第七届全国周培源大学生力学竞赛试题及答案
周培源力学 竞赛资料

全国周培源大学生力学竞赛考试范围(参考)Ⅰ.理论力学(一)静力学(1)掌握力、力矩和力系的基本概念及其性质。
能熟练地计算力的投影、力对点的矩和力对轴的矩。
(2)掌握力偶、力偶矩和力偶系的基本概念及其性质。
能熟练地计算力偶矩及其投影。
(3)掌握力系的主矢和主矩的基本概念及其性质。
掌握汇交力系、平行力系与一般力系的简化方法、熟悉简化结果。
能熟练地计算各类力系的主矢和主矩。
掌握重心的概念及其位置计算的方法。
(4)掌握约束的概念及各种常见理想约束力的性质。
能熟练地画出单个刚体及刚体系受力图。
(5)掌握各种力系的平衡条件和平衡方程。
能熟练地求解单个刚体和简单刚体系的平衡问题。
(6)掌握滑动摩擦力和摩擦角的概念。
会求解考虑滑动摩擦时单个刚体和简单平面刚体系的平衡问题。
(二)运动学(1)掌握描述点运动的矢量法、直角坐标法和自然坐标法,会求点的运动轨迹,并能熟练地求解点的速度和加速度。
(2)掌握刚体平移和定轴转动的概念及其运动特征、定轴转动刚体上各点速度和加速度的矢量表示法。
能熟练求解定轴转动刚体的角速度、角加速度以及刚体上各点的速度和加速度。
(3)掌握点的复合运动的基本概念,掌握并能应用点的速度合成定理和加速度合成定理。
(4)掌握刚体平面运动的概念及其描述,掌握平面运动刚体速度瞬心的概念。
能熟练求解平面运动刚体的角速度与角加速度以及刚体上各点的速度和加速度。
(三)动力学(1)掌握建立质点的运动微分方程的方法。
了解两类动力学基本问题的求解方法。
(2)掌握刚体转动惯量的计算。
了解刚体惯性积和惯性主轴的概念。
(3)能熟练计算质点系与刚体的动量、动量矩和动能;并能熟练计算力的冲量(矩),力的功和势能。
(4)掌握动力学普遍定理(包括动量定理、质心运动定理、对固定点和质心的动量矩定理、动能定理)及相应的守恒定理,并会综合应用。
(5)掌握建立刚体平面运动动力学方程的方法。
了解其两类动力学基本问题的求解方法。
(6)掌握达朗贝尔惯性力的概念,掌握平面运动刚体达朗贝尔惯性力系的简化。
周培源大学生力学竞赛

竞赛范围理论力学一、基本部分(一) 静力学(1) 掌握力、力矩和力系的基本概念及其性质。
能熟练地计算力的投影、力对点的矩和力对轴的矩。
(2) 掌握力偶、力偶矩和力偶系的基本概念及其性质。
能熟练地计算力偶矩及其投影。
(3) 掌握力系的主矢和主矩的基本概念及其性质。
掌握汇交力系、平行力系与一般力系的简化方法、熟悉简化结果。
能熟练地计算各类力系的主矢和主矩。
掌握重心的概念及其位置计算的方法。
(4) 掌握约束的概念及各种常见理想约束力的性质。
能熟练地画出单个刚体及刚体系受力图。
(5) 掌握各种力系的平衡条件和平衡方程。
能熟练地求解单个刚体和简单刚体系的平衡问题。
(6) 掌握滑动摩擦力和摩擦角的概念。
会求解考虑滑动摩擦时单个刚体和简单平面刚体系的平衡问题。
(二)运动学(1) 掌握描述点运动的矢量法、直角坐标法和自然坐标法,会求点的运动轨迹,并能熟练地求解点的速度和加速度。
(2) 掌握刚体平移和定轴转动的概念及其运动特征、定轴转动刚体上各点速度和加速度的矢量表示法。
能熟练求解定轴转动刚体的角速度、角加速度以及刚体上各点的速度和加速度。
(3) 掌握点的复合运动的基本概念,掌握并能应用点的速度合成定理和加速度合成定理。
(4) 掌握刚体平面运动的概念及其描述,掌握平面运动刚体速度瞬心的概念。
能熟练求解平面运动刚体的角速度与角加速度以及刚体上各点的速度和加速度。
(三)动力学(1) 掌握建立质点的运动微分方程的方法。
了解两类动力学基本问题的求解方法。
(2) 掌握刚体转动惯量的计算。
了解刚体惯性积和惯性主轴的概念。
(3) 能熟练计算质点系与刚体的动量、动量矩和动能;并能熟练计算力的冲量(矩),力的功和势能。
(4) 掌握动力学普遍定理(包括动量定理、质心运动定理、对固定点和质心的动量矩定理、动能定理)及相应的守恒定理,并会综合应用。
(5) 掌握建立刚体平面运动动力学方程的方法。
了解其两类动力学基本问题的求解方法。
(6) 掌握达朗贝尔惯性力的概念,掌握平面运动刚体达朗贝尔惯性力系的简化。
第七届全国周培源大学生力学竞赛试题参考答案

第七届全国周培源大学生力学竞赛试题参考答案一、小球在高脚玻璃杯中的运动(20分)当小球自杯子的边缘由静止释放后沿杯子的内侧滑下到与铅垂方向夹角°≈63.4 ϕ时,高脚玻璃杯侧倾(一侧翘起)。
二、杂耍圆环(40分)1. 圆环不是匀质的,质心不在圆环的中心。
开始滚动角速度大,圆环一跳一跳地向前滚动;随后角速度减小,所以圆环不离开地面向前滚动。
2.(1)圆环自己滚回的条件为:rv 00>ω 方向如图所示。
(2)距离: s20221s 8g )v -(r )(g 21s f t t f ω=−⋅⋅= (3)圆环能不脱离接触地爬上台阶所应满足的条件为 :g )h r (4r )h 2r (v hg 4r 22212−<−< 3.当接触点A 与圆环中心C 的连线与铅垂线间的夹角t arctan arctanf r −=δα时,推力F 取最小值。
三、趣味单杠(30分)(1)结构中的最大应力][MPa 143max max σσ<==W M (2)结构中的最大应力][MPa 132max max σσ<==WM (3)在结构中增加拉杆后,(2)中为反对称结构,在对称面上只有反对称内力,故AB 杆轴力为零,无影响;(1)中为对称结构,在对称面上只有对称内力,故AB 杆轴力不为零,有影响。
四、跳板跳水(30分)(1)根据跳板的受力情况,可以将其简化为下图所示外伸梁。
(2)最小水平速度为 ==t s v 2/0.714m/s(3)跳板的最大动应力为==WM K B d d max σ78.02MPa (4)如运动员为弹性体,冲击时跳板中的最大动应力将减小。
(5)跳板的最大动应力为MPa 06.712162max max =⎟⎟⎠⎞⎜⎜⎝⎛+==a g bha Ga bh K W M K d d d γσ。
全国周培源大学生力学竞赛考试范围参考

全国周培源大学生力学竞赛考试范围(参考)理论力学一、基本部分(一) 静力学(1) 掌握力、力矩和力系的基本概念及其性质。
能熟练地计算力的投影、力对点的矩和力对轴的矩。
(2) 掌握力偶、力偶矩和力偶系的基本概念及其性质。
能熟练地计算力偶矩及其投影。
(3) 掌握力系的主矢和主矩的基本概念及其性质。
掌握汇交力系、平行力系与一般力系的简化方法、熟悉简化结果。
能熟练地计算各类力系的主矢和主矩。
掌握重心的概念及其位置计算的方法。
(4) 掌握约束的概念及各种常见理想约束力的性质。
能熟练地画出单个刚体及刚体系受力图。
(5) 掌握各种力系的平衡条件和平衡方程。
能熟练地求解单个刚体和简单刚体系的平衡问题。
(6) 掌握滑动摩擦力和摩擦角的概念。
会求解考虑滑动摩擦时单个刚体和简单平面刚体系的平衡问题。
(二)运动学(1) 掌握描述点运动的矢量法、直角坐标法和自然坐标法,会求点的运动轨迹,并能熟练地求解点的速度和加速度。
(2) 掌握刚体平移和定轴转动的概念及其运动特征、定轴转动刚体上各点速度和加速度的矢量表示法。
能熟练求解定轴转动刚体的角速度、角加速度以及刚体上各点的速度和加速度。
(3) 掌握点的复合运动的基本概念,掌握并能应用点的速度合成定理和加速度合成定理。
(4) 掌握刚体平面运动的概念及其描述,掌握平面运动刚体速度瞬心的概念。
能熟练求解平面运动刚体的角速度与角加速度以及刚体上各点的速度和加速度。
(三)动力学(1) 掌握建立质点的运动微分方程的方法。
了解两类动力学基本问题的求解方法。
(2) 掌握刚体转动惯量的计算。
了解刚体惯性积和惯性主轴的概念。
(3) 能熟练计算质点系与刚体的动量、动量矩和动能;并能熟练计算力的冲量(矩),力的功和势能。
(4) 掌握动力学普遍定理(包括动量定理、质心运动定理、对固定点和质心的动量矩定理、动能定理)及相应的守恒定理,并会综合应用。
(5) 掌握建立刚体平面运动动力学方程的方法。
了解其两类动力学基本问题的求解方法。
第六届第七届全国周培源大学生力学竞赛试题及答案

第六届全国周培源大学生力学竞赛试题出题学校:清华大学满分:120 分时间:3小时一、声东击西的射击手(30 分)射击的最高境界,不仅是指哪打哪,还要知道往哪儿指。
欢迎来到这个与众不同的射击场。
在这里,共有 10 个小球 P i(号码从0 到9),你需要把某个小球放在圆弧的适当位置上,然后静止释放小球即可。
假设系统在同一竖直平面内(如图所示),不考虑摩擦。
圆弧 AB的半径为R,B点与地面的高度为H 。
均质细杆CD的质量为M ,长为 L=0.5H ,悬挂点C与B处于同一水平位置,BC距离为S 。
小球 P i 质量均为m,不计半径,小球 iP与CD杆或地面碰撞的恢复因数均为 e i,且满足。
(1)为使小球 1 P击中杆上D点,试确定静止释放时的θ ,距离S 有何限制?(2)假设某小球击中CD杆上的E点,为使E点尽可能远离D点,试确定该小球的号码及静止释放时的θ ,此时CE的距离是多少?(3)假设某小球击中CD杆上的E点,为使悬挂点C处的冲量尽可能小,试确定该小球的号码及静止释放时的θ ,此时CE的距离是多少?冲量有多大?二、骄傲自满的大力士(35 分)有位大力士总是自命不凡,他夫人决定找机会教训他一下。
正好附近足球场的球门坏了一半,剩下的半边球门如图:立柱OA垂直固定于水平地面上,沿x轴方向,高为 H =2.4m ,横梁 AB平行于地面,沿z 轴负方向,长为L=H 。
立柱和横梁均为实心圆柱,直径均为 D = 0.06m 。
夫人经过计算后想出了主意:和丈夫比赛,看谁能把球门拉倒。
比赛规则是:通过系在横梁B端中点的绳索,只能用静力拉球门;绳索上有且只有B点系在与地面固定的物体上。
绳索的重量不计,长度不限。
球门不计自重,采用第三强度理论,材料的屈服应力σS =57MPa 。
大力士认为自己肯定不会输,因为他知道两人鞋底与地面摩擦系数都是μ =0.5 ,自己重量为 G1 = 700N ,夫人重量为 G2 = 700N。
全国周培源大学生力学竞赛辅导力学竞赛-静力学专题

1
1
2
2
平衡方程的快速练习
如何截断?
§3 空间力系
1. 空间力的投影和分解
O
x
y
F
z
直接投影法
F = Fx+Fy+Fz= Fx i+Fy j+Fz k
y
z
O
x
F
Fxy
二次投影法
F = Fx+Fy+Fz= Fx i+Fy j+Fz k
§3-2 力对点的矩和力对轴的矩
F1
F2
FR
FR
O
F1
F2
FR=F1+ F2
★ 作用在物体上同一点的两个力,可以合成为一个合力。合力的作用点也在该点,合力的大小和方向,由这两个力为边构成的平行四边形的对角线确定。
§1 静力学公理
A
★ 作用在刚体上的两个力,使刚体保持平衡的充要条件是: 这两个力的大小相等,方向相反,且在同一直线上。
1. 力对点的矩
O
A(x,y,z)
B
r
F
h
y
x
z
MO(F)
空间的力对O点之矩取决于:
(1)力矩的大小;
(2)力矩的转向;
(3)力矩作用面方位。
★ 须用一矢量表征
MO(F) =Fh=2△OAB
O
A(x,y,z)
B
r
F
h
y
x
z
MO(F)
MO(F)
定位矢量
2. 力对轴的矩
B
A
F
O
x
y
z
C
B
O
A
F3
周培源力学竞赛练习题(0331)
A端固定、D端由一有摩擦力的滑辊支承 的刚架,在C处受一水平力作用,如图所示, 已知刚架的抗弯刚度为EI,刚架各杆边长为a, 摩擦系数f=1/3,求:(1)刚架的弯矩图;(2) 点C的位移。
如图受力圆轴,已知固定端横截面上最大 弯曲正应力为40MPa,最大扭转剪应力为 30MPa,因剪力引起的最大剪应力为6KPa. 试用单元体画出在A、B、C、D各点处的应 力状态。
图示结构各杆的抗拉压 刚度均为EA,杆BG、DG、 GE、CE长度均为l,在E处 作用力P,求各杆的轴力 Ni(i =1,2,3,4)。
图示n根相距均为d的平行杆(n>2), 各杆长度为li,横截面面积为Ai,弹性模量为 Ei,杆两端均为铰支,在刚性杆上加载F后, 设刚性杆平行下移一距离,求第i杆中的内力 FNi及x的值。
周培源力学竞赛2023试题概要
周培源力学竞赛2023试题概要如下:
静力学:掌握力、力矩和力系的基本概念及其性质。
能熟练地计算力的投影、力对点的矩和力对轴的矩。
掌握力偶、力偶矩和力偶系的基本概念及其性质。
能熟练地计算力偶矩及其投影。
掌握力系的主矢和主矩的基本概念及其性质。
掌握汇交力系、平行力系及一般力系的简化方法、熟悉简化结果。
能熟练地计算各类力系的主矢和主矩。
掌握重心的概念及其位置计算的方法。
运动学:掌握描述点运动的矢量法、直角坐标法和自然坐标法,会求点的运动轨迹,并能熟练地求解点的速度和加速度。
掌握刚体平移和定轴转动的概念及其运动特征、定轴转动刚体上各点速度和加速度的矢量表示法。
掌握点的复合运动的基本概念,掌握并能应用点的速度合成定理和加速度合成定理。
掌握刚体平面运动的概念及其描述,掌握平面运动刚体速度瞬心的概念。
动力学:掌握建立质点的运动微分方程的方法。
周培源力学竞赛试题与解答
� �DC 和 DB 界边含包不但�CB 含包�DCB 形角三为区力受腿五得即�CB 上加�式等不个两这
得
据根�足满然自均
据根�足满然自均得求�)5(程方去舍� 0=1N 令�力受不 1 腿设�力受腿五�b� 。形情种几他其论讨限�象一第面桌于位儿特模设面下 为标坐点 B 中其� �界边含不�IHCB 形菱为域区的解到得
。亮全灯盏六此因。盾矛起引会就�亮不灯分部一另�亮灯分部有 设假果如。变不度长�压受不腿桌的应对示表亮不灯而�短变度长�压受腿桌的应对示表亮灯 。同相也态状的灯 5 与 2 而�的同相是总态状的灯 6、4、3 、1 以所。亮不灯 6 和灯 4�称对�轴 x�下上据根又。亮会不也灯 3�称对�轴 y�右左据根则 �亮不灯 1 果如�称对荷载与构结于由。下如号标的灯各及系标坐设。法证反及性称对用利 �来起亮灯盏几有会�央中正的台舞在站儿特模果如�2� 。件条调协的形变�衡平力受�词键关 �系关有容内么什的中学力与题问本�1� 台舞型新与儿特模、二 �3.oN�6891�题 021 第题问小》践实与学力《 �祥道周�自写改题本� 。过通全安 可亦人个一另�间之 m)57.0-635.0 (为离距座支左离段伸外左于立再人的桥木独过通。桥木 独过通全安可人一另�时间之 m)57.0-635.0(为离距的座支右离段伸外侧右于立人个一当以所 m5.7 ≤1x 得� ]M[ ≤1M 到虑考 64.7 ≤ 1x≤ 635.0 得解 需则�立成恒式上使欲 得据数如代� ]M[≤ 2M ]M[ ≤1M � 求要�过通全安要欲
子箱的师术魔 3 图
。衡平持保置位平水在能仍子箱其及板 BA �后板 BA 开离球圆当�是的讶惊人令更。了开推球圆把就地易轻然竟�球圆下一了推右向 轻轻棒魔用师术魔 。示所 3 图如�衡平持保以可仍统系�置位间中的板 BA 在定固子箱把又 师术魔后然。 ?为角夹线垂与线连的 B 点触接和 O 心圆且�衡平持保以可都球圆和板�上球圆 在置 q 放平水 BA 板性刚把先首师术魔。上面平水的性刚在放� 3M 为量质�球性刚的 R 为径 半是具道个一后最�动转铰 A 的滑光绕可� 2M 为量质�BA 板性刚质均的 L 为长是具道个一 另� 1M 为量质�子箱体方立明透不的 a 为长边是具道个一中其。目节个一演表要师术魔 �分 52�演表的师术魔、三 台舞新的儿特模 2 图
第7届周培源全国大学生力学竞赛题参考解答
第七届全国周培源大学生力学竞赛评分标准一、小球在高脚玻璃杯中的运动(20分)一半球形高脚玻璃杯,半径 r =5cm ,其质量m 1=0.3 kg ,杯底座半径R =5 cm ,厚度不计,杯脚高度h =10 cm 。
如果有一个质量1.02=m kg 的光滑小球自杯子的边缘由静止释放后沿杯的内侧滑下,小球的半径忽略不计。
已知杯子底座与水平面之间的静摩擦因数f s = 0.5。
试分析小球在运动过程中:(1)高脚玻璃杯会不会滑动;(2)高脚玻璃杯会不会侧倾(即一侧翘起)。
解: (1)分析杯子滑动情况设杯子不动,小球在杯子未运动前不脱离杯子。
取小球为研究对象,受力如图所示,应用动能定理有(2分)即由牛顿运动定理有ϕcos .2122g m F rv m −= (2分)解得(1分) 取杯子为研究对象,受力如图所示,0=∑x F ,0sin 1=−′F F ϕ0=∑y F ,ϕcos 11F g m F N ′−−=0 (2分)解得(1分)最大静滑动摩擦力N s F f F .max =,而=−F F mam 1.5)2sin cos 1(22ϕϕ−+g m ≥0由于max F F ≤,所以杯子不滑动。
(2分)A2ϕcos gr 0m 21222m v =−ϕϕ221N 2gcos 3m g 2sin g m 23+==m F F ϕcos 2gr v 2=′ϕgcos3m 21=F(2)分析杯子侧倾(一侧翘起)情况杯子处于侧倾的临界平衡状态时,0=x(2分)得 0cos 3sin cos 12=−ϕϕϕ+ (2分)解得 °==63.3 , 45.0cos &&ϕϕ;°==45 ,22cos ϕϕ。
即°=63.3 ϕ时,杯子倾侧(一侧翘起)。
(2分)通过以上分析得知,当小球自杯子的边缘由静止释放后沿杯子的内侧滑下到与铅垂方向夹角°=63.3 ϕ时,高脚玻璃杯侧倾(一侧翘起)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第七届全国周培源大学生力学竞赛试题
出题学校:西北工业大学 满分:120分 时间:3小时
一、小球在高脚玻璃杯中的运动(20分)
一半球形高脚玻璃杯,半径 r =5cm ,其质量m 1=0.3 kg ,杯底座半径R =5 cm ,厚度不计,杯脚高度h =10 cm 。
如果有一个质量1.02=m kg 的光滑小球自杯子的边缘由静止释放后沿杯的内侧滑下,小球的半径忽略不计。
已知杯子底座与水平面之间的静摩擦因数f s = 0.5。
试分析小球在运动过程中:(1)高脚玻璃杯会不会滑动;(2)高脚玻璃杯会不会侧倾(即一侧翘起)。
二、杂耍圆环(40分)
1.杂技演员将一个刚性圆环沿水平地面滚出,起始圆环一跳一跳地向前滚动,随后不离开地面向前滚动,为什么?
2.杂技演员拿出一个匀质圆环,沿粗糙的水平地面向前抛出,不久圆环又自动返回到演员跟前。
设圆环与地面接触瞬时圆环中心O 点的速度大小为0v ,圆环的角速度为0ω,圆环半径为r ,质量为m ,圆环与地面间的静摩擦因数为s f ,不计滚动摩阻,试问:
(1)圆环能自己滚回来的条件是什么?
(2)圆环开始向回滚动直到无滑动地滚动,在此运动过程中,圆环所走过的距离是多少?
(3)当圆环在水平地面上无滑动地滚动时,其中心的速度大小为v 1,圆环平面保持在铅垂平面内。
试分析圆环碰到高为h (h 2
r
<)的无弹性台阶后, 能不脱离接触地爬上该台阶所应满足的条件。
3.演员又用细铁棍推动题2中匀质圆环在水平地面上匀速纯滚动,假设圆环保持在铅垂平面内滚动,如图所示。
又知铁棍与圆环之间的静摩擦因数为 f t ,圆环与地面间的滚动摩阻系数为 δ 。
试求为使铁棍的推力(铁棍对圆环的作用力)最小,圆环上与铁棍的接触点的位置。
三、趣味单杠(30分)
单杠运动是奥运会、世界体操锦标赛、世界杯体操比赛中男子体操比赛项目之一。
单杠是体操比赛中最具观赏性的项目,也是观众最喜欢的运动,在学校和健身场所拥有众多的爱好者,小李和小张就是其中之一。
一天,他们准备在单杠上进行大回环比赛。
假设单杠的横杆和立柱均为直径D=28mm的钢杆,弹性模量E=200GPa,许用应力[σ]=160MPa,横杆长L=2.4m,立柱高H=2.6m。
立柱与地面、横杆与立柱之间均为固定联结。
假设两人旋转到单杠所在平面内时的惯性载荷均为F=1000N,不计人的自重。
1.试分析两人同步旋转到单杠所在平面内时,结构中的最大应力。
2.若两人相差180°旋转到单杠所在平面内,对结构中的最大应力有什么影响。
3.为提高结构承载能力,有人提出在单杠距地面0.6m处增加一个直径20mm
的横杆。
试定性分析该杆对上述两种情况的影响。
四、跳板跳水(30分)
举世瞩目的第29届北京奥林匹克运动会上,具有“梦之队”之称的中国跳水队获得了跳水比赛8枚金牌中的7枚,囊括了3m 跳板跳水的4枚金牌。
Duraflex 的Maxiflex Model B 跳水板是奥林匹克跳水比赛和国际级跳水比赛唯一指定使用的产品,它的具体尺寸如图所示,其中横截面尺寸为=b 0.5m ,=h 0.05m ,跳板的弹性模量GPa 70=E ,比重3kN/m 25=γ,m 2.3=a ,m 6.1=l 。
运动员从跳板上上跃至距地面最高点后落至跳板端点C ,再从跳板上弹起至空中完成动作后落水。
若运动员体重N 700=G ,最大弹跳高度m 6.0=H ,取2m/s 8.9=g 。
1. 根据所学知识,建立相应的力学分析模型。
2. 为保证运动员落水安全,运动员从空中落入水中时,在跳板所在平面处,运
动员质心距跳板C 端最小距离s 应大于0.5m 。
试求运动员从跳板上跃时所需最小水平速度(假设水平方向为匀速运动)?
3. 不计跳板质量,将运动员视为刚体时,运动员冲击跳板时,跳板中的最大动
应力为多少?在上述运动过程中,运动员冲击跳板时的动量损耗是多少?
4. 如运动员为弹性体,定性说明在冲击时跳板中的最大动应力增大还是减小?
5. 如考虑跳板质量,试计算跳板中的最大动应力。
第七届全国周培源大学生力学竞赛试题参考答案
一、小球在高脚玻璃杯中的运动(20分)
当小球自杯子的边缘由静止释放后沿杯子的内侧滑下到与铅垂方向夹角°=63.3 ϕ时,高脚玻璃杯侧倾(一侧翘起)。
二、杂耍圆环(40分)
1. 圆环不是匀质的,质心不在圆环的中心。
开始滚动角速度大,圆环一跳一跳地向前滚动;随后角速度减小,所以圆环不离开地面向前滚动。
2.(1)圆环自己滚回的条件为:
r v
00>ω 方向如图所示。
(2)距离: s
202
21s 8g )v -(r )(g 21s f t t f ω=
−⋅⋅= (3)圆环能不脱离接触地爬上台阶所应满足的条件为 :g )h r (4r )h 2r (v hg 4r 222
1
2−<−< 3.当接触点A 与圆环中心C 的连线与铅垂线间的夹角t arctg 2
f −=
π
α 时,推力F 取最小值。
三、趣味单杠(30分)
(1)结构中的最大应力][MPa 143max
max σσ<==W
M (2)结构中的最大应力][MPa 132max
max σσ<==
W
M (3)在结构中增加横杆后,(2)中为反对称结构,在对称面上只有反对称内力,故AB 杆轴力为零,无影响;(1)中为对称结构,在对称面上只有对称内力,故AB 杆轴力不为零,有影响。
四、跳板跳水(30分)
(1)根据跳板的受力情况,可以将其简化为下图所示外伸梁。
(2)最小水平速度为 ==t s v 2/0.714m/s (3)跳板的最大动应力为==W
M K B
d
d max σ78.02MPa
动量损失为s N 86.18822,21⋅=Δ−=
−=Δst C g g
G
gH g G L L L (4)如运动员为弹性体,冲击时跳板中的最大动应力将减小。
(5)跳板的最大动应力为MPa 9.612162max max =⎟⎟⎠
⎞
⎜⎜⎝⎛+==a g bha Ga bh K W M K d d
d γσ。