七年级下册数学多项式的乘法(1)
多项式的乘法

多项式的乘法多项式的乘法是代数学中的一种基本运算,用于计算两个多项式的乘积。
在多项式的乘法运算中,我们将一个多项式的每一项与另一个多项式的每一项相乘,并将结果相加得到最终的乘积。
本文将介绍多项式的乘法运算规则,并通过例子详细说明其计算方法。
1. 多项式的乘法运算规则设有两个多项式:P(x) = anxn + an-1xn-1 + ... + a1x + a0Q(x) = bmxm + bm-1xm-1 + ... + b1x + b0其中,an, an-1, ..., a1, a0, bn, bm-1, ..., b1, b0为常数系数,n, m为非负整数,n ≥ m。
两个多项式的乘积定义为:P(x) * Q(x) = (anxn + an-1xn-1 + ... + a1x + a0) * (bmxm + bm-1xm-1 + ... + b1x + b0)根据乘法的分配律,我们可以将上式展开为:P(x) * Q(x) = anxn * (bmxm + bm-1xm-1 + ... + b1x + b0) + an-1xn-1 * (bmxm + bm-1xm-1 + ... + b1x + b0) + ... + a1x * (bmxm + bm-1xm-1 + ... + b1x + b0) + a0 * (bmxm + bm-1xm-1 + ... + b1x + b0)再根据乘法的结合律,我们可以进一步简化上式为:P(x) * Q(x) = anxn * bmxm + anxn * bm-1xm-1 + ... + anxn * b1x + anxn * b0 + an-1xn-1 * bmxm + an-1xn-1 * bm-1xm-1 + ... + an-1xn-1 *b1x + an-1xn-1 * b0 + ... + a1x * bmxm + a1x * bm-1xm-1 + ... + a1x * b1x + a1x * b0 + a0 * bmxm + a0 * bm-1xm-1 + ... + a0 * b1x + a0 * b0由此可见,多项式的乘法运算实际上是将两个多项式的每一项进行相乘,并将结果按指数次数相加。
《整式的乘法》第3课时《多项式乘以多项式的法则》教学课件2022-2023学年北师大版七年级数学下册

你会计
算吗?
教学过程
新知探究
做一做
我们可以用四种方法计算长方形的面积:
方法1: + +
方法2: + + +
方法3: + + +
方法4: + + +
事实上 + + 是两个多项式相乘,你从上面的计算过程中受
C. − 或0
D. 或0
教学过程
新知应用
做一做
3.若 − + − 结果是不含 项,则、
的关系为(B )
A. 互为倒数
B. 互为相反数
C. 相等
D.不能确定
4.若 = , = , 则 − − + − 的值为(A )
北师大版数学七年级(下)
第一章 整式的乘除
4.整式的乘法
第3课时 多项式与多项式的乘法
教学过程
重点难点
1.经历探索多项式与多项式乘法的运算法则的
过程,掌握多项式与多项式乘法的运算法则.
(重点)
2.利用多项式与多项式乘法的运算法则进行运算,进
一步加强学生的运算能力.(难点)
教学过程
温故知新
1.单项式乘以单项式的法则:
项之前,所得积的项数为两个多项式的项数的积.
2.在运算过程中,不要漏乘任何一项,特别是常数项,相乘时
按一定的顺序进行,注意每项的符号,可根据“同号得正,异
号得负”来确定积中每一项的符号.
3.结果中有同类项的,一定要合并同类项,化成最简形式.
教学过程
回归课本
读一读
湘教版七年级下册数学 第2章 单项式与多项式相乘

18.(1)请先阅读下列解题过程,再仿做下面的题. 已知x2+x-1=0,求x3+2x2+3的值. 解:x3+2x2+3=x3+x2-x+x2+x+3 =x(x2+x-1)+x2+x-1+4=0+0+4=4. 如果1+x+x2+x3=0,求x+x2+x3+x4+x5+x6+x7+x8
的值.
【点拨】本题不易直接求出x的值,将待求式子转 化为能直接利用条件式的式子,然后整体代入求值, 给计算带来简便.
解:原式=(x2-2y)·(x3y6)=x5y6-2x3y7.
(2)(-a)3·(-2ab2)3-4ab27a5b4+12ab3-5.
解:原式=-a3·(-8a3b6)-28a6b6-2a2b5+20ab2= 8a6b6 - 28a6b6 - 2a2b5 + 20ab2 = - 20a6b6 - 2a2b5 + 20ab2.
14.解方程:2x(x-1)=12+x(2x-5).
解:去括号,得2x2-2x=12+2x2-5x. 移项、合并同类项,得3x=12. 系数化为1,得x=4.
15.下列运算中,正确的是( ) A.-2x(3x2y-2xy)=-6x3y-4x2y B.2xy2(-x2+2y2+1)=-2x3y2+4xy4 C.(3ab2-2ab)·abc=3a2b3-2a2b2 D.(ab)2(2ab2-c)=2a3b4-a2b2c
17.某同学在计算一个多项式乘-3x2 时,算成了加上-3x2,
得到的答案是 x2-12x+1,那么正确的计算结果是多少? 解:设这个多项式为 A,则 A+(-3x2)=x2-12x+1,所 以 A=4x2-12x+1.所以 A·(-3x2)=4x2-12x+1·(-3x2) =-12x4+32x3-3x2.
C.a=2,b=-2D.a=-2,b=2
《3.3多项式的乘法》作业设计方案-初中数学浙教版12七年级下册

《多项式的乘法》作业设计方案(第一课时)一、作业目标1. 理解多项式乘法的基本概念与运算规则。
2. 掌握多项式乘法的具体操作步骤,能熟练进行简单的多项式乘法。
3. 培养数学思维能力和计算能力,激发对数学的兴趣。
二、作业内容作业内容主要包括两个部分:课堂知识与练习、实际运用问题。
(一)课堂知识与练习1. 学习多项式乘法的定义及运算规则,包括分配律和合并同类项等。
2. 掌握多项式乘法的基本步骤,如先乘后加等。
3. 通过例题和练习题,让学生熟悉并掌握多项式乘法的具体操作。
练习题设计:- 基础题:如(2x+3)×(x-1)等简单多项式乘法题目。
- 提升题:如多项式与多项式的乘法等较复杂题目。
(二)实际运用问题1. 引导学生观察生活中的实际问题,如利用多项式乘法解决速度与距离的数学模型问题。
2. 布置实际问题解决作业,如设计一个简单的应用题,要求学生利用多项式乘法解决实际距离和速度的计算问题。
三、作业要求1. 独立完成:学生需独立完成作业,不得抄袭他人答案。
2. 认真审题:仔细阅读题目要求,理解题目意图。
3. 规范书写:答案需书写规范,步骤清晰,结果准确。
4. 时间安排:合理安排时间,确保在规定时间内完成作业。
四、作业评价1. 正确性评价:评价学生答案的正确性,对错误的地方进行批改并指正。
2. 过程评价:评价学生的解题过程是否合理,步骤是否清晰。
3. 速度评价:评价学生完成作业的速度,鼓励高效完成作业的学生。
4. 书写评价:评价学生的书写规范程度,鼓励书写工整的学生。
五、作业反馈1. 老师需对学生的作业进行及时批改,对错误的地方进行详细指正。
2. 对于共性问题,老师需在课堂中进行集中讲解和纠正。
3. 对于优秀的学生作品和典型错误案例进行展示和讨论,帮助学生总结经验教训。
4. 鼓励学生互相交流学习心得和解题技巧,共同进步。
通过本次作业,学生不仅可以掌握多项式乘法的基本概念和运算规则,还可以在解决实际问题的过程中加深对数学知识的理解和应用,从而更好地培养学生的数学思维能力和计算能力。
沪科版数学七年级下册多项式与多项式相乘课件

跟我学
例 6 计算:
(1)(ax+b)(cx;
解:(1)(ax b)(cx d ) ax • cx ax • d b • cx b • d acx2 (ad bc)x bd
跟我学
(2)(2x 1)(3x 2) (2x) • 3x (2x) • (2) (1) • 3x (1) • (2) 6x2 4x 3x 2 6x2 x 2
分析与比较
视察这几个式子:
(a+b)(m+n) (a+b)m+(a+b)n a(m+n)+b(m+n) am+an+bm+bn
你能说出它们有何关系吗?
分析与比较
可以发现:
(a+b)(m+n) = (a+b)m+(a+b)n = a(m+n)+b(m+n) = am+an+bm+bn
由此你能得到什么启示?
长方形的面积,再求总面积。扩大后菜
地的面积为 :(a+b)m + (a+b)n
探究与思考
问题3 一块长方形的菜地,长为a,宽为m。 现将它的长增加b,宽增加n,求扩大后的菜 地的面积。
n a(m+n)
b(m+n)
m
a
b
算法四:如图所示,分别求出图中两个
长方形的面积,再求总面积。扩大后菜
地的面积为 : a(m+n) + b(m+n)
地的面积。
an
bn
n
m am
bm
a
b
算法二:先算4块小矩形的面积,再求总面积。扩
湘教版七年级数学下册同步练习 第2章整式的乘法 多项式的乘法第1课时课后作业

多项式的乘法(第1课时)(30分钟50分)一、选择题(每小题4分,共12分)1.化简5(2x-3)+4(3-2x)的结果为( )A.2x-3B.2x+9C.8x-3D.18x-32.下列各式中计算错误的是( )A.2x-(2x3+3x-1)=4x4+6x2-2xB.b(b2-b+1)=b3-b2+bC.-x(2x2-2)=-x3+xD.x=x4-2x2+x3.今天数学课上,老师讲了单项式乘以多项式.放学后,小华回到家拿出课堂笔记,认真复习老师课上讲的内容,他突然发现一道题:-3xy·(4y-2x-1)=-12xy2+6x2y+ .空格的地方被钢笔水弄污了,你认为横线上应填写( )A.3xyB.-3xyC.-1D.1二、填空题(每小题4分,共12分)4.(-2x2)3·(x2+x2y2+y2)的结果中次数是10的项的系数是.5.当x=1,y=时,3x(2x+y)-2x(x-y)= .6.如图是在正方形网格中按规律填成的阴影,根据此规律,第n个图中的阴影部分小正方形的个数是.三、解答题(共26分)7.(8分)先化简,再求值.x(x2-6x-9)-x(x2-8x-15)+2x(3-x),其中x=-.8.(8分)如图,一长方形地块用来建造住宅、广场、商厦,求这块地的面积.【拓展延伸】9.(10分)阅读:已知x2y=3,求2xy(x5y2-3x3y-4x)的值.分析:考虑到x,y的可能值较多,不能逐一代入求解,故考虑整体思想,将x2y=3整体代入. 解:2xy(x5y2-3x3y-4x)=2x6y3-6x4y2-8x2y=2(x2y)3-6(x2y)2-8x2y=2×33-6×32-8×3=-24.你能用上述方法解决以下问题吗?试一试!已知ab=3,求(2a3b2-3a2b+4a)·(-2b)的值.答案解析1.【解析】选A.原式=10x-15+12-8x=(10x-8x)+(-15+12)=2x-3.2.【解析】选A.2x-(2x3+3x-1)=2x-2x3-3x+1=-2x3-x+1.3.【解析】选A.-3xy·(4y-2x-1)=-3xy·4y+(-3xy)·(-2x)+(-3xy)·(-1)=-12xy2+6x2y+3xy,所以应填写3xy.4.【解析】(-2x2)3·(x2+x2y2+y2)=-8x6·(x2+x2y2+y2)=-8x8-8x8y2-8x6y2,所以次数是10的项是-8x8y2,系数是-8.答案:-85.【解析】3x(2x+y)-2x(x-y)=6x2+3xy-2x2+2xy=4x2+5xy,当x=1,y=时,原式=4x2+5xy=4×12+5×1×=4+1=5.答案:56.【解析】根据图形可知:第一个图形中阴影部分小正方形个数为4=2+2=1×2+2,第二个图形中阴影部分小正方形个数为8=6+2=2×3+2,第三个图形中阴影部分小正方形个数为14=12+2=3×4+2,……所以第n个图形中阴影部分小正方形个数为n(n+1)+2= n2+n+2,故此题答案为n2+n+2. 答案:n2+n+27.【解析】x(x2-6x-9)-x(x2-8x-15)+2x(3-x)=x3-6x2-9x- x3+8x2+15x+6x-2x2=12x.[当x=-时,原式=12×=-2.8.【解析】长方形地块的长为:(3a+2b)+(2a-b),宽为4a,这块地的面积为:4a·[(3a+2b)+(2a-b)]=4a·(5a+b)=4a·5a+4a·b=20a2+4ab.答:这块地的面积为20a2+4ab.9.【解析】(2a3b2-3a2b+4a)·(-2b)=-4a3b3+6a2b2-8ab=-4(ab)3+6(ab)2-8ab,当ab=3时,原式=-4×33+6×32-8×3=-108+54-24=-78.。
乘法公式 第一课时-数学七年级下册同步教学课件(冀教版)

(2)(3a-4b)(-4b-3a)=(-4b)2-(3a)2=16b 2-9a 2.
(3)
3 4
a
1 3
b
3 4
a
1 3
b
3 4
a
2
1 3
2
b
9 16
a2
1 9
b2 .
(4)
a2
1 2
b2
a2
1 2
b2
a2
2
1 2
b2
2
a4
1 4
b4 .
2 解下列方程:
(1)4x 2+x-(2x-3)(2x+3)=1 ; (2)2(x+3)(3-x )+2x+2x 2=20. 解:(1)4x 2+x-(2x-3)(2x+3)=1,
(2)你发现了什么规律?请用含有字母的式子表示出来.
解:(2)(2n-1)(2n+1)=4n 2-1(n 为正整数).
4 运用平方差公式计算:(2-1)(2+1)(22+1)(24+1).
解:(2-1)(2+1)(22+1)(24+1) =(22-1)(22+1)(24+1) =(24-1)(24+1) =28-1 =256-1 =255.
所以a 2-b 2=(a-b)(a+b)=2×16=32.
5 已知2a 2+3a-6=0,求式子3a (2a+1)-(2a+1)(2a-1)的值.
解:原式=6a 2+3a-4a 2+1=2a 2+3a+1, 因为2a 2+3a-6=0,所以2a 2+3a=6.
所以原式=7.
6 探究活动: (1)如图①,可以求出阴影
(2)395×405.
解:(1)998×1 002=(1 000-2)×(1 000+2)=1 0002-22
七年级下册多项式与多项式相乘说课优秀教案精选全文

可编辑修改精选全文完整版《多项式与多项式相乘》郴州苏仙中学贺建琴尊敬的各位评委、各位专家:大家好!我今天说课的课题是《多项式与多项式相乘》.这是我的说课流程图.我将从背景分析、教案目标设计、课堂结构设计、教案媒体设计、教案过程设计以及教案评价设计这六大部分来进行说明.一、背景分析我是从教材编写的思路、地位、作用、教案内容以及重点和难点来进行分析的.1.教材编写的思路、地位和作用“多项式与多项式相乘”安排在数学七年级下册第四章第三节.它是学生在学习完单项式乘以多项式之后安排的内容,既是单项式与多项式相乘的应用与推广,又为今后学习乘法公式、因式分解等知识作准备.同时,还可以激发学生对数学问题中蕴含的内在规律进行探索的兴趣和培养学生知识迁移的能力.因此,它在整个七---九年级数与式的学习中占有重要地位.2.教案内容本课教案内容是“多项式与多项式相乘”,按教案计划需1课时.3.重点和难点教案重点是:多项式与多项式乘法的法则及应用.教案难点是:多项式乘法法则的推导过程以及法则的应用.二、教案目标设计我根据数学课程标准结合教材内容和学生实际情况制定如下目标:(请看)1.知识与能力目标:通过学生自己的探索,用几何和代数两种方法得出多项式与多项式乘法的法则.在学生探究的过程中,培养学生思维的能力以及分析和解决问题的能力.2.过程与方法目标:在经历探索多项式与多项式乘法法则的过程中,体会数形结合的思想和整体代换的思想.3.情感态度价值观目标:通过数学活动,让学生对数学产生好奇心和求知欲;从而体会到探索与创造的乐趣和成功的喜悦.三、课堂结构设计为了充分调动学生的参与意识,更好的落实各工程标,我采用了小组讨论法和启发式等教案方法.1.创设情境,引入课题.以某小区绿化带面积扩建为实际背景来激发学生学习的兴趣并导入课题:多项式与多项式相乘2.探究新知,揭示规律.一方面学生以学习小组的形式参与拼图活动,在拼图的过程中体会代数的问题可用几何的方法解决;另一方面,通过比较(a+b)(m+n)与a (m+n)这两个代数运算式的联系与区别,来引导学生可以用代数的方法推导出多项式乘法的法则,使学生感受到代数与几何的内在联系,从而体会到数形结合和整体代换是重要的数学思想方法,它对学生今后的学习起很重要的作用.3.变式与提高.在理解法则后,学生基本上会用法则来进行计算,在计算过程中学生可能会出现符号错误及漏乘等问题.因此,为了解决上述问题,我设计了变式练习;又为了提高学生分析和解决问题的能力,我设计了提高练习.4.回顾与小结.通过教师的引导,让学生交流、归纳.这样安排的目的是培养学生归纳、总结问题的能力,并鼓励学生积极大胆的表达自己的思想和与他人交流思想,体现了学生是学习的主人,教师起组织者和引导者的作用.四、教案媒体设计根据学生的年龄特征和认知规律,我对教案媒体的利用进行如下设计:1.在创设情境,引入课题环节中,展示某小区绿化图,并由此引出本课时的课题.2.在探究新知,揭示规律环节中,演示拼图过程,帮助学生分析和思考,从而推导出法则.3.在变式与提高环节中,先展示练习题让学生进行训练,目的是节约时间,从而增加学生思维密度,提高课堂效率.然后再展示握手的动画,提醒学生避免漏乘.4.在回顾与小结环节中,展示小结内容,帮助学生把知识类化和构建知识结构.五、教案过程设计(它分为5个教案环节)1.创设情境,引入课题某小区有一块长a M,宽m M的长方形绿化带(如图1),为了使小区环境更加优美,开发商将绿化带的宽增加了n M(如图2),你能用代数式表示图2的面积吗?后来开发商又将这块绿化带的长增加了b M(如图3),你能用代数式表示图3的面积吗?m anmabnma图1图2 图3由图2得到:a (m+n )… ①由图3得到:(a+b ) (m+n )… ②针对这两个表达式,我设计下面两个问题.(1)你会计算①式吗?(2)你会计算②式吗?如果不会算,困难在哪里?问题的提出,促使学生观察和比较,主动地发现问题,提出问题,并产生解决问题的欲望.孔子曾经说过:“不愤,不启,不悱,不发”.当学生处于想解决问题的焦急状态时,我就顺势导入课题---多项式与多项式相乘.3. 探究新知,揭示规律.分为两个步骤进行:第一步: 如何得到它(a+b ) (m+n ) 的计算结果第二步:用代数的方法得到等式(a+b ) (m+n ) = am + an + bm + bn为了解决第一步的问题,我设计了一个拼图活动:发给每个学习小组如下图所示的四个矩形纸片,并用所发纸片拼出面积不同的矩形,比一比哪个小组的拼法多?这里我让学生分组活动,当学生分组活动结束后,我请学生上台展示他们的拼法,并引导他们观察,可以归纳为两类拼法:第一类,是由两个矩形拼成的;第二类是由四个矩形拼成的.以第一类中一个图形为例进行分析,让学生思考:nma﹙1﹚你能用不同的代数式表示它的面积吗?学生通过观察图形得到这两个结果:a (m+n )、am+ana ab m m n nb﹙2﹚ 这两个代数式相等吗?学生经过思考得出相等的结论.因为它们都表示同一个矩形的面积.﹙3﹚你能根据以前所学的知识,说明等式a (m+n )=am+an 从左到右是怎么得到的吗?设计以上问题,一方面起到复习单项式乘以多项式的内容,另一方面为下面得到多项式乘以多项式的结论作铺垫.针对第二类中一个图形为例,设计如下问题:﹙1﹚你能用几种方法表示第二类矩形的面积?学生经过思考、讨论得到下面四种结果:(a+b )(m+n ) m (a +b )+n (a +b ) a (m+n )+b (m+n ) am +an +bm +bn﹙2﹚这些代数式之间有什么关系?请说明理由.学生通过观察图形和代数式,能得到如下的等式.(a+b ) (m+n )= m (a+b)+n (a+b ) =a (m+n )+b (m+n )=am +bm+an+bn(a+b ) (m+n ) =m (a+b ) + n (a+b )…①(a+b ) (m+n ) = a (m+n ) + b (m+n )…②(a+b ) (m+n ) =am + an + bm + bn …③﹙3﹚请问等式①和等式②的右边还能计算吗?若能,它们计算的结果是什么? 学生经过计算得到的结果: 都是等式③的右边.由此,我们得出多项式乘以多项式的结果是:(a +b ) (m+n ) = a m + a n + bm + bn为了让学生从另一角度去理解多项式乘以多项式的结果,我让学生继续思考: 现在,你会算(a+b ) (m+n ) 吗?如果,还有学生不会算的话,我用多媒体展示(a+b )(m+n )与a (m+n )这两个代数运算式的联系与区别.目的是启发学生将(a+b ) 或(m+n ) 看成一个整体,进而将多项式乘以多项式化为单项式乘以多项式,从而推导出多项式与多项式乘法的法则.(a+b ) (m+n ) = am + an + bm + bn此时教师引导学生进一步认识到多项式乘以多项式本质上与单项式乘以多项式一样都是乘法对加法分配律的应用,从而突破了难点,进而让学生体会到整体n m n m m n n n代换的数学思想.在Array得出多项式乘法的法则后,我让学生试着用文字表述它,学生的叙述开始不一定完善,在此教师要帮助学生认识到法则的本质,并最终得出多项式与多项式的乘法法则.例题计算:(1)(2x+y) (3a –b);(2)(x+5) (x–2) .3.变式与提高在学习完例题后,为了让学生检验自己对法则的理解和掌握程度,规范学生的解题格式.我设计了如下练习:练习一:计算:(1)(2x+y) (x-3y);(2)(2a+b)2;(3) (a+b) (a-b);(4) (x+3) (x–4) .根据以往的教案经验,学生在学习中经常会出现下面几类问题:(1)最后结果没有合并同类项的问题;(2) 如何确定积中每一项的符号问题;(3)漏乘问题.为了进一步巩固基础知识,针对上述问题, 我设计了练习二.练习二:判断下列式子的运算是否正确,如果有问题请指出并加以改正.(1) (a-b) (-c-d) = ac –ad –bc +bd ;(2) (2x+3) (y-1) =2xy -2x+3y –3 ;(3)(2n+5) (n-3) = 2n2-6n+5n-15 ;(4)(x+3)(x+1) = x2 +3 .我先让学生自己独立去做,然后在小组内相互批改,最后各组开展交流.接着,针对类似于第四小点的漏乘问题,我设计了一个握手的动画.根据数学课程标准的基本理念:让不同的学生得到不同的发展,于是我设计了提高练习.提高练习:(1)已知(x+a)(x-4)= x2-x-12,那么a =;(2)若(x+a)(x+b)= x2+5x+6,则a= , b=.通过练习,我有意识地引导学生进一步观察结果中各项是如何得到的,目的是学生在掌握了多项式乘法的法则后,训练学生的发散思维和提高学生分析问题的能力.4.回顾与小结(1) (x-y) (3x+5y) = 3x2+2xy+( )y2,y2项的系数是多少?符号如何确定?(2)(m-n) ( a+2b+1)的计算结果有多少项?(3) 怎样计算(a –b) (a +c –b) ?我是用思考问题的形式进行,让学生对上述问题进行充分的思考﹑讨论, 教师引导学生归纳, 得出本课小结内容.多项式与多项式的乘法法则:多项式与多项式相乘,先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加. 即:(a+b) (m+n) = am+an+bm+bn法则运用过程中要注意的几类问题:①理解法则中两个“每一项”的含义,不要漏乘;②积中每一项的符号,多项式中每一项都包含它前面的符号,“同号得正,异号得负”;③展开式中有同类项的要合并同类项.5.作业布置教科书106页习题4.3中A组第8、9、10、11题为了尊重学生的个体差异,满足学有余力的学生需要,我特意安排了拓展练习: 多项式(my+8)(2-3y)的计算结果不含y项,求m的取值?这就是我整堂课的板书设计(略)六、评价设计这是一堂融知识传授、能力培养和思维训练为一体的课.它充分体现了数学课程标准的基本理念,教师的教案遵循了人本主义理论,在课堂上由机械的传授知识转移到以人为本的发展上来,注意了学生的个性化和多元化,学生的学习依据了建构主义理论.具体来说,本节课在教师的引导下,让学生在拼图的活动中遵循“探索--发现--合作--交流--归纳”等过程.让学生由关注结果向关注过程转变,注重了由知识本位向能力本位的转变.有意识地渗透数形结合和整体代换的数学思想方法,培养了学生动手实践的能力和逻辑思维的能力,从而整体提升了学生的素质.。