贝叶斯决策例子
贝叶斯决策举例

Page 19
三、风险型决策
其主要的步骤如下:
(1)已知条件概率密度参数表达式和先验概率;
(2)利用贝叶斯公式转换成后验概率; (3)根据后验概率大小进行决策。 利用已学过的条件概率、乘法公式及全概率公式得到后验概率的贝叶斯 公式如下:
公式成立表示在A成立的情况下, 事件Bi成立的概率,=P(Bi A)/P(A).
Page 26
P(Bi│A) =
P(A│Bi )P(Bi )
∑ P(A│Bi )P(Bi )
i=1 n
, i = 1,2,3,…,n
(2.5)
公式表示若事件B1,B2,…,Bn构成一 个完备事件组且都有正概率,则对任意一 个事件A都有公式成立
Page 20
三、风险型决策
贝叶斯决策是决策分析中最重要的方法之一,但需要解决两方面问题。
经营该产品是有利可图的,下一步应该决策是否需要聘请博瑞咨询公司。 根据咨询公司对市场预测的准确性,H1=预测市场畅销,H2=预测市场 滞销,根据题意得
Page 23
三、风险型决策
P(H1 │Q1)=0.95, P(H2│Q1)=0.05
P(H1 │Q2)=0.10, P(H2│Q2)=0.90
由全概率公式得,咨询公司预测该产品畅销和滞销的概率分别为
= =
0.95×0.8 0.78 0.10×0.2 0.78
≈ 0.9744 ≈Βιβλιοθήκη 0.0256Page 24
P(H1 │Q2)P(Q2)
三、风险型决策
P(Q1 │H2)=
P(Q2 │H2)= P(H2│Q1)P(Q1) P(H2) P(H2)
=
= 0.05×0.8 0.22 0.90×0.2 0.22
贝叶斯生活中的例子(一)

贝叶斯生活中的例子(一)贝叶斯生活中的例子在生活中,我们经常会遇到需要根据先验概率和观察结果来更新我们的认知的情况,这就是贝叶斯思维的应用。
下面是一些贝叶斯生活中的例子:1. 疾病诊断假设某种罕见疾病的发病率只有%,同时有一个非常准确的检测方法,能够95%的准确率判定是否患病。
如果一个人接受检测结果呈阳性,那么他真正患病的概率是多少呢?根据贝叶斯定理,我们可以先计算患病的先验概率为%。
然后,根据检测的准确率,将患病的先验概率乘以95%的准确率得到后验概率。
即 * = ,约为%。
这意味着即使检测结果呈阳性,这个人实际患病的概率仍然非常低,只有约%。
2. 购物网站的个性化推荐在购物网站上,我们经常会看到个性化的推荐商品。
这些推荐是根据我们的浏览历史、购买记录、点击行为等数据来生成的。
假设有一个购物网站,它根据用户浏览某个商品的历史记录来推荐相关的商品。
用户A最近浏览了很多电影相关的商品,而用户B则是浏览了很多书籍相关的商品。
如果用户A进一步浏览了一部电影,那么根据贝叶斯定理,推荐系统会根据用户A浏览电影的概率来更新电影和书籍的推荐概率,从而更准确地为用户A推荐相关的电影。
3. 新闻真实性判断在信息爆炸的时代,我们经常会面临虚假新闻的困扰。
贝叶斯思维可以帮助我们判断一个新闻报道的真实性。
假设一个新闻报道声称某个事件发生的概率为,而我们对这个事件的真实性持怀疑态度,给它一个先验概率为。
如果我们获得了一些与该事件相关的证据,那么根据贝叶斯定理,我们可以将先验概率乘以证据的可信度来更新后验概率。
通过不断收集更多的证据并更新后验概率,我们可以更加准确地判断这个新闻报道的真实性。
4. 投资决策在投资决策中,我们经常需要根据市场的变化和公司的业绩来判断股票的涨跌。
贝叶斯思维可以帮助我们更好地分析投资的风险和回报。
假设我们对某支股票涨跌的概率先验概率为50%,也就是认为涨跌的可能性是一样的。
然后,我们获得了一些市场和公司的数据,根据这些数据的可信度来更新后验概率。
贝叶斯生活中的例子

贝叶斯生活中的例子贝叶斯定理是一种用于计算条件概率的数学公式,在生活中有着广泛的应用。
通过应用贝叶斯定理,我们可以根据已有的信息和观察结果,更新我们对未知事件的概率估计。
本文将从随机选择的8个方面对贝叶斯定理在生活中的应用进行详细阐述,并提供支持和证据来支持这些观点。
方面一:医学诊断在医学诊断中,贝叶斯定理可以帮助医生根据已有的病症和患者的个人特征,计算患某种疾病的概率。
举例来说,假设一个人出现持续的咳嗽和胸痛,我们可以通过贝叶斯定理结合相关的症状和先验概率,推测出患上肺部疾病的可能性。
方面二:网络安全在网络安全领域,贝叶斯定理可以被用来评估一个网络环境中特定事件的发生概率。
举例来说,当系统接收到一个新的网络请求时,贝叶斯定理可以根据先验概率和已知的特征,评估该请求是否可能是一次攻击行为。
方面三:社交媒体在社交媒体中,贝叶斯定理可以应用于推荐系统,帮助用户发现和筛选感兴趣的内容。
通过分析用户的偏好和行为,贝叶斯定理可以根据先验概率,计算特定内容对用户的个人吸引力,进一步优化推荐算法。
方面四:金融风险评估在金融领域,贝叶斯定理可以被用来进行风险评估和投资决策。
通过结合已有的市场信息和先验概率,贝叶斯定理可以帮助投资者评估不同投资的风险和回报概率,从而做出更明智的投资选择。
方面五:自然语言处理在自然语言处理领域,贝叶斯定理可以应用于情感分析和文本分类。
通过训练一个贝叶斯分类器,可以根据先验概率和已有的标记文本,对新的文本进行情感分析,判断其是正面、负面还是中性。
方面六:市场调研在市场调研领域,贝叶斯定理可以帮助分析师根据已有的市场数据和顾客反馈,预测产品上市后的市场反应。
通过结合已有的信息和顾客特征,贝叶斯定理可以计算产品被接受的概率,从而给予企业更有针对性的市场策略建议。
方面七:交通流量预测在交通问题领域,贝叶斯定理可以被用来预测交通流量和优化交通管理策略。
通过结合已有的历史交通数据和先验概率,贝叶斯定理可以计算特定道路上的交通流量,从而找到最优的交通流量分配方案。
贝叶斯推理例子

贝叶斯推理例子
1. 嘿,你想想看啊,比如说你去买彩票,你觉得中奖的概率有多大呢?这就可以用贝叶斯推理呀!你先根据以往的开奖情况大概估计一个基础概率,然后每次开奖后根据新的结果来调整你的概率判断,这多有意思啊!
2. 来,咱说个生活中的例子。
你判断今天会不会下雨,你会先根据天气预报和以往的经验来有个初步想法吧,但如果突然天空变得阴沉沉的,你不得赶紧调整你觉得下雨的概率呀,这就是贝叶斯推理在起作用呀,你说是不是?
3. 你知道怎么猜别人手里的牌吗?这也能用贝叶斯推理呢!看他的表情动作,先有个初步判断,然后随着每一轮出牌,不断更新你对他手里牌的估计,哎呀,多带劲啊!
4. 你想想,你找工作的时候,对拿到某个 offer 的概率判断不也是这样嘛!开始根据公司的要求和自己的情况有个想法,然后面试过程中根据各种表现来调整,这可真是贝叶斯推理的活用呀!
5. 就像你猜你喜欢的人对你有没有意思,一开始你有个感觉,然后通过他跟你的每次互动,你不就会调整那个可能性嘛,这就是贝叶斯推理呀,神奇吧!
6. 好比你玩猜数字游戏,你先乱猜一个,然后根据提示不断缩小范围,调整你的猜测,这不就是活脱脱的贝叶斯推理嘛,多好玩呀!
7. 哎呀,你看医生诊断病情也是这样的呀!根据症状先有个初步判断,然后做各种检查,根据检查结果不断改变对病情的推测,贝叶斯推理真的无处不在呢!
8. 再比如你预测一场比赛的结果,先有个大概想法,比赛过程中根据双方的表现来不断调整胜败的概率,这不是贝叶斯推理在帮忙嘛,多有用啊!总之,贝叶斯推理在我们生活中可太常见啦,好多事情都能靠它来让我们的判断更准确呢!。
贝叶斯博弈例子

贝叶斯博弈例子
以下是 8 条关于贝叶斯博弈例子:
1. 你想想在牌桌上呀,就像咱打牌的时候,你先根据对手前面出的牌来判断他手里大概有啥牌,这不就是贝叶斯博弈嘛!比如说你看到对手老是出小牌,那是不是大概率他手里大牌不多呀!
2. 去商场买东西砍价也有点这个感觉呢!你看商家报价,然后根据他的态度和表情猜测他的底线,这也是一种贝叶斯博弈嘞!要是他看起来很犹豫,那是不是代表咱还能往下砍砍价呀!
3. 在求职面试的时候呀,你得根据面试官的提问和反应来调整自己的回答策略,这难道不是贝叶斯博弈吗?好比面试官一直追问某个问题,那就得想着更深入地回答呀!
4. 学生时代考试猜答案也能算呢!当你不确定一个题目的答案时,根据以往对这类题目的了解去猜测,这不是贝叶斯博弈是啥呀!哎呀,要是以前做过类似的,那猜对的几率不就大多啦!
5. 谈恋爱的时候其实也有哦!你通过对方平时的言行举止来判断他的喜好和想法,这算不算是在进行贝叶斯博弈呢?比如说他总提到某个东西,那是不是表示他可能很喜欢呀!
6. 参加比赛的时候呀,观察对手的表现来调整自己的战术,这就是活生生的贝叶斯博弈呀!要是看到对手有个弱点,那不就得抓住机会嘛!
7. 玩游戏抢地盘的时候呢,根据其他玩家的行动来决定自己该怎么行动,不也是贝叶斯博弈嘛!他们都往左边去了,那右边是不是咱的机会就来了呀!
8. 去市场买菜的时候呀,看着菜的品质和价格,还有老板的态度,来决定要不要买,这就是一种贝叶斯博弈嘛!要是老板很热情,菜看着也不错,那咱肯定更愿意买啦!
我觉得贝叶斯博弈在我们生活中可太常见了,很多时候我们都在不知不觉中运用着它呢!。
最小风险贝叶斯例题

最小风险贝叶斯例题
在贝叶斯理论中,我们可以通过考虑不同决策的风险来选择最优决策。
举个例子,假设我们要预测某天的天气,可能有晴天、阴天、雨天三种可能性。
我们可以通过历史数据得到每种天气出现的概率,即先验概率。
但是在实际预测中,不同的预测结果会产生不同的风险。
例如,如果我们将雨天预测为晴天,那么人们可能会忘记带伞而淋雨,这就是预测错误所带来的风险。
因此,我们需要考虑每种预测结果所带来的风险,并选择最小风险的决策。
这就是最小风险贝叶斯决策的思想。
具体来说,在上面的例子中,我们可以定义不同预测结果的风险,例如:
- 将晴天预测为雨天的风险为10元
- 将雨天预测为晴天的风险为20元
- 将阴天预测为雨天的风险为5元
那么,对于某一天的预测结果,我们可以根据先验概率和风险计算出每种决策的期望风险,选择最小期望风险对应的决策。
例如,如果先验概率为P(晴天)=0.6、P(阴天)=0.3、P(雨天)=0.1,我们对某一天的预测结果为晴天,那么三种决策的期望风险分别为: - 预测晴天,期望风险为0.6*0+0.3*20+0.1*5=6元
- 预测阴天,期望风险为0.6*10+0.3*0+0.1*5=7元
- 预测雨天,期望风险为0.6*20+0.3*5+0.1*0=15元
因此,我们应该选择预测晴天的决策,这样就可以最小化风险。
贝叶斯生活实用例子

贝叶斯生活实用例子1. 你知道吗,咱平时网上购物选东西就可以用到贝叶斯呀!比如我想买双鞋,我会先根据以往的经验判断哪些品牌质量好,然后再看这个商品的评价,根据好评和差评的比例不断调整我对这双鞋的看法,这不就是贝叶斯嘛!就像侦探一样在搜集线索呢!2. 贝叶斯在天气预报上也超有用的呢!想想看,气象部门会根据以往的天气数据来预测明天的天气,然后随着新的数据不断加入来修正预测,哎呀,这不就跟我们一点点完善对一件事的判断一样嘛!比如我今天看天上云很多,就觉得可能要下雨,后来又刮起了大风,我就更坚信会下雨啦,这就是贝叶斯在生活中呀!3. 嘿,贝叶斯在医疗诊断上也有大作用哟!医生诊断病情不就是先有个初步判断,然后根据检查结果来调整嘛。
就好比医生先觉得我可能是感冒,验了血发现某个指标超高,那他就会更确定我不是普通感冒呀。
这多神奇,贝叶斯就在咱身边默默帮忙呢!4. 咱玩游戏的时候其实也有贝叶斯呢!像猜灯谜,我一开始乱猜,然后根据每次猜的结果和提示,不断修正自己的想法,越来越接近正确答案,这和贝叶斯的思想简直一模一样呀,酷不酷!5. 贝叶斯在投资理财上也能发挥作用呀!我会先根据一些基本情况估计某个投资的风险和收益,然后随着市场的变化不断调整我的看法,这不就是在不断完善判断嘛,就像给自己的财富找方向一样!6. 你们想想,找工作面试的时候是不是也能用贝叶斯呀!我先感觉这个公司可能挺适合我,然后在面试过程中根据面试官的反应和各种情况来修正我的想法,决定我要不要去这家公司呀。
哎呀呀,贝叶斯可真无处不在!7. 平时和朋友聊天猜心思也能用到贝叶斯呀!朋友说了一句话,我先猜他大概的意思,然后根据他后续的表情和动作来调整我的判断,哈哈,这不就是在运用贝叶斯嘛,太有意思啦!总之,贝叶斯在我们生活中真的到处都是,好好利用它能让我们的生活更有趣更有智慧呢!。
贝叶斯模型的应用案例

贝叶斯模型的应用案例
嘿,朋友们!今天咱们来聊聊贝叶斯模型那些超有意思的应用案例。
比如说在医疗领域,医生诊断病情不就经常用到贝叶斯模型嘛!就像你头疼去看医生,医生会根据以往的经验和各种症状的概率来判断你可能得了啥病。
哎呀,要是没有贝叶斯模型,医生得多难办呀!他们得像没头苍蝇一样乱撞,而不是像现在这样有理有据地给出诊断结果。
在天气预报中也是一样啊!气象员预测明天会不会下雨,他们会把各种因素考虑进去,这不就是贝叶斯模型在起作用嘛!就如同他们有一个神奇的水晶球,能透过层层迷雾看清天气的走向,这多厉害呀!你想想,如果没有这个模型,我们可能就会被突然的大雨淋成落汤鸡,那多悲催呀!
再看看市场营销领域,企业要推出新产品,他们得知道消费者会不会喜欢呀!贝叶斯模型就能帮忙啦。
这就好像企业有了一双能看透消费者心思的眼睛,知道该往哪个方向努力才能赢得消费者的欢心。
如果他们瞎打乱撞,那得浪费多少资源和时间呀!
贝叶斯模型还在很多其他领域发挥着重要作用呢,难道不是吗?它就像是一个默默无闻的超级英雄,在背后悄悄地为我们解决各种难题,让我们的生活变得更加有序和美好。
所以呀,贝叶斯模型真的是超级厉害的!不要小瞧它哦,它可在无数地方默默地奉献着呢!它让我们的决策更明智,让我们少走很多弯路,难道我们不应该对它竖起大拇指吗?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
贝叶斯决策练习
某石油公司拟在一片估计含油的荒地上钻井。
如果钻井,费用为150万,若出油的概率为0.55,收入为800万元;若无油的概率为0.45,此时的收入为0。
该公司也可以转让开采权,转让费为160万元,但公司可以不担任何风险。
为了避免45%的无油风险,公司考虑通过地震试验来获取更多的信息,地震试验费用需要20万元。
已知有油的情况下,地震试验显示油气好的概率为0.8,显示油气不好的概率为0.2;在无油条件下,地震显示油气好的概率为0.15,而显示油气不好的概率为0.85。
又当试验表明油气好时,出让开采权的费用将增至400万元,试验表明油气不好时,出让开采权费用降至100万元,问该公司应该如何决策,使其期望收益值为最大。
解:该公司面临两个阶段的决策:第一阶段为要不要做地震试验,第二阶段为在做地震试验条件下,当油气显示分别为好与不好时,是采取钻井策略还是出让开采权。
若用A 1表示有油,A 2表示无油;用B 1表示地震试验显示油气好,B 2表示地震试验显示油气不好。
由题意可知:
1211211222()0.55 ()0.45
(|)0.8 (|)0.2(|)0.15 (|)0.85
P A P A P B A P B A P B A P B A ======
由贝叶斯公式计算得到:
11111111212()(|)0.440.44(|)0.867()(|)()(|)0.440.06750.5075
P A P B A P A B P A P B A P A P B A =
===++ 同理,有: 2112220.0675(|)0.1330.5075
0.11(|)0.2230.4925
0.3825(|)0.7770.4925P A B P A B P A B =
=====
该问题对应的决策树图
采用逆序的方法,先计算事件点②③④的期望值:
事件点 期望值
② 800×0.867+0×0.133=693.6(万元)
③ 800×0.223+0×0.777=178.4(万元)
④ 800×0.55+0×0.45=440(万元) 在决策点2,按max[(693.6-150),400]=543.6万元,故选择钻井,删除出让开采权策略; 在决策点3,按max[(178.4-150),100]=100万元,故选择出让开采权,删除钻井策略; 在决策点4,按max[(440-150),160]=290万元,故选择钻井策略。
在事件点①处期望值为:543.6×0.5075+100×0.4925=325.13万元 最后在决策点1,按max[(325.13-20),290]=305.13万元,故选择进行地震试验方案。
故为了使该公司的期望收入为最大的决策是:先进行地震试验,当试验结果为油气显示好时,选择钻井;而油气显示不好时,选择出让开采权,该策略下期望收入为305.13万元。