100个著名初等数学问题
100个数学问题

100 Great Problems of Elementary Mathematics第01题阿基米德分牛问题Archimedes‘ Problema Bovinum太阳神有一牛群,由白、黑、花、棕四种颜色的公、母牛组成.在公牛中,白牛数多于棕牛数,多出之数相当于黑牛数的1/2+1/3;黑牛数多于棕牛数,多出之数相当于花牛数的¼+1/5;花牛数多于棕牛数,多出之数相当于白牛数的1/6+1/7.在母牛中,白牛数是全体黑牛数的1/3+¼;黑牛数是全体花牛数¼+1/5;花牛数是全体棕牛数的1/5+1/6;棕牛数是全体白牛数的1/6+1/7.问这牛群是怎样组成的?第02题德·梅齐里亚克的法码问题The Weight Problem of Bachet de Meziriac 一位商人有一个40磅的砝码,由于跌落在地而碎成4块.后来,称得每块碎片的重量都是整磅数,而且可以用这4块来称从1至40磅之间的任意整数磅的重物.问这4块砝码碎片各重多少?第03题牛顿的草地与母牛问题Newton‘s Problem of the Fields and Cows a头母牛将b块地上的牧草在c天内吃完了;a‘头母牛将b‘块地上的牧草在c‘天内吃完了;a"头母牛将b"块地上的牧草在c"天内吃完了;求出从a到c"9个数量之间的关系?第04题贝韦克的七个7的问题Berwick‘s Problem of the Seven Sevens 在下面除法例题中,被除数被除数除尽:* * 7 * * * * * * * ÷ * * * * 7 * = * * 7 * ** * * * * ** * * * * 7 ** * * * * * ** 7 * * * ** 7 * * * ** * * * * * ** * * * 7 * ** * * * * ** * * * * *用星号(*)标出的那些数位上的数字偶然被擦掉了,那些不见了的是些什么数字呢?第05题柯克曼的女学生问题Kirkman‘s Schoolgirl Problem某寄宿学校有十五名女生,她们经常每天三人一行地散步,问要怎样安排才能使每个女生同其他每个女生同一行中散步,并恰好每周一次?第06题伯努利-欧拉关于装错信封的问题The Bernoulli-Euler Problem of theMisaddressed letters求n个元素的排列,要求在排列中没有一个元素处于它应当占有的位置.第07题欧拉关于多边形的剖分问题Euler‘s Problem of Polygon Division 可以有多少种方法用对角线把一个n边多边形(平面凸多边形)剖分成三角形?第08题鲁卡斯的配偶夫妇问题Lucas‘ Problem of the Married Couples n对夫妇围圆桌而坐,其座次是两个妇人之间坐一个男人,而没有一个男人和自己的妻子并坐,问有多少种坐法?第09题卡亚姆的二项展开式Omar Khayyam‘s Binomial Expansion 当n是任意正整数时,求以a和b的幂表示的二项式a+b的n次幂.第10题柯西的平均值定理Cauchy‘s Mean Theorem求证n个正数的几何平均值不大于这些数的算术平均值.第11题伯努利幂之和的问题Bernoulli‘s Power Sum Problem 确定指数p为正整数时最初n个自然数的p次幂的和S=1p+2p+3p+…+np.第12题欧拉数The Euler Number求函数φ(x)=(1+1/x)x及Φ(x)=(1+1/x)x+1当x无限增大时的极限值.第13题牛顿指数级数Newton‘s Exponential Series将指数函数ex变换成各项为x的幂的级数.第14题麦凯特尔对数级数Nicolaus Mercator‘s Logarithmic Series 不用对数表,计算一个给定数的对数.第15题牛顿正弦及余弦级数Newton‘s Sine and Cosine Series 不用查表计算已知角的正弦及余弦三角函数.第16题正割与正切级数的安德烈推导法Andre‘s Derivation of the Secant and Tangent Series在n个数1,2,3,…,n的一个排列c1,c2,…,cn中,如果没有一个元素ci的值介于两个邻近的值ci-1和ci+1之间,则称c1,c2,…,cn为1,2,3,…,n的一个屈折排列.试利用屈折排列推导正割与正切的级数.第17题格雷戈里的反正切级数Gregory‘s Arc Tangent Series 已知三条边,不用查表求三角形的各角.第18题德布封的针问题Buffon‘s Needle Problem在台面上画出一组间距为d的平行线,把长度为l(小于d)的一根针任意投掷在台面上,问针触及两平行线之一的概率如何?第19题费马-欧拉素数定理The Fermat-Euler Prime Number Theorem 每个可表示为4n+1形式的素数,只能用一种两数平方和的形式来表示.第20题费马方程The Fermat Equation求方程x2-dy2=1的整数解,其中d为非二次正整数.第21题费马-高斯不可能性定理The Fermat-Gauss Impossibility Theorem 证明两个立方数的和不可能为一立方数.第22题二次互反律The Quadratic Reciprocity Law(欧拉-勒让德-高斯定理)奇素数p与q的勒让德互反符号取决于公式(p/q)·(q/p)=(-1)[(p-1)/2]·[(q-1)/2].第23题高斯的代数基本定理Gauss‘ Fundamental Theorem of Algebra 每一个n次的方程zn+c1zn-1+c2zn-2+…+cn=0具有n个根.第24题斯图谟的根的个数问题Sturm‘s Problem of the Number of Roots 求实系数代数方程在已知区间上的实根的个数.第25题阿贝尔不可能性定理Abel‘s Impossibility Theorem高于四次的方程一般不可能有代数解法.第26题赫米特-林德曼超越性定理The Hermite-Lindemann Transcedence Theorem系数A不等于零,指数α为互不相等的代数数的表达式A1eα1+A2eα2+A3eα3+…不可能等于零.第27题欧拉直线Euler‘s Straight Line在所有三角形中,外接圆的圆心,各中线的交点和各高的交点在一直线—欧拉线上,而且三点的分隔为:各高线的交点(垂心)至各中线的交点(重心)的距离两倍于外接圆的圆心至各中线的交点的距离.第28题费尔巴哈圆The Feuerbach Circle三角形中三边的三个中点、三个高的垂足和高的交点到各顶点的线段的三个中点在一个圆上.第29题卡斯蒂朗问题Castillon‘s Problem将各边通过三个已知点的一个三角形内接于一个已知圆.第30题马尔法蒂问题Mal fatti‘s Problem在一个已知三角形内画三个圆,每个圆与其他两个圆以及三角形的两边相切.第31题蒙日问题Monge‘s Problem画一个圆,使其与三已知圆正交.第32题阿波洛尼斯相切问题The Tangency Problem of Apollonius.画一个与三个已知圆相切的圆.第33题马索若尼圆规问题Macheroni‘s Compass Problem.证明任何可用圆规和直尺所作的图均可只用圆规作出.第34题斯坦纳直尺问题Steiner‘s Straight-edge Problem证明任何一个可以用圆规和直尺作出的图,如果在平面内给出一个定圆,只用直尺便可作出.第35题德里安倍立方问题The Deliaii Cube-doubling Problem 画出体积为一已知立方体两倍的立方体的一边.第36题三等分一个角Trisection of an Angle把一个角分成三个相等的角.第37题正十七边形The Regular Heptadecagon画一正十七边形.第38题阿基米德π值确定法Archimedes‘ Determination of the Number Pi 设圆的外切和内接正2vn边形的周长分别为av和bv,便依次得到多边形周长的阿基米德数列:a0,b0,a1,b1,a2,b2,…其中av+1是av、bv的调和中项,bv+1是bv、av+1的等比中项. 假如已知初始两项,利用这个规则便能计算出数列的所有项. 这个方法叫作阿基米德算法.第39题富斯弦切四边形问题Fuss‘ Problem of the Chord-Tangent Quadrilateral找出半径与双心四边形的外接圆和内切圆连心线之间的关系.(注:一个双心或弦切四边形的定义是既内接于一个圆而同时又外切于另一个圆的四边形)第40题测量附题Annex to a Survey利用已知点的方位来确定地球表面未知但可到达的点的位置.第41题阿尔哈森弹子问题Alhazen‘s Billiard Problem在一个已知圆内,作出一个其两腰通过圆内两个已知点的等腰三角形.第42题由共轭半径作椭圆An Ellipse from Conjugate Radii已知两个共轭半径的大小和位置,作椭圆.第43题在平行四边形内作椭圆An Ellipse in a Parallelogram,在规定的平行四边形内作一内切椭圆,它与该平行四边形切于一边界点.第44题由四条切线作抛物线A Parabola from Four Tangents已知抛物线的四条切线,作抛物线.第45题由四点作抛物线A Parabola from Four Points.过四个已知点作抛物线.第46题由四点作双曲线A Hyperbola from Four Points.已知直角(等轴)双曲线上四点,作出这条双曲线.第47题范·施古登轨迹题Van Schooten‘s Locus Problem平面上的固定三角形的两个顶点沿平面上一个角的两个边滑动,第三个顶点的轨迹是什么?第48题卡丹旋轮问题Cardan‘s Spur Wheel Problem.一个圆盘沿着半径为其两倍的另一个圆盘的内缘滚动时,这个圆盘上标定的一点所描出的轨迹是什么?第49题牛顿椭圆问题Newton‘s Ellipse Problem.确定内切于一个已知(凸)四边形的所有椭圆的中心的轨迹.第50题彭赛列-布里昂匈双曲线问题The Poncelet-Brianchon Hyperbola Problem确定内接于直角(等边)双曲线的所有三角形的顶垂线交点的轨迹.第51题作为包络的抛物线A Parabola as Envelope从角的顶点,在角的一条边上连续n次截取任意线段e,在另一条边上连续n次截取线段f,并将线段的端点注以数字,从顶点开始,分别为0,1,2,…,n和n,n-1,…,2,1,0.求证具有相同数字的点的连线的包络为一条抛物线.第52题星形线The Astroid直线上两个标定的点沿着两条固定的互相垂直的轴滑动,求这条直线的包络.第53题斯坦纳的三点内摆线Steiner‘s Three-pointed Hypocycloid 确定一个三角形的华莱士(Wallace)线的包络.第54题一个四边形的最接近圆的外接椭圆The Most Nearly Circular Ellipse Circumscribing a Quadrilateral一个已知四边形的所有外接椭圆中,哪一个与圆的偏差最小?第55题圆锥曲线的曲率The Curvature of Conic Sections确定一个圆锥曲线的曲率.第56题阿基米德对抛物线面积的推算Archimedes‘ Squaring of a Parabola 确定包含在抛物线内的面积.第57题推算双曲线的面积Squaring a Hyperbola确定双曲线被截得的部分所含的面积.第58题求抛物线的长Rectification of a Parabola确定抛物线弧的长度.第59题笛沙格同调定理(同调三角形定理)Desargues‘ Homology Theorem (Theorem of Homologous Triangles)如果两个三角形的对应顶点连线通过一点,则这两个三角形的对应边交点位于一条直线上.反之,如果两个三角形的对应边交点位于一条直线上,则这两个三角形的对应顶点连线通过一点.第60题斯坦纳的二重元素作图法Steiner‘s Double Element Construction 由三对对应元素所给定的重迭射影形,作出它的二重元素.第61题帕斯卡六边形定理Pascal‘s Hexagon Theorem求证内接于圆锥曲线的六边形中,三双对边的交点在一直线上.第62题布里昂匈六线形定理Brianchon‘s Hexagram Theorem 求证外切于圆锥曲线的六线形中,三条对顶线通过一点.第63题笛沙格对合定理Desargues‘ Involution Theorem一条直线与一个完全四点形*的三双对边的交点与外接于该四点形的圆锥曲线构成一个对合的四个点偶. 一个点与一个完全四线形*的三双对顶点的连线和从该点向内切于该四线形的圆锥曲线所引的切线构成一个对合的四个射线偶.*一个完全四点形(四线形)实际上含有四点(线)1,2,3,4和它们的六条连线交点23,14,31,24,12,34;其中23与14、31与24、12与34称为对边(对顶点).第64题由五个元素得到的圆锥曲线A Conic Section from Five Elements 求作一个圆锥曲线,它的五个元素——点和切线——是已知的.第65题一条圆锥曲线和一条直线A Conic Section and a Straight Line 一条已知直线与一条具有五个已知元素——点和切线——的圆锥曲线相交,求作它们的交点.第66题一条圆锥曲线和一定点A Conic Section and a Point已知一点及一条具有五个已知元素——点和切线——的圆锥曲线,作出从该点列到该曲线的切线.第67题斯坦纳的用平面分割空间Steiner‘s Division of Space by Planes n个平面最多可将整个空间分割成多少份?第68题欧拉四面体问题Euler‘s Tetrahedron Problem以六条棱表示四面体的体积.第69题偏斜直线之间的最短距离The Shortest Distance Between Skew Lines 计算两条已知偏斜直线之间的角和距离.第70题四面体的外接球The Sphere Circumscribing a Tetrahedron 确定一个已知所有六条棱的四面体的外接球的半径.第71题五种正则体The Five Regular Solids将一个球面分成全等的球面正多边形.第72题正方形作为四边形的一个映象The Square as an Image of a Quadrilateral证明每个四边形都可以看作是一个正方形的透视映象.第73题波尔凯-许瓦尔兹定理The Pohlke-Schwartz Theorem 一个平面上不全在同一条直线上的四个任意点,可认为是与一个已知四面体相似的四面体的各隅角的斜映射.第74题高斯轴测法基本定理Gauss‘ Fundamental Theorem of Axonometry 正轴测法的高斯基本定理:如果在一个三面角的正投影中,把映象平面作为复平面,三面角顶点的投影作为零点,边的各端点的投影作为平面的复数,那么这些数的平方和等于零.第75题希帕查斯球极平面射影Hipparchus‘ Stereographic Projection 试举出一种把地球上的圆转换为地图上圆的保形地图射影法.第76题麦卡托投影The Mercator Projection画一个保形地理地图,其坐标方格是由直角方格组成的.第77题航海斜驶线问题The Problem of the Loxodrome确定地球表面两点间斜驶线的经度.第78题海上船位置的确定Determining the Position of a Ship at Sea 利用天文经线推算法确定船在海上的位置.第79题高斯双高度问题Gauss‘ Two-Altitude Problem根据已知两星球的高度以确定时间及位置.第80题高斯三高度问题Gauss‘ Three-Altitude Problem从在已知三星球获得同高度瞬间的时间间隔,确定观察瞬间,观察点的纬度及星球的高度.第81题刻卜勒方程The Kepler Equation根据行星的平均近点角,计算偏心及真近点角.第82题星落Star Setting对给定地点和日期,计算一已知星落的时间和方位角.第83题日晷问题The Problem of the Sundial制作一个日晷.第84题日影曲线The Shadow Curve当直杆置于纬度φ的地点及该日太阳的赤纬有δ值时,确定在一天过程中由杆的一点投影所描绘的曲线.第85题日食和月食Solar and Lunar Eclipses如果对于充分接近日食时间的两个瞬间太阳和月亮的赤经、赤纬以及其半径均为已知,确定日食的开始和结束,以及太阳表面被隐蔽部分的最大值.第86题恒星及会合运转周期Sidereal and Synodic Revolution Periods 确定已知恒星运转周期的两共面旋转射线的会合运转周期.第87题行星的顺向和逆向运动Progressive and Retrograde Motion of Planets 行星什么时候从顺向转为逆向运动(或反过来,从逆向转为顺向运动)?第88题兰伯特慧星问题Lambert‘s Comet Prolem借助焦半径及连接弧端点的弦,来表示慧星描绘抛物线轨道的一段弧所需的时间.第89题与欧拉数有关的斯坦纳问题Steiner‘s Problem Concerning the Euler Number如果x为正变数,x取何值时,x的x次方根为最大?第90题法格乃诺关于高的基点的问题Fagnano‘s Altitude Base Point Problem 在已知锐角三角形中,作周长最小的内接三角形.第91题费马对托里拆利提出的问题Fermat‘s Problem for Torricelli 试求一点,使它到已知三角形的三个顶点距离之和为最小.第92题逆风变换航向Tacking Under a Headwind帆船如何能顶着北风以最快的速度向正北航行?第93题蜂巢(雷阿乌姆尔问题)The Honeybee Cell (Problem by Reaumur) 试采用由三个全等的菱形作成的顶盖来封闭一个正六棱柱,使所得的这一个立体有预定的容积,而其表面积为最小.第94题雷奇奥莫塔努斯的极大值问题Regiomontanus‘ Maximum Pro blem 在地球表面的什么部位,一根垂直的悬杆呈现最长?(即在什么部位,可见角为最大?)第95题金星的最大亮度The Maximum Brightness of Venus在什么位置金星有最大亮度?第96题地球轨道内的慧星A Comet Inside the Earth‘s Orbit慧星在地球的轨道内最多能停留多少天?第97题最短晨昏蒙影问题The Problem of the Shortest Twilight 在已知纬度的地方,一年之中的哪一天晨昏蒙影最短?第98题斯坦纳的椭圆问题Steiner‘s Ellipse Problem在所有能外接(内切)于一个已知三角形的椭圆中,哪一个椭圆有最小(最大)的面积?第99题斯坦纳的圆问题Steiner‘s Circle Problem在所有等周的(即有相等周长的)平面图形中,圆有最大的面积.反之:在有相等面积的所有平面图形中,圆有最小的周长.第100题斯坦纳的球问题Steiner‘s Sphere Problem在表面积相等的所有立体中,球具有最大体积.在体积相等的所有立体中,球具有最小的表面.。
初中趣味数学100题目和解答

初中趣味数学100题目和解答
1. 一个圆的面积是多少?
答:一个圆的面积等于π乘以半径的平方,即S=πr²。
2. 两个正整数的最大公约数是多少?
答:两个正整数的最大公约数是它们的公因数中最大的那个数。
例如,12和18的最大公约数是6。
3. 三角形的面积是多少?
答:三角形的面积等于底边乘以高,再除以2,即S=bh/2。
4. 一个正方形的面积是多少?
答:一个正方形的面积等于边长的平方,即S=a²。
5. 一个矩形的面积是多少?
答:一个矩形的面积等于长乘以宽,即S=lw。
6. 一个圆的周长是多少?
答:一个圆的周长等于2π乘以半径,即C=2πr。
7. 一个正方形的周长是多少?
答:一个正方形的周长等于4乘以边长,即C=4a。
8. 一个矩形的周长是多少?
答:一个矩形的周长等于2乘以长加上2乘以宽,即C=2l+2w。
9. 三角形的周长是多少?
答:三角形的周长等于三条边的总和,即C=a+b+c。
10. 两个正整数的最小公倍数是多少?
答:两个正整数的最小公倍数是它们的公倍数中最小的那个数。
例如,12和18的最小公倍数是36。
以上就是初中趣味数学100题目和解答的简要介绍。
数学是一门有趣的学科,
它不仅可以帮助我们更好地理解世界,而且还可以帮助我们更好地思考问题。
在学习数学的过程中,我们可以学习如何解决问题,如何分析问题,以及如何把握数学的规律。
通过学习数学,我们可以更好地掌握知识,提高思维能力,培养创新能力,提高解决问题的能力,从而更好地应对未来的挑战。
100个著名初等数学问题

数学经典问题

数学经典问题
数学经典问题包括鸡兔同笼问题、百鸡百钱问题、公主选驸马问题、李白喝酒问题、托尔斯泰割草问题、韩信点兵问题、木匠建房问题等。
1. 鸡兔同笼问题:是经典的数学问题之一,它的一般形式是:已知鸡和兔子放在一个笼子里,我们看到有a个头和b 条腿,问鸡有几只,兔子有几只。
2. 百鸡百钱问题:要求买100只鸡,每只鸡三个钱,公鸡五个钱一只,母鸡三个钱一只,小鸡一个钱三只,问公鸡几只,母鸡几只,小鸡几只。
3. 公主选驸马问题:这个问题的本质是一个数学推理问题,它要求从100个奴隶中选出10个奴隶作为驸马,并要求这10个奴隶中有一个是王子。
4. 李白喝酒问题:这个问题的本质是一个数学概率问题,它要求计算李白喝醉的概率。
5. 托尔斯泰割草问题:这个问题的本质是一个数学几何问题,它要求计算托尔斯泰割草的面积。
6. 韩信点兵问题:这个问题的本质是一个数学概率问题,它要求计算韩信点兵的数量。
7. 木匠建房问题:这个问题的本质是一个数学几何问题,它要求计算木匠建房所需要的时间。
此外还有哥德巴赫猜想、费马大定理、四色猜想等著名的未解数学问题。
100个著名初等数学问题(1)

100个著名初等数学问题(1)太阳神有一牛群,由白、黑、花、棕四种颜色的公、母牛组成。
在公牛中,白牛数多于棕牛数,多出之数相当于黑牛数的1/2+1/3;黑牛数多于棕牛数,多出之数相当于花牛数的1/4+1/5;花牛数多于棕牛数,多出之数相当于白牛数的1/6+1/7。
在母牛中,白牛数是全体黑牛数的1/3+1/4;黑牛数是全体花牛数1/4+1/5;花牛数是全体棕牛数的1/5+1/6;棕牛数是全体白牛数的1/6+1/7。
问这牛群是怎样组成的?一位商人有一个40磅的砝码,由于跌落在地而碎成4块.后来,称得每块碎片的重量都是整磅数,而且可以用这4块来称从1至40磅之间的任意整数磅的重物。
问这4块砝码碎片各重多少?a头母牛将b块地上的牧草在c天内吃完了;a’头母牛将b’块地上的牧草在c’天内吃完了;a”头母牛将b”块地上的牧草在c”天内吃完了;求出从a到c”9个数量之间的关系?在下面除法例题中,被除数被除数除尽:* * 7 * * * * * * * ÷ * * * * 7 * = * * 7 * *用星号标出的那些数位上的数字偶然被擦掉了,那些不见了的是些什么数字呢?某寄宿学校有十五名女生,她们经常每天三人一行地散步,问要怎样安排才能使每个女生同其他每个女生同一行中散步,并恰好每周一次?求n个元素的排列,要求在排列中没有一个元素处于它应当占有的位置。
可以有多少种方法用对角线把一个n边多边形剖分成三角形?n对夫妇围圆桌而坐,其座次是两个妇人之间坐一个男人,而没有一个男人和自己的妻子并坐,问有多少种坐法?当n是任意正整数时,求以a和b的幂表示的二项式a+b 的n次幂.求证n个正数的几何平均值不大于这些数的算术平均值。
[1][2][3][4][5][6][7][8][9][10]。
初等数论练习题及答案

初等数论练习题一一、填空题1、τ(2420)=27;ϕ(2420)=_880_2、设a ,n 是大于1的整数,若a n -1是质数,则a=_2.3、模9的绝对最小完全剩余系是_{-4,-3,-2,-1,0,1,2,3,4}.4、同余方程9x+12≡0(mod 37)的解是x ≡11(mod 37)。
5、不定方程18x-23y=100的通解是x=900+23t ,y=700+18t t ∈Z 。
.6、分母是正整数m 的既约真分数的个数为_ϕ(m )_。
78、⎪⎭⎫ ⎝⎛10365 =-1。
9、若p 是素数,则同余方程x p - 1≡1(mod p )的解数为二、计算题1、解同余方程:3x 2+11x -20≡0 (mod 105)。
解:因105 = 3⋅5⋅7,同余方程3x 2+11x -20≡0 (mod 3)的解为x ≡1 (mod 3),同余方程3x 2+11x -38 ≡0 (mod 5)的解为x ≡0,3 (mod 5),同余方程3x 2+11x -20≡0 (mod 7)的解为x ≡2,6 (mod 7),故原同余方程有4解。
作同余方程组:x ≡b 1 (mod 3),x ≡b 2 (mod 5),x ≡b 3 (mod 7),其中b 1 = 1,b 2 = 0,3,b 3 = 2,6,由子定理得原同余方程的解为x ≡13,55,58,100 (mod 105)。
2、判断同余方程x 2≡42(mod 107)是否有解?11074217271071107713231071107311072107710731072107732107422110721721107213)(=∴-=-=-==-=-=-==⨯⨯≡-•--•-)()()()(),()()()(),()())()(()(解: 故同余方程x 2≡42(mod 107)有解。
3、求(127156+34)28除以111的最小非负余数。
解:易知1271≡50(mod 111)。
100个著名初等数学问题总结

100个著名初等数学问题第01题阿基米德分牛问题Archimedes' Problema Bovinum太阳神有一牛群,由白、黑、花、棕四种颜色的公、母牛组成.在公牛中,白牛数多于棕牛数,多出之数相当于黑牛数的1/2+1/3;黑牛数多于棕牛数,多出之数相当于花牛数的1/4+1/5;花牛数多于棕牛数,多出之数相当于白牛数的1/6+1/7.在母牛中,白牛数是全体黑牛数的1/3+1/4;黑牛数是全体花牛数1/4+1/5;花牛数是全体棕牛数的1/5+1/6;棕牛数是全体白牛数的1/6+1/7.问这牛群是怎样组成的?第02题德·梅齐里亚克的法码问题The Weight Problem of Bachet de Meziriac一位商人有一个40磅的砝码,由于跌落在地而碎成4块.后来,称得每块碎片的重量都是整磅数,而且可以用这4块来称从1至40磅之间的任意整数磅的重物.问这4块砝码碎片各重多少?第03题牛顿的草地与母牛问题Newton's Problem of the Fields and Cowsa头母牛将b块地上的牧草在c天内吃完了;a'头母牛将b'块地上的牧草在c'天内吃完了;a"头母牛将b"块地上的牧草在c"天内吃完了;求出从a到c"9个数量之间的关系?第04题贝韦克的七个7的问题Berwick's Problem of the Seven Sevens在下面除法例题中,被除数被除数除尽:* * 7 * * * * * * * ÷* * * * 7 * = * * 7 * ** * * * * ** * * * * 7 ** * * * * * ** 7 * * * ** 7 * * * ** * * * * * ** * * * 7 * ** * * * * ** * * * * *用星号(*)标出的那些数位上的数字偶然被擦掉了,那些不见了的是些什么数字呢?第05题柯克曼的女学生问题Kirkman's Schoolgirl Problem某寄宿学校有十五名女生,她们经常每天三人一行地散步,问要怎样安排才能使每个女生同其他每个女生同一行中散步,并恰好每周一次?第06题伯努利-欧拉关于装错信封的问题The Bernoulli-Euler Problem of the Misaddressedletters求n个元素的排列,要求在排列中没有一个元素处于它应当占有的位置.第07题欧拉关于多边形的剖分问题Euler's Problem of Polygon Division可以有多少种方法用对角线把一个n边多边形(平面凸多边形)剖分成三角形?第08题鲁卡斯的配偶夫妇问题Lucas' Problem of the Married Couplesn对夫妇围圆桌而坐,其座次是两个妇人之间坐一个男人,而没有一个男人和自己的妻子并坐,问有多少种坐法?第09题卡亚姆的二项展开式Omar Khayyam's Binomial Expansion当n是任意正整数时,求以a和b的幂表示的二项式a+b的n次幂.第10题柯西的平均值定理Cauchy's Mean Theorem求证n个正数的几何平均值不大于这些数的算术平均值.第11题伯努利幂之和的问题Bernoulli's Power Sum Problem确定指数p为正整数时最初n个自然数的p次幂的和S=1p+2p+3p+…+np.第12题欧拉数The Euler Number求函数φ(x)=(1+1/x)x及Φ(x)=(1+1/x)x+1当x无限增大时的极限值.第13题牛顿指数级数Newton's Exponential Series将指数函数ex变换成各项为x的幂的级数.第14题麦凯特尔对数级数Nicolaus Mercator's Logarithmic Series不用对数表,计算一个给定数的对数.第15题牛顿正弦及余弦级数Newton's Sine and Cosine Series不用查表计算已知角的正弦及余弦三角函数.第16题正割与正切级数的安德烈推导法Andre's Derivation of the Secant and TangentSeries在n个数1,2,3,…,n的一个排列c1,c2,…,cn中,如果没有一个元素ci的值介于两个邻近的值ci-1和ci+1之间,则称c1,c2,…,cn为1,2,3,…,n的一个屈折排列.试利用屈折排列推导正割与正切的级数.第17题格雷戈里的反正切级数Gregory's Arc Tangent Series已知三条边,不用查表求三角形的各角.第18题德布封的针问题Buffon's Needle Problem在台面上画出一组间距为d的平行线,把长度为l(小于d)的一根针任意投掷在台面上,问针触及两平行线之一的概率如何?第19题费马-欧拉素数定理The Fermat-Euler Prime Number Theorem每个可表示为4n+1形式的素数,只能用一种两数平方和的形式来表示.第20题费马方程The Fermat Equation求方程x2-dy2=1的整数解,其中d为非二次正整数.第21题费马-高斯不可能性定理The Fermat-Gauss Impossibility Theorem证明两个立方数的和不可能为一立方数.第22题二次互反律The Quadratic Reciprocity Law(欧拉-勒让德-高斯定理)奇素数p与q的勒让德互反符号取决于公式(p/q)·(q/p)=(-1)[(p-1)/2]·[(q-1)/2].第23题高斯的代数基本定理Gauss' Fundamental Theorem of Algebra每一个n次的方程zn+c1zn-1+c2zn-2+…+cn=0具有n个根.第24题斯图谟的根的个数问题Sturm's Problem of the Number of Roots求实系数代数方程在已知区间上的实根的个数.第25题阿贝尔不可能性定理Abel's Impossibility Theorem高于四次的方程一般不可能有代数解法.第26题赫米特-林德曼超越性定理The Hermite-Lindemann Transcedence Theorem系数A不等于零,指数α为互不相等的代数数的表达式A1eα1+A2eα2+A3eα3+…不可能等于零.第27题欧拉直线Euler's Straight Line在所有三角形中,外接圆的圆心,各中线的交点和各高的交点在一直线—欧拉线上,而且三点的分隔为:各高线的交点(垂心)至各中线的交点(重心)的距离两倍于外接圆的圆心至各中线的交点的距离.第28题费尔巴哈圆The Feuerbach Circle三角形中三边的三个中点、三个高的垂足和高的交点到各顶点的线段的三个中点在一个圆上.第29题卡斯蒂朗问题Castillon's Problem将各边通过三个已知点的一个三角形内接于一个已知圆.第30题马尔法蒂问题Malfatti's Problem在一个已知三角形内画三个圆,每个圆与其他两个圆以及三角形的两边相切.第31题蒙日问题Monge's Problem画一个圆,使其与三已知圆正交.第32题阿波洛尼斯相切问题The Tangency Problem of Apollonius.画一个与三个已知圆相切的圆.第33题马索若尼圆规问题Macheroni's Compass Problem.证明任何可用圆规和直尺所作的图均可只用圆规作出.第34题斯坦纳直尺问题Steiner's Straight-edge Problem证明任何一个可以用圆规和直尺作出的图,如果在平面内给出一个定圆,只用直尺便可作出.第35题德里安倍立方问题The Deliaii Cube-doubling Problem画出体积为一已知立方体两倍的立方体的一边.第36题三等分一个角Trisection of an Angle把一个角分成三个相等的角.第37题正十七边形The Regular Heptadecagon画一正十七边形.第38题阿基米德π值确定法Archimedes' Determination of the Number Pi 设圆的外切和内接正2vn边形的周长分别为av和bv,便依次得到多边形周长的阿基米德数列:a0 ,b0,a1,b1,a2,b2,…其中av+1是av、bv的调和中项,bv+1是bv、av+1的等比中项. 假如已知初始两项,利用这个规则便能计算出数列的所有项. 这个方法叫作阿基米德算法.第39题富斯弦切四边形问题Fuss' Problem of the Chord-Tangent Quadrilateral 找出半径与双心四边形的外接圆和内切圆连心线之间的关系.(注:一个双心或弦切四边形的定义是既内接于一个圆而同时又外切于另一个圆的四边形)第40题测量附题Annex to a Survey利用已知点的方位来确定地球表面未知但可到达的点的位置.第41题阿尔哈森弹子问题Alhazen's Billiard Problem在一个已知圆内,作出一个其两腰通过圆内两个已知点的等腰三角形.第42题由共轭半径作椭圆An Ellipse from Conjugate Radii已知两个共轭半径的大小和位置,作椭圆.第43题在平行四边形内作椭圆An Ellipse in a Parallelogram,在规定的平行四边形内作一内切椭圆,它与该平行四边形切于一边界点.第44题由四条切线作抛物线A Parabola from Four Tangents已知抛物线的四条切线,作抛物线.第45题由四点作抛物线A Parabola from Four Points.过四个已知点作抛物线.第46题由四点作双曲线A Hyperbola from Four Points.已知直角(等轴)双曲线上四点,作出这条双曲线.第47题范·施古登轨迹题Van Schooten's Locus Problem平面上的固定三角形的两个顶点沿平面上一个角的两个边滑动,第三个顶点的轨迹是什么?第48题卡丹旋轮问题Cardan's Spur Wheel Problem.一个圆盘沿着半径为其两倍的另一个圆盘的内缘滚动时,这个圆盘上标定的一点所描出的轨迹是什么?第49题牛顿椭圆问题Newton's Ellipse Problem.确定内切于一个已知(凸)四边形的所有椭圆的中心的轨迹.第50题彭赛列-布里昂匈双曲线问题The Poncelet-Brianchon Hyperbola Problem 确定内接于直角(等边)双曲线的所有三角形的顶垂线交点的轨迹.第51题作为包络的抛物线A Parabola as Envelope从角的顶点,在角的一条边上连续n次截取任意线段e,在另一条边上连续n次截取线段f,并将线段的端点注以数字,从顶点开始,分别为0,1,2,…,n和n,n-1,…,2,1,0.求证具有相同数字的点的连线的包络为一条抛物线.第52题星形线The Astroid直线上两个标定的点沿着两条固定的互相垂直的轴滑动,求这条直线的包络.第53题斯坦纳的三点内摆线Steiner's Three-pointed Hypocycloid确定一个三角形的华莱士(Wallace)线的包络.第54题一个四边形的最接近圆的外接椭圆The Most Nearly Circular Ellipse Circumscribinga Quadrilateral一个已知四边形的所有外接椭圆中,哪一个与圆的偏差最小?第55题圆锥曲线的曲率The Curvature of Conic Sections确定一个圆锥曲线的曲率.第56题阿基米德对抛物线面积的推算Archimedes' Squaring of a Parabola确定包含在抛物线内的面积.第57题推算双曲线的面积Squaring a Hyperbola确定双曲线被截得的部分所含的面积.第58题求抛物线的长Rectification of a Parabola确定抛物线弧的长度.第59题笛沙格同调定理(同调三角形定理)Desargues' Homology Theorem (Theorem ofHomologous Triangles)如果两个三角形的对应顶点连线通过一点,则这两个三角形的对应边交点位于一条直线上.反之,如果两个三角形的对应边交点位于一条直线上,则这两个三角形的对应顶点连线通过一点.第60题斯坦纳的二重元素作图法Steiner's Double Element Construction由三对对应元素所给定的重迭射影形,作出它的二重元素.第61题帕斯卡六边形定理Pascal's Hexagon Theorem求证内接于圆锥曲线的六边形中,三双对边的交点在一直线上.第62题布里昂匈六线形定理Brianchon's Hexagram Theorem求证外切于圆锥曲线的六线形中,三条对顶线通过一点.第63题笛沙格对合定理Desargues' Involution Theorem 一条直线与一个完全四点形*的三双对边的交点与外接于该四点形的圆锥曲线构成一个对合的四个点偶. 一个点与一个完全四线形*的三双对顶点的连线和从该点向内切于该四线形的圆锥曲线所引的切线构成一个对合的四个射线偶.*一个完全四点形(四线形)实际上含有四点(线)1,2,3,4和它们的六条连线交点23,14,31,24,12,34;其中23与14、31与24、12与34称为对边(对顶点).第64题由五个元素得到的圆锥曲线A Conic Section from Five Elements求作一个圆锥曲线,它的五个元素——点和切线——是已知的.第65题一条圆锥曲线和一条直线A Conic Section and a Straight Line 一条已知直线与一条具有五个已知元素——点和切线——的圆锥曲线相交,求作它们的交点.第66题一条圆锥曲线和一定点A Conic Section and a Point 已知一点及一条具有五个已知元素——点和切线——的圆锥曲线,作出从该点列到该曲线的切线.第67题斯坦纳的用平面分割空间Steiner's Division of Space by Planesn个平面最多可将整个空间分割成多少份?第68题欧拉四面体问题Euler's Tetrahedron Problem以六条棱表示四面体的体积.第69题偏斜直线之间的最短距离The Shortest Distance Between Skew Lines计算两条已知偏斜直线之间的角和距离.第70题四面体的外接球The Sphere Circumscribing a Tetrahedron确定一个已知所有六条棱的四面体的外接球的半径.第71题五种正则体The Five Regular Solids将一个球面分成全等的球面正多边形.第72题正方形作为四边形的一个映象The Square as an Image of a Quadrilateral证明每个四边形都可以看作是一个正方形的透视映象.第73题波尔凯-许瓦尔兹定理The Pohlke-Schwartz Theorem一个平面上不全在同一条直线上的四个任意点,可认为是与一个已知四面体相似的四面体的各隅角的斜映射.第74题高斯轴测法基本定理Gauss' Fundamental Theorem of Axonometry正轴测法的高斯基本定理:如果在一个三面角的正投影中,把映象平面作为复平面,三面角顶点的投影作为零点,边的各端点的投影作为平面的复数,那么这些数的平方和等于零.第75题希帕查斯球极平面射影Hipparchus' Stereographic Projection试举出一种把地球上的圆转换为地图上圆的保形地图射影法.第76题麦卡托投影The Mercator Projection画一个保形地理地图,其坐标方格是由直角方格组成的.第77题航海斜驶线问题The Problem of the Loxodrome确定地球表面两点间斜驶线的经度.第78题海上船位置的确定Determining the Position of a Ship at Sea利用天文经线推算法确定船在海上的位置.第79题高斯双高度问题Gauss' Two-Altitude Problem根据已知两星球的高度以确定时间及位置.第80题高斯三高度问题Gauss' Three-Altitude Problem从在已知三星球获得同高度瞬间的时间间隔,确定观察瞬间,观察点的纬度及星球的高度.第81题刻卜勒方程The Kepler Equation根据行星的平均近点角,计算偏心及真近点角.第82题星落Star Setting对给定地点和日期,计算一已知星落的时间和方位角.第83题日晷问题The Problem of the Sundial制作一个日晷.第84题日影曲线The Shadow Curve当直杆置于纬度φ的地点及该日太阳的赤纬有δ值时,确定在一天过程中由杆的一点投影所描绘的曲线.第85题日食和月食Solar and Lunar Eclipses如果对于充分接近日食时间的两个瞬间太阳和月亮的赤经、赤纬以及其半径均为已知,确定日食的开始和结束,以及太阳表面被隐蔽部分的最大值.第86题恒星及会合运转周期Sidereal and Synodic Revolution Periods确定已知恒星运转周期的两共面旋转射线的会合运转周期.第87题行星的顺向和逆向运动Progressive and Retrograde Motion of Planets 行星什么时候从顺向转为逆向运动(或反过来,从逆向转为顺向运动)?第88题兰伯特慧星问题Lambert's Comet Prolem借助焦半径及连接弧端点的弦,来表示慧星描绘抛物线轨道的一段弧所需的时间.第89题与欧拉数有关的斯坦纳问题Steiner's Problem Concerning the Euler Number如果x为正变数,x取何值时,x的x次方根为最大?第90题法格乃诺关于高的基点的问题Fagnano's Altitude Base Point Problem在已知锐角三角形中,作周长最小的内接三角形.第91题费马对托里拆利提出的问题Fermat's Problem for Torricelli试求一点,使它到已知三角形的三个顶点距离之和为最小.第92题逆风变换航向Tacking Under a Headwind帆船如何能顶着北风以最快的速度向正北航行?第93题蜂巢(雷阿乌姆尔问题)The Honeybee Cell (Problem by Reaumur)试采用由三个全等的菱形作成的顶盖来封闭一个正六棱柱,使所得的这一个立体有预定的容积,而其表面积为最小.第94题雷奇奥莫塔努斯的极大值问题Regiomontanus' Maximum Problem在地球表面的什么部位,一根垂直的悬杆呈现最长?(即在什么部位,可见角为最大?)第95题金星的最大亮度The Maximum Brightness of Venus在什么位置金星有最大亮度?第96题地球轨道内的慧星A Comet Inside the Earth's Orbit慧星在地球的轨道内最多能停留多少天?第97题最短晨昏蒙影问题The Problem of the Shortest Twilight在已知纬度的地方,一年之中的哪一天晨昏蒙影最短?第98题斯坦纳的椭圆问题Steiner's Ellipse Problem在所有能外接(内切)于一个已知三角形的椭圆中,哪一个椭圆有最小(最大)的面积?第99题斯坦纳的圆问题Steiner's Circle Problem在所有等周的(即有相等周长的)平面图形中,圆有最大的面积.反之:在有相等面积的所有平面图形中,圆有最小的周长.第100题斯坦纳的球问题Steiner's Sphere Problem在表面积相等的所有立体中,球具有最大体积.在体积相等的所有立体中,球具有最小的表面.论歌德巴赫猜想天空发表于 2005-4-2 22:40:38哥德巴赫是德国一位中学教师,也是一位著名的数学家,生于1690年,1725年当选为俄国彼得堡科学院院士。
100个著名初等数学问题1-20

100个著名初等数学问题目录算术题 (1)第1题阿基米德分牛问题 (1)第2题德.梅齐里亚克的砝码问题 (3)第3题牛顿的草地与母牛问题 (4)第4题贝韦克的七个7的问题 (5)第5题柯克曼的女学生问题 (8)第6题柏努利—欧拉关于装错信封的问题 (10)第7题欧拉关于多边形剖分问题 (12)第8题鲁卡斯的配偶夫妇问题 (15)第9题卡亚姆的二项展开式 (19)第10题柯西的平均值定理 (21)第11题柏努利幂之和的问题 (23)第12题欧拉数 (26)第13题牛顿指数级数 (29)第14题麦凯特尔对数级数 (35)第15题牛顿正弦及余弦级数 (38)第16题正割与正切级数的安德烈推导法 (41)第17题格雷戈里的反正切级数 (44)第18题德布封的针问题 (47)第19题费马—欧拉素数定理 (50)第20题费马方程 (56)第21题费马—高斯不可能性定理 (63)第22题二次互反率 (68)第23题高斯的代数基本定理 (72)第24题斯图谟的根的个数问题 (74)第25题阿贝尔不可能性定理 (76)第26题赫米特—林德曼超越性定理 (83)平面几何题 (90)第27题欧拉直线 (90)第28题费尔巴哈圆 (91)第29题卡斯蒂朗问题 (92)第30题马尔法蒂问题 (93)第31题蒙日问题 (96)第32题阿波洛尼斯相切问题 (97)第33题马索若尼圆规问题 (100)第34题斯坦纳直尺问题 (102)第35题德里安倍立方问题 (105)第36题三等分一个角 (106)第37题正十七边形 (109)第39题富斯弦切四边形问题 (116)第40题测量附题 (118)第41题阿尔哈森弹子问题 (121)圆锥曲线和摆线题 (124)第42题由共轭半径作椭圆 (124)第43题在平行四边形内作椭圆 (125)第44题由四条切线作抛物线 (126)第45题由四点作抛物线 (127)第46题由四点作双曲线 (130)第47题范.施古登轨迹题 (130)第48题卡丹旋轮问题 (132)第49题牛顿椭圆问题 (132)第50题彭赛列—布里昂匈双曲线问题 (133)第51题作为包络的抛物线 (134)第52题星形线 (135)第53题斯坦纳的三点内摆线 (138)第54题一个四边形的最接近圆的外接椭圆 (140)第55题圆锥曲线的曲率 (143)第56题阿基米德对抛物线面积的推算 (145)第57题推算双曲线的面积 (147)第58题求抛物线的长 (149)第59题笛沙格同调定理(同调三角形定理) (151)第60题斯坦纳的二重元素作图法 (154)第61题帕斯卡六边形定理 (155)第62题布里昂匈六线形定理 (157)第63题笛沙格对合定理 (159)第64题由五个元素得到圆锥曲线 (163)第65题一条圆锥曲线和一条直线 (165)第66题一条圆锥曲线和一定点 (165)立体几何题 (167)第67题斯坦纳的用平面分割空间 (167)第68题欧拉四面体问题 (168)第69题偏斜线之间的最短距离 (171)第70题四面体的外接球 (173)第71题五种正则体 (175)第72题正方形作为四边形的一个映像 (178)第73题波尔凯—许瓦尔兹定理 (180)第74题高斯轴测法基本定理 (182)第75题希帕查斯球极平面投影 (183)第76题麦卡托投影 (185)航海与天文学题 (187)第77题航海斜驶线问题 (187)第78题海上船位置的确定 (188)第80题高斯三高度问题 (191)第81题刻卜勒方程 (193)第82题星落 (195)第83题日晷问题 (196)第84题日影曲线 (198)第85题日食和月食 (199)第86题恒星及会合运转周期 (202)第87题行星的顺向和逆向运动 (203)第88题兰伯特彗星问题 (205)极值 (208)第89题与欧拉数相关的斯坦纳问题 (208)第90题法格乃诺关于高的基点问题 (208)第91题费马对托里拆利提出的问题 (209)第92题逆风变换航向 (210)第93题蜂巢(雷阿乌姆尔问题) (212)第94题雷奇奥莫塔努斯的极大值问题 (213)第95题金星的最大亮度 (215)第96题地球轨道内的彗星 (216)第97题最短晨昏蒙影问题 (217)第98题斯坦纳椭圆问题 (219)第99题斯坦纳的圆问题 (221)第100题斯坦纳的球问题 (223)算术题第27题 阿基米德分牛问题太阳神有一牛群,由白、黑、花、棕四种颜色的公、母牛组成。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
100个著名初等数学问题第01题阿基米德分牛问题Archimedes Problema Bovinum太阳神有一牛群,由白、黑、花、棕四种颜色的公、母牛组成。
在公牛中,白牛数多于棕牛数,多出之数相当于黑牛数的1/2+1/3;黑牛数多于棕牛,多出之数相当于花牛数的1/4+1/5;花牛数多于棕牛数,多出之数相当于白牛数的1/6 +1/7。
在母牛中,白牛数是全体黑牛数的1/3+1/4;黑牛数是全体花牛数1/4+1/5;花牛数是全体棕牛数的1/5+1/6;棕牛数是全体白牛数的1/6+1/7。
问这牛群是怎样组成的?第02题德?梅齐里亚克的法码问题The Weight Problem of Bachet de Meziriac一位商人有一个40磅的砝码,由于跌落在地而碎成4块.后来,称得每块碎片的重量都是整磅数,而且可以用这4块来称从1至40磅之间的任意整数磅的重物。
问这4块砝码碎片各重多少?第03题牛顿的草地与母牛问题Newtons Problem of the Fields and Cowsa头母牛将b块地上的牧草在c天内吃完了;a头母牛将b块地上的牧草在c天内吃完了;a头母牛将b块地上的牧草在c天内吃完了;求出从a到c9个数量之间的关系?第04题贝韦克的七个7的问题Berwicks Problem of the Seven Sevens在下面除法例题中,被除数被除数除尽:* * 7 * *┏┏┏┏┏┏┏┏┏┏┏* * * * 7 * ┏* * 7 * * * * * * *┏* * * * * *┏┏┏┏┏┏┏* * * * * 7 ** * * * * * *┏┏┏┏┏┏┏* 7 * * * ** 7 * * * *┏┏┏┏┏┏┏* * * * * * ** * * * 7 * *┏┏┏┏┏┏┏* * * * * ** * * * * *┏┏┏┏┏┏┏用星号(*)标出的那些数位上的数字偶然被擦掉了,那些不见了的是些什么数字呢?第05题柯克曼的女学生问题Kirkmans Schoolgirl Problem某寄宿学校有十五名女生,她们经常每天三人一行地散步,问要怎样安排才能使每个女生同其他每个女生同一行中散步,并恰好每周一次?第06题伯努利-欧拉关于装错信封的问题The Bernoulli-Euler Problem of the Misaddressed letters求n个元素的排列,要求在排列中没有一个元素处于它应当占有的位置。
第07题欧拉关于多边形的剖分问题Eulers Problem of Polygon Division可以有多少种方法用对角线把一个n边多边形(平面凸多边形)剖分成三角形?第08题鲁卡斯的配偶夫妇问题Lucas Problem of the Married Couplesn对夫妇围圆桌而坐,其座次是两个妇人之间坐一个男人,而没有一个男人和自己的妻子并坐,问有多少种坐法?第09题卡亚姆的二项展开式Omar Khayyams Binomial Expansion当n是任意正整数时,求以a和b的幂表示的二项式a+b的n次幂。
第10题柯西的平均值定理Cauchys Mean Theorem求证n个正数的几何平均值不大于这些数的算术平均值。
第11题伯努利幂之和的问题Bernoullis Power Sum Problem确定指数p为正整数时最初n个自然数的p次幂的和S=1p+2p+3p++np。
第12题欧拉数The Euler Number求函数(x)=(1+1/x)x及(x)=(1+1/x)x+1当x无限增大时的极限值。
第13题牛顿指数级数Newtons Exponential Series将指数函数ex变换成各项为x的幂的级数。
第14题麦凯特尔对数级数Nicolaus Mercators Logarithmic Series不用对数表,计算一个给定数的对数。
第15题牛顿正弦及余弦级数Newtons Sine and Cosine Series不用查表计算已知角的正弦及余弦三角函数。
第16题正割与正切级数的安德烈推导法Andres Derivation of the Secant and Tangent Series在n个数1,2,3,,n的一个排列c1,c2,,cn中,如果没有一个元素ci的值介于两个邻近的值ci-1和ci+1之间,则称c1,c2,,cn为1,2,3,,n的一个屈折排列。
试利用屈折排列推导正割与正切的级数。
第17题格雷戈里的反正切级数Gregorys Arc Tangent Series已知三条边,不用查表求三角形的各角。
第18题德布封的针问题Buffons Needle Problem在台面上画出一组间距为d的平行线,把长度为l(小于d)的一根针任意投掷在台面上,问针触及两平行线之一的概率如何?第19题费马-欧拉素数定理The Fermat-Euler Prime Number Theorem 每个可表示为4n+1形式的素数,只能用一种两数平方和的形式来表示。
第20题费马方程The Fermat Equation求方程x2-dy2=1的整数解,其中d为非二次正整数。
第21题费马-高斯不可能性定理The Fermat-Gauss Impossibility Theorem证明两个立方数的和不可能为一立方数。
第22题二次互反律The Quadratic Reciprocity Law(欧拉-勒让德-高斯定理)奇素数p与q的勒让德互反符号取决于公式(p/q)(q/p)=(-1)[(p-1)/2][(q-1)/2]第23题高斯的代数基本定理Gauss Fundamental Theorem of Algebra 每一个n次的方程zn+c1zn-1+c2zn-2++cn=0具有n个根。
第24题斯图谟的根的个数问题Sturms Problem of the Number of Roots求实系数代数方程在已知区间上的实根的个数。
第25题阿贝尔不可能性定理Abels Impossibility Theorem高于四次的方程一般不可能有代数解法。
第26题赫米特-林德曼超越性定理The Hermite-Lindemann Transcedence Theorem系数A不等于零,指数为互不相等的代数数的表达式不可能等于零。
第27题欧拉直线Eulers Straight Line在所有三角形中,外接圆的圆心,各中线的交点和各高的交点在一直线欧拉线上,而且三点的分隔为:各高线的交点(垂心)至各中线的交点(重心)的距离两倍于外接圆的圆心至各中线的交点的距离。
第28题费尔巴哈圆The Feuerbach Circle三角形中三边的三个中点、三个高的垂足和高的交点到各顶点的线段的三个中点在一个圆上。
第29题卡斯蒂朗问题Castillons Problem将各边通过三个已知点的一个三角形内接于一个已知圆。
第30题马尔法蒂问题Malfattis Problem在一个已知三角形内画三个圆,每个圆与其他两个圆以及三角形的两边相切。
第31题蒙日问题Monges Problem画一个圆,使其与三已知圆正交。
第32题阿波洛尼斯相切问题The Tangency Problem of Apollonius画一个与三个已知圆相切的圆。
第33题马索若尼圆规问题Macheronis Compass Problem证明任何可用圆规和直尺所作的图均可只用圆规作出。
第34题斯坦纳直尺问题Steiners Straight-edge Problem证明任何一个可以用圆规和直尺作出的图,如果在平面内给出一个定圆,只用直尺便可作出。
第35题德里安倍立方问题The Deliaii Cube-doubling Problem画出体积为一已知立方体两倍的立方体的一边。
第36题三等分一个角Trisection of an Angle把一个角分成三个相等的角。
第37题正十七边形The Regular Heptadecagon画一正十七边形。
第38题阿基米德值确定法Archimedes Determination of the Number Pi设圆的外切和内接正2vn边形的周长分别为av和bv,便依次得到多边形周长的阿基米德数列:a0,b0,a1,b1,a2,b2,其中av+1是av、bv的调和中项,bv+1是bv、av+1的等比中项。
假如已知初始两项,利用这个规则便能计算出数列的所有项。
这个方法叫作阿基米德算法。
第39题富斯弦切四边形问题Fuss Problem of the Chord-Tangent Quadrilateral找出半径与双心四边形的外接圆和内切圆连心线之间的关系。
(注:一个双心或弦切四边形的定义是既内接于一个圆而同时又外切于另一个圆的四边形)第40题测量附题Annex to a Survey利用已知点的方位来确定地球表面未知但可到达的点的位置。
第41题阿尔哈森弹子问题Alhazens Billiard Problem在一个已知圆内,作出一个其两腰通过圆内两个已知点的等腰三角形。
第42题由共轭半径作椭圆An Ellipse from Conjugate Radii已知两个共轭半径的大小和位置,作椭圆。
第43题在平行四边形内作椭圆An Ellipse in a Parallelogram在规定的平行四边形内作一内切椭圆,它与该平行四边形切于一边界点。
第44题由四条切线作抛物线A Parabola from Four Tangents已知抛物线的四条切线,作抛物线。
第45题由四点作抛物线A Parabola from Four Points过四个已知点作抛物线。
第46题由四点作双曲线A Hyperbola from Four Points已知直角(等轴)双曲线上四点,作出这条双曲线。
第47题范施古登轨迹题Van Schootens Locus Problem平面上的固定三角形的两个顶点沿平面上一个角的两个边滑动,第三个顶点的轨迹是什么?第48题卡丹旋轮问题Cardans Spur Wheel Problem一个圆盘沿着半径为其两倍的另一个圆盘的内缘滚动时,这个圆盘上标定的一点所描出的轨迹是什么?第49题牛顿椭圆问题Newtons Ellipse Problem确定内切于一个已知(凸)四边形的所有椭圆的中心的轨迹。
第50题彭赛列-布里昂匈双曲线问题The Poncelet-Brianchon Hyperbola Problem确定内接于直角(等边)双曲线的所有三角形的顶垂线交点的轨迹。
第51题作为包络的抛物线A Parabola as Envelope从角的顶点,在角的一条边上连续n次截取任意线段e,在另一条边上连续n次截取线段f,并将线段的端点注以数字,从顶点开始,分别为0,1,2,,n和n,n-1,,2,1,0。