贝叶斯方法(估计,推断,决策)
概率论中的贝叶斯定理

概率论中的贝叶斯定理贝叶斯定理是概率论中一个重要的工具,它可以用来计算事件发生的前后概率。
在实际应用中,贝叶斯定理被广泛地应用于统计分析、医学诊断、自然语言处理、机器学习等领域。
一、贝叶斯定理的定义贝叶斯定理是一种根据观测到的证据(或数据)来更新概率估计的方法。
它的数学表示为:P(A|B) = P(B|A) × P(A) / P(B)其中,P(A|B) 表示在已知 B 发生的前提下,事件 A 发生的概率;P(B|A) 表示在事件 A 发生的前提下,B 发生的概率;P(A) 表示事件 A 发生的概率;P(B) 表示 B 发生的概率。
二、贝叶斯定理的应用在统计分析中,贝叶斯定理可以用来计算后验概率。
例如,我们可以根据已有的数据来估计某种情况下的概率,从而在未来的实验中使用。
在医学诊断中,贝叶斯定理可以用来计算某种疾病的概率。
例如,病人发生某种症状的概率是多少,以及诊断为某种疾病的概率是多少。
在自然语言处理中,贝叶斯定理可以用来对文本分类。
例如,通过统计某个词在不同文本中的出现概率,从而判断一个文本属于哪个分类。
在机器学习中,贝叶斯定理可以用来构建分类器。
例如,通过训练一组训练样本,从而能够识别未知样本的类别。
三、贝叶斯定理的局限性贝叶斯定理虽然是一种重要的工具,但是也有其局限性。
例如,它假设事件的概率是已知的;它假设先验概率是真实的;它假设证据是独立的。
在实际应用中,这些假设都可能不成立,从而导致贝叶斯定理的估计结果不准确。
另外,贝叶斯定理对数据的要求比较高,需要有足够的样本来支撑后验推断。
在数据量不足的情况下,贝叶斯定理的应用可能不可靠。
四、贝叶斯定理的启示贝叶斯定理告诉我们,在不确定性和风险的环境中,利用已知的证据和先验信息来指导决策是一种有效的方法。
它还告诉我们,随着证据的不断积累和更新,我们对事件的概率估计会变得越来越准确。
在实际应用中,我们可以使用贝叶斯定理来指导决策,例如进行风险管理、投资决策、市场预测等。
贝叶斯方法

贝叶斯公式
贝叶斯公式是建立在条件概率的基础上寻找 事件发生的原因(即大事件A已经发生的条 件下,分割中的小事件Bi的概率)。
设B1,B2,...是样本空间Ω的一个划分,则对 任一事件A(P(A)>0),有
贝叶斯公式
Bi 常被视为导致试验结果A发生的“原因” ,P(Bi)(i=1,2,...)表示各种原因发生的可 能性大小,故称先验概率; P(Bi|A)(i=1,2...)则反映当试验产生了结 果A之后,再对各种原因概率的新认识,故 称后验概率。估计
贝叶斯理论基本介绍 马尔科夫蒙特卡洛模拟
OpenBUGS和GeoBUGS软件介绍 演示和练习
CAR模型 BYM模型
贝叶斯参数估计
在频率派看来,参数是客观存在的固定常数, 统计的任务之一是估计这些参数,包括点估 计和区间估计。
反映在给定参数 情况下我们对x的信念。
当得到数据 X1, X2,…Xn 后,我们更新我们的信念并 且计算后验分布。
从后验分布中得到点估计和区间估计。
先验分布和后验分布
先验分布
贝叶斯学派的根本观点,是认为在关于总体分布参 数 θ的任何统计推断问题中,除了使用样本所提供 的信息外,还必须规定一个先验分布,它是在进行 统计推断时不可缺少的一个要素。
条件自相关模型
V[i ]~ N(0, 1/σ2v )
U[i ](neigh) CAR
tau.u ~ gamma(0.5, 0.0005) tau.v ~ gamma(0.5, 0.0005)
Conditional AutoRegressive model
条件自相关模型(CAR)-Normal
ui
根据马氏链收敛定理,当步长n足够大时, 一个非周期且任意状态联通的马氏链可以收 敛到一个平稳分布π(θ)。
统计学中的参数估计方法

统计学中的参数估计方法统计学中的参数估计方法是研究样本统计量与总体参数之间关系的重要工具。
通过参数估计方法,可以根据样本数据推断总体参数的取值范围,并对统计推断的可靠性进行评估。
本文将介绍几种常用的参数估计方法及其应用。
一、点估计方法点估计方法是指通过样本数据来估计总体参数的具体取值。
最常用的点估计方法是最大似然估计和矩估计。
1. 最大似然估计(Maximum Likelihood Estimation)最大似然估计是指在给定样本的条件下,寻找最大化样本观察值发生的可能性的参数值。
它假设样本是独立同分布的,并假设总体参数的取值满足某种分布。
最大似然估计可以通过求解似然函数的最大值来得到参数的估计值。
2. 矩估计(Method of Moments)矩估计是指利用样本矩与总体矩的对应关系来估计总体参数。
矩估计方法假设总体参数可以通过样本矩的函数来表示,并通过求解总体矩与样本矩的关系式来得到参数的估计值。
二、区间估计方法区间估计是指根据样本数据来估计总体参数的取值范围。
常见的区间估计方法有置信区间估计和预测区间估计。
1. 置信区间估计(Confidence Interval Estimation)置信区间估计是指通过样本数据估计总体参数,并给出一个区间,该区间包含总体参数的真值的概率为预先设定的置信水平。
置信区间估计通常使用标准正态分布、t分布、卡方分布等作为抽样分布进行计算。
2. 预测区间估计(Prediction Interval Estimation)预测区间估计是指根据样本数据估计出的总体参数,并给出一个区间,该区间包含未来单个观测值的概率为预先设定的置信水平。
预测区间估计在预测和判断未来观测值时具有重要的应用价值。
三、贝叶斯估计方法贝叶斯估计方法是一种基于贝叶斯定理的统计推断方法。
贝叶斯估计将先验知识与样本数据相结合,通过计算后验概率分布来估计总体参数的取值。
贝叶斯估计方法的关键是设定先验分布和寻找后验分布。
贝叶斯应用

阶段的后验概率,以实现检测僵尸网络。通过实验表明,该方法检测僵
尸网络是有效的,检测正确率在 90%以上,并且该方法较单机检测僵尸 网络的贝叶斯算法效率有了很大的提高。
[1]邵秀丽 ,刘一伟 ,耿梅洁 ,韩健斌.检测僵尸网络的贝叶斯算法的MapReduce 并行化实
现[J].只能系统学报,2014,9( 1) : 1- 7
练样本的类标签构成的向量;测试样本T的属性构成的向量
A=[a1,a2,„,aM]。 输出 测试样本的类标签。
步骤如下 1. 对训练样本属性矩阵D按列进行归一化; 2. 得到最优向量x; 3. 计算测试样本类标签。
12
实验环境及结果
采用加州大学欧文分校提供的机器学习公开数据集中的德国信用数据
集和澳大利亚信用数据集对本文方法进行验证。为了评估算法的性能,
16
判别函数的结果及检验
采用自身检验法及交叉验证法来检验判别函数模型的诊断能力,结果见表2
再将检验组42例(20%)患者共307枚淋巴结的数据代入诊断模型以验证 模型的诊断能力,结果见表3
17
判别函数的结果及检验
对上述检验模型进行验证,结果显示全部1217枚淋巴结,对 1003枚 非转移淋巴结共判对898枚,正确率为89.5%(即特异度);214枚转移淋 巴结中,判对169枚,正确率为79.0%(即敏感度),诊断模型的诊断符 合率为87.7%,共误判150枚,误判率为12.3%。交叉检验法与自身检验法 所得结果相近。 由于自身检验法及交叉验证法常常低估误判率,从而夸大判别效果, 因此我们采用验证样本对诊断模型作前瞻性误判概率的估计,这种方法所 得的误判概率比较客观。非转移淋巴结组共251枚淋巴结,判对223枚,正 确率为 88.8%(即特异度);转移淋巴结组共56枚,判对37枚,正确率为
贝叶斯的原理和应用

贝叶斯的原理和应用1. 贝叶斯原理介绍贝叶斯原理是基于概率论的一种推理方法,它被广泛地应用于统计学、人工智能和机器学习等领域。
其核心思想是通过已有的先验知识和新的观察数据来更新我们对于某个事件的信念。
2. 贝叶斯公式贝叶斯公式是贝叶斯原理的数学表达方式,它可以用来计算在观察到一些新的证据后,更新对于某个事件的概率。
贝叶斯公式的表达如下:P(A|B) = (P(B|A) * P(A)) / P(B)其中,P(A|B)表示在观察到事件B之后,事件A发生的概率;P(B|A)表示在事件A发生的前提下,事件B发生的概率;P(A)和P(B)分别是事件A和事件B的先验概率。
3. 贝叶斯分类器贝叶斯分类器是基于贝叶斯原理的一种分类算法。
它利用已有的训练数据来估计不同特征值条件下的类别概率,然后根据贝叶斯公式计算得到新样本属于不同类别的概率,从而进行分类。
贝叶斯分类器的主要步骤包括:•学习阶段:通过已有的训练数据计算得到类别的先验概率和特征条件概率。
•预测阶段:对于给定的新样本,计算得到其属于不同类别的概率,并选择概率最大的类别作为分类结果。
贝叶斯分类器的优点在于对于数据集的要求较低,并且能够处理高维特征数据。
但是,贝叶斯分类器的缺点是假设特征之间相互独立,这在实际应用中可能不符合实际情况。
4. 贝叶斯网络贝叶斯网络是一种用有向无环图来表示变量之间条件依赖关系的概率图模型。
它可以用来描述变量之间的因果关系,并通过贝叶斯推理来进行推断。
贝叶斯网络的节点表示随机变量,边表示变量之间的条件概率关系。
通过学习已有的数据,可以构建贝叶斯网络模型,然后利用贝叶斯推理来计算给定一些观察值的情况下,其他变量的概率分布。
贝叶斯网络在人工智能、决策分析和医学诊断等领域有广泛的应用。
它可以通过概率推断来进行决策支持,帮助人们进行风险评估和决策分析。
5. 贝叶斯优化贝叶斯优化是一种用来进行参数优化的方法。
在参数优化问题中,我们需要找到使得某个性能指标最好的参数组合。
Bayes(贝叶斯)估计

• 缺点:u不是变量
精选版课件ppt
批评2:评价方法
• 假设检验、参数估计等都是多次重复的结 果;
• 想知道:
– 一次实验发生的可能性
精选版课件ppt
ห้องสมุดไป่ตู้
Bayesian方法
精选版课件ppt
Bayesian公式
h(y|x) p(x| y)q(y)
p(x| y)q(y)dy
• 先验分布密度:q(y) • 条件分布密度:p(x|y) 似
• 4、确定的先验分布() • 5、利用Bayesian公式求后验分布密度 • 6、使用后验分布做推断(参数估计、假设检验)
精选版课件ppt
例1:两点分布b(1,p)的
• 1. 联合分布:p(x|)nxx(1)nx
• 2. 先验分布:() 1 01
• 3. 后验分布: h(|x)n xr(1)nr*()
• 平方损失:
L(,)()2
– 最小Bayesian风险估计:后验期望
• 点损失:
L(a,
)
0,|
a
|
1,|
a
|
– 最大后验密度估计
精选版课件ppt
例子: 正态分布
• X1…Xn服从正态分布N(,2) , 2已知, • 的先验分布是N(,2 )
• 求的Bayes估计.
• 求得后验分布还是正态分布
方差未知正态总体的均值检验多项分布的广义似然比检验pearson卡方统计量和似然比handyweinberg均衡在参数估计的例子中引入了handyweinberg均衡bacterialclump泊松散布度检验dispersiontest泊松散布度检验dispersiontest泊松散布度检验
贝叶斯估计

a1
a2
a3
1 3 -2 0
2 1
4 -3
3 -4 -1 2
17
这是一个典型的双人博弈(赌博)问题。不少实际问 题可归纳为双人博弈问题。把上例中的乙方改为自然 或社会,就形成人与自然(或社会)的博弈问题。
例2 农作物有两个品种:产量高但抗旱能力弱的
品种 a1 和抗旱能力强但产量低的品种 a2 。 在明年雨量不知的情况下,农民应该选播哪个品
这表明,当 ˆ ˆE 时,可使后验均方差达到最小, 实际中常取后验均值作为 的贝叶斯估计值.
9
例2 设一批产品的不合格率为 ,检查是一个一个进行,
直到发现第一个不合格品为止,若X为发现第一个不合 格品时已检查的产品数,则X服从几何分布,其分布列为
P(X x ) (1 )x1, x 1,2,
设ˆ 是 的一个贝叶斯估计,在样本给定后,ˆ 是一 个数,在综合各种信息后, 是按 ( x) 取值,所以
评价一个贝叶斯估计的误差的最好而又简单的方式是
用θ对 ˆ的后验均方差或平方根来度量,定义如下:
定义3.2 设参数θ的后验分布为 ( x) ,
贝叶斯估计为
ˆ ,则
ˆ 的后验期望
MSE(ˆ x) E x (
0 4 8
L
1
0
2
3.7 1.8 0
a1 , a2 , a3
23
2、损失函数
构成决策问题的三要素: A a L , a
由收益函数容易获得损失函数
计^
MD
更合适一些。
ˆE
要比最大后验估
第三、 的后验期望值估计要比最大后验估计更合适一
些。 表2.1列出四个实验结果,在试验1与试验2中,“抽 检3个产品没有一件不合格”与抽检10个产品没有一件 是不合格”这两件事在人们心目中留下的印象是不同 的。后者的质量要比前者的质量更信得过。
贝叶斯推理树-概述说明以及解释

贝叶斯推理树-概述说明以及解释1.引言1.1 概述概述贝叶斯推理树是一种基于贝叶斯推理原理构建的推理模型。
贝叶斯推理是一种统计学方法,用于根据先验知识和观测数据来更新对事件概率的估计。
贝叶斯推理树则是在这种推理思想的基础上,将问题分解成一系列条件概率的计算,从而实现复杂问题的推理和决策。
贝叶斯推理树的构建过程包括了确定根节点、分支节点和叶节点,以及计算在给定观测条件下各节点的条件概率。
通过逐层推理和条件概率的更新,贝叶斯推理树可以有效地处理不确定性问题,并提供具有较高可信度的结果。
贝叶斯推理树的应用领域十分广泛。
在医学诊断中,贝叶斯推理树可以帮助医生根据症状和观测结果推断患者可能患有的疾病。
在决策分析中,贝叶斯推理树可以帮助企业制定最优的决策方案。
在智能交通领域,贝叶斯推理树可以帮助交通系统预测交通流量,优化交通信号控制。
然而,贝叶斯推理树也存在一些局限性。
首先,贝叶斯推理树的构建需要大量的先验知识和观测数据,才能得出准确可靠的结果。
其次,贝叶斯推理树对于问题的分解和条件概率计算较为复杂,需要一定的数学和统计学知识。
此外,贝叶斯推理树在处理大规模问题时,由于计算复杂度的增加,可能面临计算资源和时间的限制。
展望未来,随着数据科学和人工智能的快速发展,贝叶斯推理树有望在更多领域得到广泛应用。
未来的研究可以致力于改进贝叶斯推理树的构建方法,提高其计算效率和可解释性。
此外,还可以探索与其他推理模型的融合,从而进一步扩展贝叶斯推理树的应用范围。
综上所述,贝叶斯推理树是一种基于贝叶斯推理原理构建的推理模型,具有应用广泛且潜力巨大的特点。
随着相关技术的不断发展和深入研究,贝叶斯推理树有望为解决复杂问题和推动社会进步做出更多贡献。
1.2文章结构文章结构部分(1.2 文章结构)的内容如下:在本文中,我们将按照以下结构对贝叶斯推理树进行详细的介绍和讨论。
首先,引言部分将给出一个对贝叶斯推理树的概述,解释其基本原理和运作方式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一 、统计推断中可用的三种信息
美籍波兰统计学家耐曼(E.L.Lehmann1894-1981) 高度概括了在统计推断中可用的三种信息: 1.总体信息,即总体分布或所属分布族给我们的信 息。譬如“总体视察指数分布”或“总体是正态分 布”在统计推断中都发挥重要作用,只要有总体信 息,就要想方设法在统计推断中使用 2.样本信息,即样本提供我们的信息,这是任一种 统计推断中都需要
p( x , , x
1
nห้องสมุดไป่ตู้
) ( )d
这就是贝叶斯公式的密度函数形式,其中 ( x1,, xn )称为θ 的后验密度函数,或 后验分布。而
p ( x1 , , xn ) p ( x1 , , xn ) ( )d
是样本的边际分布,或称样本 X1 ,, X n 的无条件分布,它的积分区域就是参数θ 的取值范围, 随具体情况而定。 前面的分析总结如下:人们根据先验信息对参数θ 已有一个认识,这个认识就是先验分布π (θ )。 通过试验,获得样本。从而对θ 的先验分布进行调 整,调整的方法就是使用上面的贝叶斯公式,调整 的结果就是后验分布 ( x1,, xn ) 。后验分布是三种 信息的综合。获得后验分布使人们对θ 的认识又前 进一步,可看出,获得样本的的效果是把我们对θ 的认识由π (θ )调整到 ( x1,, xn ) 。所以对θ 的 统计推断就应建立在后验分布 ( x1,, xn ) 的基础上。
1,0 1 ( ) 0, others
样本X与参数的联合分布为
h( x, ) Cnx x (1 )nx , x 0,1,, n,0 1
此式在定义域上与二项分布有区别。再计算X的边际密 度为
( x 1)(n x 1) m( x) h( x, )d C , x 0,1, n 0 (n 2)
初等概率论中的贝叶斯公式是用事件的概率形式 给出的。可在贝叶斯统计学中应用更多的是贝叶 斯公式的密度函数形式。下面结合贝叶斯统计学 的基本观点来引出其密度函数形式。贝叶斯统计 学的基本观点可以用下面三个观点归纳出来。 假设Ⅰ 随机变量X有一个密度函数p(x;θ ), 其中θ 是一个参数,不同的θ 对应不同的密度函 数,故从贝叶斯观点看,p(x;θ )是在给定后 θ 是个条件密度函数,因此记为p(x│θ )更恰 当一些。这个条件密度能提供我们的有关的θ 信 息就是总体信息。
1 先验分布 定义3.1 将总体中的未知参数θ ∈Θ 看成一取值 于Θ 的随机变量,它有一概率分布,记为π (θ ),称为参数θ 的先验分布。 2 后验分布 在贝叶斯统计学中,把以上的三种信息归纳起 来的最好形式是在总体分布基础上获得的样本 X1,„,Xn,和参数的联合密度函数
p( x1,, xn , ) p( x1,, xn ) ( )
假设Ⅱ 当给定θ 后,从总体p(x│θ )中随机抽取 一个样本 X1 , , X n ,该样本中含有θ 的有关信息。 这种信息就是样本信息。 假设Ⅲ 我们对参数θ 已经积累了很多资料,经过分 析、整理和加工,可以获得一些有关θ 的有用信息, 这种信息就是先验信息。参数θ 不是永远固定在一个 值上,而是一个事先不能确定的量。从贝叶斯观点来 看,未知参数θ 是一个随机变量。而描述这个随机变 量的分布可从先验信息中归纳出来,这个分布称为先 验分布,其密度函数用π (θ )表示。
1 x n
(n 2) ( x) x (1 ) n x ,0 1 ( x 1)(n x 1)
即
X ~ Be( x 1, n x 1)
在这个联合密度函数中。当样本 X1 ,, X n 给定之后,未知的仅是参数θ 了,我们关心的是样本 给定后,θ 的条件密度函数,依据密度的计算公式, 容易获得这个条件密度函数
p( x1 ,, xn , ) ( x1 ,, xn ) p( x1 ,, xn ) p( x1 ,, xn ) ( )
3.先验信息,即在抽样之前有关统计推断的一些信 息。譬如,在估计某产品的不合格率时,假如工厂保 存了过去抽检这种产品质量的资料,这些资料(包括 历史数据)有时估计该产品的不合格率是有好处的。 这些资料所提供的信息就是一种先验信息。又如某工 程师根据自己多年积累的经验对正在设计的某种彩电 的平均寿命所提供的估计也是一种先验信息。由于这 种信息是在“试验之前”就已有的,故称为先验信息。
以前所讨论的点估计只使用前两种信息,没有使用 先验信息。假如能把收集到的先验信息也利用起来, 那对我们进行统计推断是有好处的。只用前两种信 息的统计学称为经典统计学,三种信息都用的统计 学称为贝叶斯统计学。本节将简要介绍贝叶斯统计 学中的点估计方法。
二、贝叶斯公式的密度函数形式
贝叶斯统计学的基础是著名的贝叶斯公式,它是英 国学者贝叶斯(T.R.Bayes1702~1761)在他死后二 年发表的一篇论文《论归纳推理的一种方法》中提 出的。经过二百年的研究与应用,贝叶斯的统计思 想得到很大的发展,目前已形成一个统计学派—贝 叶斯学派。为了纪念他,英国历史最悠久的统计杂 志《Biometrika》在1958年又全文刊登贝叶斯的这 篇论文。
例1 设事件A的概率为 ,即 ( A) 。为了 估计 而作n次独立观察,其中事件出现次 数为X,则有X服从二项分布 b(n, ) x x 即 P( X x ) Cn (1 )nx , x 0,1,, n. 如果此时我们对事件A的发生没有任何了解, 对 的大小也没有任何信息。在这种情况下, 贝叶斯建议用区间(0,1)上的均匀分布作 为的先验分布。因为它在(0,1)上每一点 都是机会均等的。这个建议被后人称为贝叶 斯假设。