加工偏差为:22222i+1,j i 0j 0F =(x -1)-x +y -y经展开并整理,得:i+1,j ij F =F 21i x -+ (2-3)设加工点P(i j x ,y )在圆弧的内侧,则:ij F <0那么,y 坐标需向正方向进给一步(+Δy),移到新加工点P( i j+1x ,y ),此时新加工点的x 坐标值仍为 i x ,y 坐标值则改为 j y 1+,新加工点P(i j+1x ,y )的加工偏差为:2222i,j+1i 0j 0F =x -x +(y +1)y -,展开上式,并整理得:i,j+1ij F =F 21i y ++综上所述可知:当 ij F ≥0时,应走—Δx ,新偏差为i+1,j ij F =F 21i x -+,动点(加工点)坐标为i+1i x =x -1, j j y y =;当 ij F <0时,应走+Δy ,新偏差为i,j+1ij F =F 21i y ++,动点坐标为 j j y y =,i+1i =y +1y 。

下面举例说明插补过程。

设欲加工第Ⅰ象限逆时针走向的圆弧(见图2—4),起点A 的坐标是 00x =4,y =3,终点E 的坐标是 e e x =0,y =5,终点判别值:0e e 0E=x -x +y -y 4053=-+-()()()()=6O Y图 2-3 圆 弧 实 际 轨 迹图2-4 圆弧实际轨迹图2-5 逐点比较法圆弧插补过程加工过程的运算节拍见表2—3,插补后获得的实际轨迹如图2—3折线所示。

相关文档
最新文档