第五章参数估计与非参数估计

合集下载

参数估计知识点

参数估计知识点

参数估计知识点一、知识概述《参数估计》①基本定义:简单说,参数估计就是通过样本数据去猜总体的一些参数。

比如说,想知道全校学生的平均身高,不可能一个一个去量,那就找一部分学生(样本)量出他们的身高,然后根据这部分学生的身高数据来推测全校学生(总体)的平均身高,这个推测的过程就是参数估计。

②重要程度:在统计学里那可相当重要。

就像要了解一个大群体的情况,直接研究整体往往很难,通过参数估计从样本推测整体的情况就变得可行而且高效。

无论是搞市场调查,还是科学研究,这个工具相当好使。

③前置知识:得有点基本的数学知识,像平均数、方差这些概念要能明白,还得对抽样有点概念,知道怎么从一个大群体里抽取样本出来。

④应用价值:在各种实际场景里都有用。

比如企业想了解消费者对产品的满意度,不可能访谈每个消费者,抽样一部分做参数估计就好了。

还有估算农作物亩产量之类的,都可以用到。

二、知识体系①知识图谱:在统计学里,参数估计是推断统计的一部分,是和假设检验等方法相互联系的。

推断统计主要就是根据样本信息推断总体特征,而参数估计是其中很核心的一部分。

②关联知识:和抽样分布密切相关啊。

抽样分布是参数估计的理论基础,如果不知道抽样分布,那参数估计就像无根之木。

还和概率相关,毕竟在样本中各种数值出现是有概率的。

③重难点分析:掌握难度嘛,开始会觉得有点抽象。

关键在于理解样本和总体之间的关系,以及怎么根据不同的条件选择合适的估计方法。

④考点分析:在统计学考试里常考。

考查方式有直接给样本数据让进行参数估计,或者结合其他知识点,像给出抽样分布然后问参数估计的结果之类的。

三、详细讲解【理论概念类】①概念辨析:参数估计就是根据样本统计量去估计总体参数。

总体参数就是描述总体特征的数值,像总体均值、方差之类的。

样本统计量就是从样本里计算出来的值,比如说样本均值、样本方差等。

②特征分析:不确定性算一个特点吧。

毕竟样本不是总体,根据样本做的估计不可能完全精准。

教育与心理统计学 第五章 假设检验考研笔记-精品

教育与心理统计学  第五章 假设检验考研笔记-精品
把出现小概率的随机事件称为小概率事件。
假设检验中的小概率原理[一级][16J]
假设检验的基本思想是概率性质的反证法,即其基本思想是基于〃小概率事件在一次实验中不可能发生”这一原理。首先假定虚无假设为
真,在虚无假设为真的前提下,如果小概率事件在一次试验中出现,则表明〃虚无假设为真"的假定是不止确的,因为假定小概率事件在
一次试验中是不可能出现的,所以也就不能接受虚无假设,应当拒绝零假设。若没有导致小概率事件出现,那就认为"虚无假设为真”的
假定是正确的,也就是说要接受虚无假设。假设推断的依据:小概率事件是否出现,这是对假设作出决断的依据。
检验的假设
Ho为真
真实情况
检验的事件发生的概率在99%或95%的范围内
检验的事件发生的概率在5%或1%以内
错误的概率,其前提是“Ho为假
②它们都是在做假设检验的统计决策时可能犯的错误,决策者同时面临犯两种错误的风险,因此都极力想避免或者减少它们,但由于在忠
体间真实差异不变情况下,它们之间是一种此消彼长的关系,即a大时,0小;c(和B不能同时减少。
③在其他条件不变的情况下,不可能同时减小或增大两种错误的发生可能,常用的办法是固定a的情况下尽可能减小B,比如通过增大样本
若进行假设检验时总体的分布形态已知,需要对总体的未知参数进行假设检验,称其为参数假设检验。
(三)非参数检验[一级]
若对总体分布形式所知甚少,需要对未知分布函数的形式及其他特征进行假设检验,通常称为非参数假设检验。
(四)小概率事件和显著性水平
(1)假设推断的依据就是小概率原理
小概率事件:通常情况下,将概率不超过0.05(即5%)的事件当作“小概率事件",有时也定为概率不超过0.01(即1%)或0.001(0.1%\

非参数估计(完整)PPT演示课件

非参数估计(完整)PPT演示课件

P p xdx p xV R
Pˆ k N
pˆ x k / N
V
对p(x) 在小区域内的平均值的估计
9
概率密度估计
当样本数量N固定时,体积V的大小对估计的 效果影响很大。
过大则平滑过多,不够精确; 过小则可能导致在此区域内无样本点,k=0。
此方法的有效性取决于样本数量的多少,以 及区域体积选择的合适。
11
概率密度估计
理论结果:
设有一系列包含x 的区域R1,R2,…,Rn,…,对 R1采用1个样本进行估计,对R2用2 个,…, Rn 包含kn个样本。Vn为Rn的体积。
pn
x

kn / N Vn
为p(x)的第n次估计
12
概率密度估计
如果要求 pn x 能够收敛到p(x),那么必须满足:
分布,而不必假设密度函数的形式已知。
2
主要内容
概率密度估计 Parzen窗估计 k-NN估计 最近邻分类器(NN) k-近邻分类器(k-NN)
3
概率密度估计
概率密度估计问题:
给定i.i.d.样本集: X x1, x2 , , xl
估计概率分布: p x
4
概率密度估计
10.0
h1 0.25
1.0
0.1
0.01
0.001 10.0
1.0
0.1
0.01
0.001 10.0
1.0
0.1
0.01
0.001 10.0
1.0
0.1
0.01
0.001 2 0 2
h1 1 2 0 2
h1 4 2 0 2 27
由图看出, PN(x)随N, h1的变化情况 ①当N=1时, PN(x)是一个以第一个样本为中心的正

第五章 参数估计

第五章 参数估计
(总体方差未知时,以样本方差代替)
1
X 2 t n1 n2 2
2
2 Sp
n1
n2
X
1
X 2 z
2
2 S12 S 2 n1 n2
2 Sp
2 2 n1 1S1 n2 1S 2
n1 n2 2
20
例题:

分别在城市1和城市2中随机抽取n1=400, n2=500的职工进行调查,经计算两城市职工的 平均月收入及标准差分别为X1=1650元,
22
思考题:

一个研究机构做了一项调查,以确定稳定的吸 烟者每周在香烟上的消费额。他们抽取49位固 定的吸烟者,发现均值为20元,标准差5元。
1.总体均值的点估计是多少?
2.总体均值μ的95%置信区间是什么?
23
思考题解答:
1.总体均值的点估计是20元。
2.总体均值μ的95%置信区间: 随机变量X表示每周香烟消费额,由题意可知,X=20, S=5,1-α=0.95,α=0.05;n=49 属于大样本,σ 未知以S估计。总体均值μ的95%置信区间为
P z Z z 1 2 2
P L U 1
X P z z 1 2 2 n
Step3:将上面等式进行等价变换即可。
P L U 1
第五章 参数估计
第五章 参数估计

利用样本数据对总体特征进行推断,通常在以下 两种情况下进行:

当总体分布类型已知(如:正态),根据样本数据对 总体分布的未知参数进行估计或检验。参数估 计或参数检验。(如:μ或σ为何?) 当总体分布类型未知或知道很少,根据样本数据 对总体的未知分布的形状或特征进行推断。非参 数检验。(如:是否正态分布?是否随机?)

非参数估计(完整)ppt课件

非参数估计(完整)ppt课件
1 1 u 1 , ,d j , j u 2 0 o th e r w is e
中心在原点的 单位超立方体
Parzen窗估计
落入以X为中心的立方体区域的样本数为:
x xi kn i 1 hn X处的密度估计为:
n
n k / n x x 1 1 n i ˆ p x n V n n V i 1 n h n
估计P(x|ω1)即PN(x) x6 0 1 2 x5 x3 x1 x2 3 4
1
x4 5 6
x
( u ) 解:选正态窗函数
12 exp( u ) 2 2
2
| x | | x | 1 1 x x i i ( ) ( u ) ( ) exp[ ] 2 2h h N N
P k 的期望值为: Ek N
对P的估计:
k ˆ P N
当 N 时, 估计是非 常精确的
概率密度估计

假设p(x)是连续的,且R足够小使得p(x)在R内几乎 没有变化。
令R是包含样本点x的一个区域,其体积为V,设有 N个训练样本,其中有k落在区域R中,则可对概率 密度作出一个估计: k ˆ P p x d x p x V P N R
可以验证: p ˆn x 0
ˆ x x1 d p
n
窗函数的要求
Parzen窗估计过程是一个内插过程,样本xi
距离x越近,对概率密度估计的贡献越大,越 远贡献越小。 只要满足如下条件,就可以作为窗函数:
u 0
u 1 u d
窗函数的形式
方窗函数
1 1, | u | (u ) 2 0.其他

《统计学》课后练习题答案

《统计学》课后练习题答案
4.用Excel汇总第二季度中三个月份的资料,用()功能。(知识点3.3答案:B)
A.透视表B.合并计算C.单变量求解D.分类汇总
5.小张收集了1957-2007年中国GDP的数据,如果要反映这50年我国生产发展的趋势,用什么图形最为合适?()(知识点3.5答案:D)
A.直方图B.散点图C.饼图D.折线图
37
பைடு நூலகம்33.6
130-140
12
10.9
103
93.6
19
17.3
140-150
5
4.5
108
98.2
7
6.4
150-160
2
1.8
110
100.0
2
1.8
合计
110
100




A.树苗高度低于110厘米的占总数的39.1%B.树苗高度低于110厘米的占总数的84.5%
C.树苗高度高于130厘米的有19棵D.树苗高度高于130厘米的有103棵
第二章数据的收集与整理
2.1数据的来源
2.2统计调查方案设计
2.3调查方法
2.4调查的组织方式:普查、抽样调查、重点调查、典型调查
2.5抽样的组织方式:简单随机抽样、系统抽样、分层抽样、整群抽样
2.6数据的审定:误差
2.7数据的分组
2.8.编制次数分布表:频数(次数)、频率
习题
一、单项选择题
1.小吴为写毕业论文去收集数据资料,()是次级数据。(知识点:2.1答案:C)
A.指标B.标志C.变量D.标志值
8.以一、二、三等品来衡量产品质地的优劣,那么该产品等级是()。(知识点:1.7答案:A)
A.品质标志B.数量标志C.质量指标D.数量指标

信号检测与估计理论(复习题解)

信号检测与估计理论(复习题解)
优缺点
最大似然估计法具有一致性和渐近无偏性等优点,但在小样本情况下可能存在偏差。此外,该方 法对模型的假设较为敏感,不同的模型假设可能导致不同的估计结果。
最小二乘法
01
原理
最小二乘法是一种基于误差平方和最小的参数估计方法, 它通过最小化预测值与观测值之间的误差平方和来估计模 型参数。
02 03
步骤
首先,构建包含未知参数的预测模型;然后,根据观测数 据计算预测值与观测值之间的误差平方和;接着,对误差 平方和求导并令其为零,得到参数的估计值;最后,通过 求解方程组得到参数的最小二乘估计值。
优缺点
最小二乘法具有计算简单、易于实现等优点,但在处理非 线性问题时可能效果不佳。此外,该方法对异常值和噪声 较为敏感,可能导致估计结果的偏差。
01
小波变换基本原理
小波变换是一种时频分析方法,通过伸缩和平移等运算对信号进行多尺
度细化分析,能够同时提供信号的时域和频域信息。
02
小波变换在信号去噪中的应用
小波变换具有良好的时频局部化特性,可以用于信号的去噪处理。通过
对小波系数进行阈值处理等操作,可以有效去除信号中的噪声成分。
03
小波变换在信号特征提取中的应用
3. 观察相关函数的峰值,判断是否超过预设门限。
实现步骤
2. 将待检测信号与本地参考信号进行相关运算。
优缺点:相关接收法不需要严格的信号同步,但要求参 考信号与待检测信号具有较高的相关性,且容易受到多 径效应和干扰的影响。
能量检测法
原理:能量检测法通过计算接收信号的能量来判断信号 是否存在。在噪声功率已知的情况下,可以通过比较接 收信号的能量与预设门限来判断信号是否存在。 1. 计算接收信号的能量。
经典参数估计方法

概率密度函数的估计

概率密度函数的估计
概率密度函数是描述随机变量取值概率分布的函数,是概率论中的核心概念。在实际问题中,类条件概率密度常常是未知的,因此需要通过样本集进行估计。估计方法主要分为参数估计和非参数估计两种。参数估计是在概率密度函数形式已知但参数未知的情况下,通过训练数据来估计参数,常用方法ห้องสมุดไป่ตู้最大似然估计和Bayes估计。最大似然估计是通过最大化似然函数来求解参数,使得估计出的概率密度函数最符合样本数据的分布。而Bayes估计则考虑了参数的先验分布,通过贝叶斯公式求出参数的后验分布,进而得到估计量。非参数估计是在总体概率密度函数形式未知的情况下,直接利用训练数据对概率密度进行推断,主要方法有Parzen窗法和kN-近邻法。Parzen窗法是通过某种函数表示某一样本对待估计的密度函数的贡献,所有样本所作贡献的线性组合视作对某点概率密度的估计。而kN-近邻法则是把窗扩大到刚好覆盖kN个点,落在窗内的样本点的数目固定,但窗宽是变化的,从而提高了分辨率。这些方法在模式识别、机器学习等领域有广泛应用,特别是在设计贝叶斯分类器时,需要利用样本集来估计类条件概率密度,进而完成分类器的设计。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

估计则是把待估的参数作为具有某种先验分布的随机变量,通
过对第i类学习样本Xi的观察,使概率密度分布P(Xi/θ)转化为
后验概率P(θ/Xi) ,再求贝叶斯估计。
估计步骤:
① 确定θ的先验分布P(θ),待估参数为随机变量。
② 用第i类样本xi=(x1, x2,…. xN)T求出样本的联合概率密度分布
P(xi|θ),它是θ的函数。
为比例因子,只与x有
∵ P(Xk| μ)=N(μ,σ2),P(u)=N(μ0,σ02)
N
P( | X i) a
1
exp{ 1 Xk 2
1
exp[ 1
0
2
]}
k1 2
2 2
2 0
a'exp{ 1[ N
Xk
2
0
2
]}
2 k 1
0
2020/6/29

a' ' exp{

P( X i | i. i) P( X i | i)
N
P(
X
k
|
i)
k 1
N个学习样本出现概率的乘积
N
N
取对数 :log
2020/6/29
P(X k | i)
log P( X k | i)
4
k 1
k 1
对θi求导,并令它为0:
1
...
N k 1
log
P( X
k
|
i)
0
P(Xi/θi)
根据以上四条假定,我们下边就可以只利用第i类学习样 本来估计第i类的概率密度,其它类的概率密度由其它类 的学习样本来估计。
2020/6/29
3
1.一般原则: 第i类样本的类条件概率密度:
P(Xi/ωi)= P(Xi/ωi﹒θi) = P(Xi/θi) 原属于i类的学习样本为Xi=(X1 , X2 ,…XN,)T i=1,2,…M 求θi的最大似然估计就是把P(Xi/θi)看成θi的函数,求 出使它最大时的θi值。 ∵学习样本独立从总体样本集中抽取的
待估参数为
服从正态分布 N
i 1
k 1
logP(X k | ) 0
所以在正态分布时
log
P(
X
k
|
)
1 2
log[
2
n
|
|]
1 2
X
k
T
1 X k
代入上式得
N
1
X
k
0
k 1
N
1 X k 0
k 1
2020/6/29
6
所以
1( N X k N ) 0
k 1
1 N
非参数估计:不假定数学模型,直接用已知类别的学习 样本的先验知识直接估计数学模型。
2020/6/29
1
二.监督学习与无监督学习
监督学习:在已知类别样本指导下的学习和训练, 参数估计和非参数估计都属于监督学习。
无监督学习:不知道样本类别,只知道样本的某些 信息去估计,如:聚类分析。
2020/6/29
B.多维情况:n个特征(学生可以自行推出下式)
估计值:1
1 N
N k 1Xk2Fra bibliotek1 N
N k 1
Xk
T
Xk
结论:①μ的估计即为学习样本的算术平均
②估计的协方差矩阵是矩阵
Xk
Xk
T
的算
术平均(nⅹn阵列, nⅹn个值)
2020/6/29
9
二.贝叶斯估计
最大似然估计是把待估的参数看作固定的未知量,而贝叶斯
2
§5-2参数估计理论
一.最大似然估计
假定:
①待估参数θ是确定的未知量 ②按类别把样本分成M类X1,X2,X3,… XM
其中第i类的样本共N个
Xi = (X1,X2,… XN)T 并且是独立从总体中抽取的
③ Xi中的样本不包含 j (i≠j)的信息,所以可以对每一
类样本独立进行处理。
④ 第i类的待估参数 i (1, 2,... n)T
1 2
[( N
2
1)
2 0
2
2( 1
2
N k 1
Xk
0 )]}
2 0
12
其中a’,a’’包含了所有与μ无关的因
∴P(μ| xi)是u的二次函数的指数函数 ∴P(μ| xi)仍然是一个正态函数, P(μ|Xi)=N(μN,σN2)
③ 利用贝叶斯公式,求θ的后验概率
P( | X i)
P( X i | ).P( ) P(X i | )P( )d
④ 求贝叶斯估计 P( | X i)d(证明略)
2020/6/29
10
下面以正态分布的均值估计为例说明贝叶斯估计的过程
一维正态分布:已知σ2,估计μ
假设概率密度服从正态分布:
P(X|μ)=N(μ,σ2), P(μ)=N(μ0,σ02) 第i类学习样本xi=(x1, x2,…. xN)T, 第i类概率密度P(x|μi,xi)=P(x|xi)
1 (X
2
k
1)
0
N
k 1
2
log
P(X k
| i)
N
[
k 1
1
2 2
(X k 1)2]
2
2 2
0
1
1
1 N
N
Xk
k 1
即学习样本的算术平均
2020/6/29
2
2 1
1 N
N k 1
2
Xk
样本方差
8
讨论:
1.正态总体均值的最大似然估计即为学习样本的算术平均 2.正态总体方差的最大似然估计与样本的方差不同,当N较 大的时候,二者的差别不大。
i=1,2,…M
所以后验概率
P( | X i) P( X i | ).P( )
P( X i | )P( )d
(贝叶斯公式)
2020/6/29
11
因为N个样本是独立抽取的,所以上式可以写成
N
P( | X i) a P(X k | ).P() k 1
其中 a 1
关,与μ无关
P(X i | )P()d
§5-1 参数估计与监督学习
贝叶斯分类器中只要知道先验概率,条件概率或后验概 概率 P(ωi),P(x/ωi), P(ωi /x)就可以设计分类器了。现在 来研究如何用已知训练样本的信息去估计P(ωi),P(x/ωi), P(ωi /x) 一.参数估计与非参数估计
参数估计:先假定研究的问题具有某种数学模型,如 正态分布,二项分布,再用已知类别的学习 样本估计里面的参数。
N
Xk
k 1
这说明未知均值的最大似然估计正好是训练样本的算术
平均。
2020/6/29
7
② ∑, μ均未知
A. 一维情况:n=1对于每个学习样本只有一个特征的简单
情况:
1
1,
2
2 1
log
由上式得
P(
X
k
|
i)
1 2
log
2
2
1
2
2
Xk
2
1
(n=1)
N
代入
k 1
1
log
P( X
k
| i)
N k 1
p
N k 1
1
logP(
X
k
|
i)
0
.........
.........
N k 1
p
logP(
X
k
|
i)
0
利用上式求出 i的估值 ,即为 i=
有时上式是多解的, 上图有5个解,只有一个解最大即.
2020/6/29
5
2. 多维正态分布情况
① ∑已知, μ未知,估计μ
P( X i | i)
相关文档
最新文档