2.4.1二次函数的应用(1)

合集下载

北师大版九年级数学下册2.4《二次函数的应用》课件

北师大版九年级数学下册2.4《二次函数的应用》课件

何值时,y的最大值是多少?
H
D
B
(2).y=xb=x
﹣1225
x+24

P┐ G A
N
=﹣12
40cm
x 2+24 x =﹣12(x-25)2+300.
25
25
想一想
何时面积最大
如图,在一个直角三角形的内部作一个矩形ABCD,其中
点A和点D分别在两直角边上,BC在斜边上.
(2).设矩形的面积为ym2,当x取 M C
(1).如果设矩形的一边AD =
M
30cm xcm
xcm,那么AB边的长度如何表示? D
C
解:(1)设 AB=bcm
易得 b=﹣4 x+40 3
┐ bcm
A
B
N
40cm
想一想
何时面积最大
如图,在一个直角三角形的内部作一个矩形ABCD,其中 AB和AD分别在两直角边上.
(2).设矩形的面积为ym2,当x取
所以,顶点坐标为:(﹣1,﹣7), 对称轴为x =﹣1
想一想
何时面积最大
例1:如图,在一个直角三角形的内部作一个 矩形ABCD,其中AB和AD分别在两直角边上.
M
30cm
D
C

A
B
N
40cm (1).设矩形的一边AB = xcm,那么AD边的长度如
何表示?
(2).设矩形的面积为ym2 ,当x取何值时,y的最大值
M
或用公式:
当 x=﹣ b =15 时,
2a
y最大值=
4ac-b2 4a
=300.
xcm
D
C
bcm

A
B
N

北师大版九年级数学下册:2.4《二次函数的应用》说课稿

北师大版九年级数学下册:2.4《二次函数的应用》说课稿

北师大版九年级数学下册:2.4《二次函数的应用》说课稿一. 教材分析北师大版九年级数学下册2.4《二次函数的应用》这一节主要介绍了二次函数在实际生活中的应用,通过学习,学生能够理解二次函数在实际生活中的意义,掌握二次函数解决实际问题的方法。

教材通过实例引导学生利用二次函数解决实际问题,培养学生的数学应用能力。

二. 学情分析九年级的学生已经学习了二次函数的基本知识,对二次函数的图像和性质有一定的了解。

但学生在解决实际问题时,往往不知道如何将实际问题转化为二次函数问题,因此,在教学过程中,教师需要引导学生将实际问题抽象为二次函数模型,并运用二次函数的知识解决实际问题。

三. 说教学目标1.让学生理解二次函数在实际生活中的应用,体会数学与生活的联系。

2.培养学生将实际问题转化为二次函数模型,并运用二次函数解决实际问题的能力。

3.提高学生的数学思维能力,培养学生的数学素养。

四. 说教学重难点1.教学重点:让学生掌握二次函数解决实际问题的方法,培养学生的数学应用能力。

2.教学难点:如何引导学生将实际问题转化为二次函数模型,并运用二次函数的知识解决实际问题。

五.说教学方法与手段1.采用问题驱动的教学方法,引导学生从实际问题中发现数学问题,运用数学知识解决实际问题。

2.利用多媒体教学手段,展示二次函数在实际生活中的应用实例,增强学生的直观感受。

3.采用小组合作学习的方式,让学生在讨论中思考,培养学生的团队合作能力。

六. 说教学过程1.导入:通过展示一些实际问题,如抛物线形的物体运动、最大利润问题等,引导学生发现这些问题都可以用二次函数来解决,激发学生的学习兴趣。

2.新课导入:介绍二次函数在实际生活中的应用,引导学生理解二次函数的实际意义。

3.实例讲解:通过具体实例,讲解如何将实际问题转化为二次函数模型,并运用二次函数解决实际问题。

4.课堂练习:让学生尝试解决一些实际问题,巩固所学知识。

5.总结提升:引导学生总结二次函数解决实际问题的方法,提高学生的数学应用能力。

北师大版初三下册数学 2.4 二次函数的应用 教案(教学设计)

北师大版初三下册数学 2.4  二次函数的应用 教案(教学设计)

2.4.1 二次函数的应用一、教学目标1.掌握长方形和窗户透光最大面积问题,体会数学的模型思想和数学应用价值.2.学会分析和表示不同背景下实际问题中的变量之间的二次函数关系,并运用二次函数的知识解决实际问题.二、课时安排1课时三、教学重点掌握长方形和窗户透光最大面积问题,体会数学的模型思想和数学应用价值.四、教学难点运用二次函数的知识解决实际问题.五、教学过程(一)导入新课引导学生把握二次函数的最值求法:(1)最大值:(2)最小值:(二)讲授新课活动1:小组合作如图,在一个直角三角形的内部作一个矩形ABCD ,其中AB 和AD 分别在两直角边上.(1)设矩形的一边AB=xm,那么AD 边的长度如何表示?(2)设矩形的面积为ym 2,当x 取何值时,y 的值最大?最大值是多少?解:()31AD bm,b x 30.4==-+设易得 ()2332(30)3044y xb x x x x ==-+=-+()2320300.4x =--+ 24:20,300.24b ac b x y a a-=-===最大值或用公式当时 活动2:探究归纳先将实际问题转化为数学问题,再将所求的问题用二次函数关系式表达出来,然后利用顶点坐标公式或者配方法求出最值,有时必须考虑其自变量的取值范围,根据图象求出最值.(三)重难点精讲例题:某建筑物的窗户如图所示,它的上半部是半圆,下半部是矩形,制造窗框的材料总长(图中所有黑线的长度和)为15m.当x 等于多少时,窗户通过的光线最多(结果精确到0.01m)?此时,窗户的面积是多少?解:4715.y x x ++π=由 157.4x x y --π=得 2215722()242x x x x S xy x π--ππ=+=+窗户面积 271522x x =-+ 2715225().21456x =--+ 2b 154ac b 225x 1.07,s 4.02.2a 144a 56-=-=≈==≈最大值当时 即当x≈1.07m 时,窗户通过的光线最多.此时窗户的面积为4.02m 2.(四)归纳小结“最大面积” 问题解决的基本思路:1.阅读题目,理解问题.2.分析问题中的变量和常量,以及它们之间的关系.3.用数量的关系式表示出它们之间的关系.4.根据二次函数的最值问题求出最大值、最小值.5.检验结果的合理性.(五)随堂检测1.将一条长为20cm的铁丝剪成两段,并以每一段铁丝的长度为周长各做成一个正方形,则这两个正方形面积之和的最小值是cm2.2.用长度为20m的金属材料制成如图所示的金属框,下部为矩形,上部为等腰直角三角形,其斜边长为2x m.当该金属框围成的图形面积最大时,图形中矩形的相邻两边长各为多少?请求出金属框围成的图形的最大面积.3.学校计划用地面砖铺设教学楼前的矩形广场的地面ABCD,已知矩形广场地面的长为100米,宽为80米,图案设计如图所示:广场的四角为小正方形,阴影部分为四个矩形,四个矩形的宽都是小正方形的边长,阴影部分铺设绿色地面砖,其余部分铺设白色地面砖.(1)要使铺设白色地面砖的面积为5 200平方米,那么矩形广场四角的小正方形的边长为多少米?(2)如图铺设白色地面砖的费用为每平方米30元,铺设绿色地面砖的费用为每平方米20元,当广场四角小正方形的边长为多少米时,铺设广场地面的总费用最少?最少费用是多少?4.如图,在矩形ABCD中,AB=m(m是大于0的常数),BC=8,E为线段BC上的动点(不与B,C重合).连接DE,作EF⊥DE,EF与线段BA交于点F,设CE=x,BF=y.(1)求y关于x的函数关系式.(2)若m=8,求x为何值时,y的值最大,最大值是多少?(3)若12y,要使△DEF为等腰三角形,m的值应为多少?m5.如图,东梅中学要在教学楼后面的空地上用40米长的竹篱笆围出一个矩形地块作生物园,矩形的一边用教学楼的外墙,其余三边用竹篱笆.设矩形的宽为x ,面积为y .(1)求y 与x 的函数关系式,并求出自变量x 的取值范围.(2)生物园的面积能否达到210平方米?说明理由.【答案】1.12.52. 根据题意可得:等腰三角形的直角边为2x m 矩形的一边长是2xm,其邻边长为((20422x1022x,2-+=-(121022222S x x x x ⎡⎤=•-++⎣⎦所以该金属框围成的面积 30202,.322x ==-+当时金属框围成的图形面积最大 )((()2x 602m ,1022103210210m .=--+⨯-=此时矩形的一边长为另一边长为 )2S 3002002m .=-最大3.解: (1)设矩形广场四角的小正方形的边长为x 米,根据题意得4x 2+(100-2x )(80-2x )=5 200,整理,得x 2-45x +350=0,解得:x 1=35,x 2=10,经检验x 1=35,x 2=10均适合题意,所以,要使铺设白色地面砖的面积为5 200平方米,则矩形广场四角的小正方形的边长为35米或者10米.(2)设铺设矩形广场地面的总费用为y 元,广场四角的小正方形的边长为x 米,则 y =30[4x 2+(100-2x)(80-2x)]+20[2x(100-2x)+2x(80-2x)]即y =80x 2-3 600x +240 000,配方,得y =80(x -22.5)2+199 500.当x =22.5时,y 的值最小,最小值为199 500.所以当矩形广场四角的小正方形的边长为22.5米时,铺设矩形广场地面的总费用最少,最少费用为199 500元.4. ⑴在矩形ABCD 中,∠B=∠C=90°,∴在Rt△BFE 中, ∠1+∠BFE=90°,又∵EF⊥DE, ∴∠1+∠2=90°,∴∠2=∠BFE,∴Rt△BFE∽Rt△CED, ∴BF BE CE CD =, ∴8y x x m-= 即28x x y m -=.⑵当m=8时,28,8x x y -=化成顶点式: ()21428y x =--+ (3)由12y m =,及28x x y m-=得关于x 的方程: 28120x x -+=,得1226x x ==,.∵△DEF 中∠FED 是直角,∴要使△DEF 是等腰三角形,则只能是EF=ED ,此时, Rt△BFE≌Rt△CED.∴当EC=2时,m=CD=BE=6;当EC=6时,m=CD=BE=2.即△DEF为等腰三角形,m的值应为6或2.5. 解:(1)依题意,得y=(40-2x)x.∴y=-2x2+40x.x的取值范围是0< x <20.(2)当y=210时,由(1)可得,-2x2+40x=210.即x2-20x+105=0.∵ a=1,b=-20,c=105,∴2--⨯⨯<(20)411050,∴此方程无实数根,即生物园的面积不能达到210平方米.六.板书设计2.4.1二次函数的应用探究:例题:“最大面积” 问题解决的基本思路:1.阅读题目,理解问题.2.分析问题中的变量和常量,以及它们之间的关系.3.用数量的关系式表示出它们之间的关系.4.根据二次函数的最值问题求出最大值、最小值.5.检验结果的合理性.2.4.2二次函数的应用一、教学目标1.经历探索T恤衫销售过程中最大利润等问题的过程,体会二次函数是一类最优化问题的数学模型,感受数学的应用价值.2.掌握实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题的最大值、最小值.二、课时安排1课时三、教学重点运用二次函数的知识求出实际问题的最大值、最小值.四、教学难点运用二次函数的知识求出实际问题的最大值、最小值.五、教学过程(一)导入新课某超市有一种商品,进价为2元,据市场调查,销售单价是13元时,平均每天销售量是50件,而销售价每降低1元,平均每天就可以多售出10件. 若设降价后售价为x元,每天利润为y元,则y与x之间的函数关系是怎样的?(二)讲授新课活动1:小组合作二次函数y=a(x-h)2+k(a 0),顶点坐标为(h,k),则①当a>0时,y有最小值k;②当a<0时,y有最大值k【探究】某商店经营T恤衫,已知成批购进时单价是2.5元.根据市场调查,销售量与销售单价满足如下关系:在一段时间内,单价是13.5元时,销售量是500件,而单价每降低1元,就可以多售出200件.请你帮助分析,销售单价是多少时,可以获利最多?【解析】设销售单价为x (x≤13.5)元,那么销售量可以表示为: 件;每件T恤衫的利润为: 元;所获总利润可以表示为: 元;即y=-200x 2+3 700x-8 000=-200(x-9.25)2+9 112.5∴当销售单价为 元时,可以获得最大利润,最大利润是 元.活动2:探究归纳先将实际问题转化为数学问题,再将所求的问题用二次函数关系式表达出来,然后利用顶点坐标公式或者配方法求出最值,有时必须考虑其自变量的取值范围,根据图象求出最值.(三)重难点精讲例题2.某宾馆有50个房间供游客住宿,当每个房间的房价为每天180元时,房间会全部住满.当每个房间每天的房价每增加10元时,就会有一个房间空闲.宾馆需对游客居住的每个房间每天支出20元的各种费用.根据规定,每个房间每天的房价不得高于340元.设每个房间的房价每天增加x 元(x 为10的整数倍).(1)设一天订住的房间数为y ,直接写出y 与x 的函数关系式及自变量x 的取值范围.(2)设宾馆一天的利润为w 元,求w 与x 的函数关系式.(3)一天订住多少个房间时,宾馆的利润最大?最大利润是多少元?【解析】(1)y=50-10x ; (2)w=(180+x-20)y=(180+x-20)(50-10x )=2x 34x 8 000.10-++ (3)因为w=2x 34x 8 000,10-++ 所以x=b -2a=170时,w 有最大值,而170>160,故由函数性质知,x=160时,利润最大,此时订房数y=50- 10x =34,此时的利润为10 880元.例题3 某水果批发商场经销一种水果,如果每千克盈利5元,每天可售出200千克,经市场调查发现,在进价不变的情况下,若每千克涨价1元,销售量将减少10千克.(1)现该商场要保证每天盈利1 500元,同时又要顾客得到实惠,那么每千克应涨价多少元?(2)若该商场单纯从经济利益角度考虑,这种水果每千克涨价多少元,能使商场获利最多?【解析】(1)设每千克应涨价x元,列方程,得(5+x)(200-10x)=1 500,解得x1=10,x2=5.因为要顾客得到实惠,5<10,所以x=5. 答:每千克应涨价5元.(2)设商场每天获得的利润为y元,则根据题意,得y=( x +5)(200-10x)= -10x2+150x+1 000,当x=1507.522(10)ba-=-=⨯-时,y有最大值.因此,这种水果每千克涨价7.5元,能使商场获利最多(四)归纳小结“何时获得最大利润” 问题解决的基本思路.1.根据实际问题列出二次函数关系式.2.根据二次函数的最值问题求出最大利润(五)随堂检测1.某广场有一喷水池,水从地面喷出,如图,以水平地面为轴,出水点为原点,建立平面直角坐标系,水在空中划出的曲线是抛物线y=-(x-2)2+4(单位:米)的一部分,则水喷出的最大高度是( )A.4米B.3米C.2米D.1米2.为迎接第四届世界太阳城大会,德州市把主要路段路灯更换为太阳能路灯.已知太阳能路灯售价为5 000元/个,目前两个商家有此产品.甲商家用如下方法促销:若购买路灯不超过100个,按原价付款;若一次性购买100个以上,则购买的个数每增加一个,其价格减少10元,但太阳能路灯的售价不得低于3 500元/个.乙商家一律按原价的80℅销售.现购买太阳能路灯x个,如果全部在甲商家购买,则所需金额为y1元;如果全部在乙商家购买,则所需金额为y2元.(1)分别求出y1,y2与x之间的函数关系式.(2)若市政府投资140万元,最多能购买多少个太阳能路灯?3.桃河公园要建造圆形喷水池.在水池中央垂直于水面处安装一个柱子OA,O恰在水面中心,OA=1.25m.由柱子顶端A处的喷头向外喷水,水流在各个方向沿形状相同的抛物线落下,为使水流形状较为漂亮,要求设计成水流在距离OA 1m处达到最大高度2.25m.如果不计其他因素,那么水池的半径至少要多少米,才能使喷出的水流不致落到池外?4.某市政府大力扶持大学生创业.李明在政府的扶持下投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y (件)与销售单价x (元)之间的关系可近似地看作一次函数:(1)设李明每月获得利润为w (元),当销售单价定为多少元时,每月可获得最大利润?(2)如果李明想要每月获得2 000元的利润,那么销售单价应定为多少元?(3)根据物价部门规定,这种护眼台灯的销售单价不得高于32元,如果李明想要每月获得的利润不低于2 000元,那么他每月的成本最少需要多少元?(成本=进价×销售量)【答案】1. 【解析】选A. 抛物线的顶点坐标为(2,4),所以水喷出的最大高度是4米.2. 【解析】(1)由题意可知,当x ≤100时,购买一个需5 000元,故y 1=5 000x当x>100时,因为购买个数每增加一个,其价格减少10元但售价不得低于3 500元/个,所以x ≤ 5 000 3 50010025010-+= 即100<x≤250时,购买一个需5 000-10(x-100)元,故y 1=6 000x-10x 2;当x>250时,购买一个需3 500元,故y 1=3 500x;21 5 000x,y 6 000x 10x ,3 500x,⎧⎪=-⎨⎪⎩所以 0x 100100x 250x 250≤≤<≤> 2500080%4000.y x x =⨯=(2) 当0≤x ≤100时,y 1=5 000x ≤500 000<1 400 000;当100<x ≤250时,y 1=6 000x -10x 2=-10(x -300)2+900 000<1 400 000;∴由35001400000x = 得到x=400由40001400000x = 得到350400x =<故选择甲商家,最多能购买400个太阳能路灯3.【解析】建立如图所示的坐标系,根据题意,得,点A(0,1.25),顶点B(1,2.25).设抛物线的表达式为y=a(x-h)2+k,由待定系数法可求得抛物线表达式为:y=-(x-1)2+2.25. 当y=0时,得点C(2.5,0);同理,点D(-2.5,0).根据对称性,那么水池的半径至少要2.5m,才能使喷出的水流不致落到池外.4.解析:(1)由题意,得:w = (x -20)·y=(x -20)·(-10x+500)=-10x 2+700x-10 000 当352b x a=-=时,w 有最大值. 答:当销售单价定为35元时,每月可获得最大利润.(2)由题意,得21070010 000 2 000.x x -+-=解这个方程,得x 1 = 30,x 2 = 40.答:李明想要每月获得2 000元的利润,销售单价应定为30元或40元.(3)∵10a =-<0∴抛物线开口向下.∴当30≤x≤40时,w≥2 000.∵x≤32,∴当30≤x≤32时,w≥2 000. 设成本为P (元),由题意,得P=20(-10x+500)=-200x+10 000, ∵k=-200<0,∴P 随x 的增大而减小.∴当x = 32时,P 最小=3 600.答:想要每月获得的利润不低于2 000元,每月的成本最少需要3 600元.六.板书设计2.4.2二次函数的应用探究:例题2:例题3:“何时获得最大利润” 问题解决的基本思路.1.根据实际问题列出二次函数关系式;2.根据二次函数的最值问题求出最大利润.。

沪科版(2012)初中数学九年级上册 21.4.1 二次函数的应用 求最值问题 教案

沪科版(2012)初中数学九年级上册 21.4.1 二次函数的应用 求最值问题 教案

第1课时二次函数的应用---求最值问题教学目标【知识与技能】能应用二次函数的图象来分析问题、解决问题,在应用中体会二次函数的实际意义.【过程与方法】1.通过将二次函数应用于解决实际问题体验数学在实际生活中的广泛应用,发展数学思维.2.在数学建模中使学生学会交流、合作.【情感、态度与价值观】培养学生独立思考和合作探究的能力,在交流、探讨的过程中培养学生的交际能力和语言表达能力,促进学生综合素质的养成.重点难点【重点】用二次函数的性质解决实际问题,特别是最大值、最小值问题.【难点】建立二次函数的数学模型.教学设计一、创设情境,导入新知问题1:二次函数关系式有哪几种表达方式?二次函数有哪些性质? 学生回忆.教师提示:结合函数的图象(1)一般式:y=ax2+bx+c (a≠0)(2)顶点式:y =a(x +h)2+k (a≠0)(3)交点式:y = a(x +x 1 ) (x +x 2) (a≠0)y 随x 的变化增减的性质,有最大值或最小值.将下面二次函数一般式和交点式化为顶点式,写出最值和相应的x : (1)y= 3x 2- 3x+2 (2)y=(x+1)(2-x)我们今天就用二次函数的这些性质来解决教材21.1节开关提出的一个实际问题.引出课题:21.4二次函数的应用(1)二、共同探究,获取新知1、教师多媒体课件出示:某水产养殖户用长40m 的围网,在水库中围一块矩形的水面,投放鱼苗,设此矩形水面的长为xm,面积为Sm 2.那么,S 与x 之间有怎样的函数关系?要使围成的水面面积最大,它的长应是多少米?2、学生交流、讨论回答.S 与x 之间的函数关系式为:S=x(20-x).要使围成的水面面积最大,就要使S 取得最大值,它的长应该取图象顶点的横坐标.那怎么求出这个横坐标呢?(配方,变为顶点式求出;直接用顶点横坐标的公式x=-a b2)用这两种方法都可以求出.请同学们求一下面积最大时长应是多少,并求出最大面积是多少.学生计算后回答.生:将这个函数关系式配方,得S=-(x-10)2+100(0<x<20)显然,这个函数的图象是一条开口向下的抛物线中的一段,它的顶点坐标是(10,100),所以,当x=10m 时,函数取得最大值,最大值为S 最大值=100m 2.这就是说,当围成的矩形水面长为10m,宽为10m 时,它的面积最大,最大面积是100m 2.教师多媒体课件出示解答完整过程解:设矩形水面的一边长为x m,则矩形水面的另一边长为(20-x )m ,矩形水面面积为S ㎡,根据题意得S= x(20-x)∴S= -x 2+ 20x (0<x<20)∵a= -1<0∴S 有最大值,当 x=-a b2=-)1(220-⨯=10 m 时,S 最大值=a b ac 442-=100m 2答:当围成的矩形水面边长都为 10 m 时,它最大面积为100 m2.三、练习新知1、教师找两生分别板演教材第P 36页练习的第1题,然后集体订正.教师多媒体课件出示:解:设增加x 人,则共有(15+x )个装配工,每人每天可少装配10个玩具,每人每天只装配(190-10x )个玩具,增加人数后,每天装配玩具总数y,根据题意得y=(190-10x)(15+x)=-10x2+40x+2850 (0<x<19)=-10(x-2)2+2890∵a=-10<0∴y 有最大值,当x=2人时, y max =2890 (个)答:增加2人才能使装配玩具总数最多,最多是2890个。

2.4-二次函数的应用(第1课时)教学设计

2.4-二次函数的应用(第1课时)教学设计

2.4-二次函数的应用(第1课时)教学设计第二章二次函数《二次函数的应用(第1课时)》一.教学任务教学目标知识目标:能够分析和表示不同背景下实际问题中变量之间的二次函数关系,并能够运用二次函数的知识解决实际问题中的最大(小)值.能力目标:1.通过分析和表示不同背景下实际问题中变量之间的二次函数关系,培养学生的分析判断能力.2.通过运用二次函数的知识解决实际问题,培养学生的数学应用能力.情感态度与价值观:1.经历探究长方形和窗户透光最大面积问题的过程,获得利用数学方法解决实际问题的经验,并进一步感受数学模型思想和数学的应用价值.2.能够对解决问题的基本策略进行反思,形成个人解决问题的风格.3.进一步体会数学与人类社会的密切联系,了解数学的价值,增进对数学的理解和学好数学的信心,具有初步的创新精神和实践能力.教学重点1.经历探究长方形和窗户透光最大面积问题的过程,获得利用数学方法解决实际问题的经验,并进一步感受数学模型思想和数学的应用价值.2.能够分析和表示不同背景下实际问题中变量之间的二次函数关系,并能够运用二次函数的知识解决实际问题.教学难点能够分析和表示不同背景下实际问题中变量之间的二次函数关系,并能运用二次函数的有关知识解决最大(小)面积问题.时板书解题过程,让学生明确规范的书写过程.2、变式探究一:如图,在一个直角三角形的内部画一个矩形ABCD ,其中AB 和AD 分别在两直角边上,AN=40m ,AM=30m , (1).设矩形的一边AB=x m,那么AD 边的长度如何表示? (2).设矩形的面积为2ym ,当x 取何值时,y 的最大值是多少?变式探究二:在上一个问题中,如果把矩形改为如图所示的位置,其顶点A 和点D 分别在两直角边上,BC 在斜边上.其它条件不变,那么矩形的最大面积是多少?变式探究三:如图,已知△ABC 是一等腰三角形铁板余料,AB=AC=20cm, BC=24cm.若在△ABC 上截出一矩形零件DEFG ,使得EF 在BC 上,点D 、G 分别在边AB 、AC 上.问矩形DEFG 的最大面积是多少?【设计意图】:通过由学生讨论怎样用直角三角形剪出一个最大面积的矩形C BD ANM D ABCMPNA B CD EF G入手,由学生动手画出两种方法,和同学一起从问题中抽象出二次函数的模型,并求其最值,同时通过两种情况的分析,训练学生的发散思维能力,关键是教会学生方法,也是这类问题的难点所在,即怎样设未知数,怎样转化为我们熟悉的数学问题.在此基础上对变式三进行探究,进而总结此类题型,得出解决问题的一般方法.例2.在矩形ABCD 中,AB =6cm ,BC =12cm ,点P 从点A 出发沿AB 边向点B 以1cm /秒的速度移动,同时点Q 从点B 出发沿BC 边向点C 以2cm /秒的速度移动.如果P 、Q 两点在分别到达B 、C 两点后就停止移动,设运动时间为t 秒(0<t<6),回答下列问题:(1)运动开始后第几秒时,△PBQ 的面积等于82cm ;(2)设五边形APQCD 的面积为S 2cm ,写出S 与t 的函数关系式,t 为何值时S 最小?求出S 的最小值.【设计意图】:将动点问题引入,使学生进一步增强二次函数的应用意识,提升思维能力.三、归纳总结“二次函数应用”的思路: 1.理解问题;2.分析问题中的变量和常量,以及它们之间的关系;3.用数学的方式表示出它们之间的关系;4.运用数学知识求解;A BC D PQEBDC 5.检验结果的合理性, 给出问题的解答.四、巩固练习习题2.8 第1题1.一根铝合金型材长为6m ,用它制作一个“日”字型的窗框,如果恰好用完整条铝合金型材,那么窗架的长、宽各为多少米时,窗架的面积最大?五、拓展提升1.如图, 在Rt △ABC 中,∠ACB=90°,AB=10,BC=8,点D 在BC 上运动(不运动至B,C),DE ∥AC,交AB 于E,设BD=x ,△ADE 的面积为y . (1)求y 与x 的函数关系式及自变量x 的取值范围; (2)x 为何值时,△ADE 的面积最大?最大面积是多少?2.有一根直尺的短边长2cm ,长边长10cm ,还有一块锐角为45°的直角三角形纸板,其中直角三角形纸板的斜边长为12cm .按图1的方式将直尺的短边DE 放置在直角三角形纸板的斜边AB 上,且点D 与点A 重合.若直尺沿射线AB 方向平行移动,如图2,设平移的长度为x (cm ),直尺和三角形纸板的重叠部分(即图中阴影部分)的面积为S 2cm .(1)当x =0时,S=_________; 当x = 10时,S =_________;(2)当0<x ≤4时,如图2,求S 与x 的函数关系式;(3)当6<x <10时,求S 与x 的函数关系式;(4)请你作出推测:当x 为何值时,阴影部分的面积最大?并写出最大值.六、谈谈本节课你的收获七、布置作业:习题2.8 1、2四、教学反思本节课通过“理解问题—分析问题中的变量和常量以及它们之间的关系—用数学的方式表示它们之间的关系—做数学求解—检验结果的合理性并给出问题的解答”的教学流程,使学生不仅获得了书本上的知识,而且拓展知识应用,渗透数学思想方法,体现应用与创新意识.新课程给数学带来的变化是更注重学习的过程(包括思维的过程和感受的过程),更强调对数学的体验,以及数学学习的多样化等等,其实也就是更注重学生的数学综合能力的培养.在课堂教学过程中,注重以学生的自主探究为主,从提出问题到解决问题,说明知识来源于生活,而又服务于生活,体现了理论联系实际的教学原则.从集体讨论——个别发言——总结归纳,符合学生的年龄特征.通过本节学习,学生不但从实际问题中理解数学知识,体会数学的乐趣,而且从能力上、思想上都达到一个新的境界.通过本节课的教学看到学生在计算上还存在很大问题,在这方面要注意培养学生的准确计算能力,同时还看到学生的潜力很大,作为教师要充分发挥学ABC备选图二xFEGBCABC备选图一图1(D )EFCA生的主观能动性,为学生的发展提供足够的时间和空间.。

九年级数学下册二次函数的应用教案

九年级数学下册二次函数的应用教案

课题:2.4二次函数的应用教学目标:1.经历探究长方形和窗户透光最大面积问题的过程,进一步获得利用数学方法解决实际问题的经验,并进一步感受数学模型思想和数学知识的应用价值.2.能够分析和表示不同背景下实际问题中变量之间的二次函数关系,并能够运用二次函数的知识解决实际问题中的最大(小)值问题.3.能够对解决问题的基本策略进行反思,形成个人解决问题的风格.进一步体会数学与人类社会的密切联系.教学重点与难点:重点:经历探究矩形和窗户透光最大面积问题的过程,进一步获得利用数学方法解决实际问题的经验,并进一步感受数学模型思想和数学的应用价值.难点:能够分析和表示不同背景下实际问题中变量之间的二次函数关系,并能够运用二次函数的知识解决实际问题.课前准备:导学案,多媒体课件.教学过程:一、创设情境,导入新课活动内容:(利用导学案)探究活动:以小组为单位,用长1米的绳子围成不同的图形,看哪个小组围成的图形最多,并估算出所围成的这些图形中,哪个图形的面积最大?处理方式:学生先把答案写在导学案上,然后小组内交流,班级内比较的到当场合款相等时面积最大.设计意图:增加学生的动手能力和小组合作探究能力,同时也为了复习图形的面积公式,会用估算的方法比较这些图形的面积大小,探究其中的规律,为本节课学习最大面积问题做好铺垫.二、探究学习,感悟新知活动内容:(多媒体展示)问题一:探究两边在直角三角形直角边上内接矩形的最大面积 如图,在一个直角三角形的内部作一个长方形ABCD ,其中AB 和AD 分别在两直角边上.(1)设长方形的一边AB =x m ,那么AD 边的长度如何表示?(2)设长方形的面积为y m 2,当x 取何值时,y 的值最大?最大值是多少?解:(1)∵BC ∥AD , ∴△EBC ∽△EAF .∴EB BCEA AF=. 又AB =x ,BE =40-x , ∴404030x BC-=.∴BC =34(40-x ). ∴AD =BC =34(40-x )=30-34x . (2)y =AB ·AD =x (30-34x )=-34x 2+30x =-34(x 2-40x +400-400) =-34(x 2-40x +400)+300 =-34(x -20)2+300. 当x =20时,y 最大=300.即当x 取20m 时,y 的值最大,最大值是300m 2.处理方式:学生讨论交流,在导学案上完成后,学生之间互相展示结果讨论补充,教师适时点评,并在多媒体上展示正确结果.设计意图:从矩形的面积公式入手,利用相似三角形的性质表示出另外一条边,才能列出函数表达式,这一过程先由学生独立思考后,分组合作探究、交流,帮助个别存在困难的同学解决.此题的思路也是解决矩形最大面积问题最常用的方法.问题二:探究一边在直角三角形斜边上内接矩形的最大面积(多媒体展示)如图,在一个直角三角形的内部作一个矩形ABCD ,其中BC 在斜边上,,A D 在直角边上.如果设矩形的一边m AD x =,那么AB 边的长度如何表示?当x 取何值时,矩形面积y 的值最大?最大值是多少?解:设矩形的一边m AD x =,由GAD ∆GFD ∆,得AD GMEF GN=, 即5024x GM=, ∴1225GM x =.∴122425AB MN GN GM x ==-=-. 21212(24)242525ABCDS AD AB x x x x ==-=-+矩形.当24251222()25b x a =-=-=⨯-时,y 有最大值,最大值为224300124()25y -==⨯-最大值 处理方式:在有了前面解答问题的经验之后,让学生自主探究,寻求变量与不变量之间的关系,仿照第一种情况,再一次体验解决此类问题的步骤和方法,本环节相当于对问题1的巩固练习,学生在认真听讲的前提下完成应该没有问题,提醒学生计算要认真. 设计意图:在上一道题的基础上,利用相似三角形的性质表示出矩形的另一条边长,列出二次函数表达式,但此题上了难度,难度在于利用的是相似三角形对应高的比等于相似比这一性质,而且还要用到等积法求直角三角形斜边上的高.充分发挥学生的主动探究能力,并由个别程度较好的学生讲解,最后再板书进行反思总结.三、例题解析,新知应用 活动内容:(多媒体出示例题)某建筑物的窗户如图所示,它的上半部是半圆,下半部是矩形,制造窗框的材料总长(图中所有黑线的长度和)为15m .当x 等于多少时,窗户通过的光线最多(结果精确到0.01m)?此时,窗户的面积是多少?解:∵7x +4y +πx =15, ∴y =1574x xπ--.设窗户的面积是S (m 2),则S =12πx 2+2xy=12πx 2+2x ·1574x x π-- =12πx 2+(157)2x x x π-- =-3.5x 2+7.5x=-3.5(x 2-157x ) =-3.5(x -1514)2+1575392. ∴当x =1514≈1.07时, S 最大=1575392≈4.02. 即当x ≈1.07m 时,S 最大≈4.02m 2,此时,窗户通过的光线最多. 答案:.02.407.12m S m x =≈最大时,处理方式:本题含有两个图形的面积计算,主要是想进一步提高学生分析问题和解决问题的能力,巩固训练列二次函数表达式和求最值的方法.让学生理解通过窗户光线多少与窗户面积大小有关.此题处理起来比较繁琐,教师要给予学生及时的指导和帮助,同时也告诉学生数学基本运算也是培养大家做事严谨、有耐心的一个很好的途径.设计意图:在学生已有的探究“面积最大值”经验获取的体会中,让学生继续沿着这条探究路线走下去,既能巩固前面的探究方法,又能让学生再次感受“数学来源于生活”.方法提炼:我们已经做了不少用二次函数知识解决实际问题的例子,现在大家能否根据前面的例子作一下总结,解决此类问题的基本思路是什么呢?与同伴进行交流.(学生讨论,教师多媒体展示)(1)理解问题;(2)分析问题中的变量和常量以及它们之间的关系; (3)用数学的方式表示它们之间的关系; (4)做函数求解;(5)检验结果的合理性,拓展等.设计意图:趁热打铁,及时进行小结,总结做题的方法及思路,抓住这种题目的本质,达到举一反三的目的和效果.四、拓展提升,学以致用一养鸡专业户计划用116m 长的竹篱笆靠墙围成一个长方形鸡舍,怎样设计才能使围成的长方形鸡舍的面积最大?最大为多少?解:设AB 长为x m ,则BC 长为(116-2x )m ,长方形面积为S m 2. 根据题意得S =x (116-2x )=-2x 2+116x=-2(x 2-58x +292-292)=-2(x -29)2+1682.当x =29时,S 有最大值1682,这时116-2x =58.即设计成长为58m ,宽为29m 的长方形时,能使围成的长方形鸡舍的面积最大,最大面积为1682m 2.处理方式:学生通过思考并交流讨论,探索出需要利用本节课学的知识解决题目,教师利用多媒体展示答案. 活动的设计意在通过问题的变式促使学生灵活运用知识,在解决实际问题中,重视知识的发展,有利于后续学习兴趣的培养.设计意图:让同学们通过刚才的学习和体验后进行练习,深入浅出地对题目进行分析和理解并解决问题,虽然并不要求他们在以后都用这样的方法解题,但对于培养他们形成良好的心理素质和培养他们分析问题、解决问题的能力是很有帮助的.五、回顾反思,提炼升华师:同学们,通过这节课的学习,你有哪些收获?那些疑惑?有何感想?学会了哪些方法?先想一想,再分享给大家.(1)通过本节课掌握了利用相似三角形的性质表示矩形的另一边,是列矩形面积函数关系式的关键.(2)图形最大面积问题,实质上是二次函数的最值问题.(3)解决此类问题,首先要理解问题,分析问题中的变量和常量,以及它们之间的关系是难点,用数学的方式表示它们间的关系是关键,化归为二次函数运用公式求解是易错点,要做对做全需要我们一定基本功扎实,养成良好的数学素养!处理方式:学生畅谈自己的收获,教师补充.设计意图:课堂总结是知识沉淀的过程,使学生对本节课所学进行梳理,养成反思与总结的习惯,进一步培养学生总结归纳的能力与合作互助的意识.六、达标检测,反馈提高师:通过本节课的学习,同学们的收获真多!收获的质量如何呢?请完成导学案中的达标检测题.(同时多媒体出示)1.如图,已知△ABC 是一等腰三角形铁板余料,其中AB=AC=20cm,BC=24cm.若在△ABC 上截出一矩形零件DEFG,使EF 在BC 上,点D 、G 分别在边AB 、AC 上.问矩形DEFG 的最大面积是多少?2.如图,△ABC 中,∠B=90°,AB=6cm,BC=12cm.点P 从点A 开始,沿AB 边向点B 以每秒1cm 的速度移动;点Q 从点B 开始,沿着BC 边向BQCAF E BG D C A点C 以每秒2cm 的速度移动.如果P,Q 同时出发,问经过几秒钟△PBQ 的面积最大?最大面积是多少?参考答案1.过A 作AM⊥BC 于M,交DG 于N,则AM=222012-=16cm. 设DE=x cm,S 矩形=y cm 2,则由△ADG∽△ABC,故AN DG AM BC =,即161624x DG-=,故DG=32(16-x ). ∴y =DG ·DE=32(16-x )x =-32(x 2-16x)=-32(x -8)2+96,从而当x =8时,y 有最大值96.即矩形DEFG 的最大面积是96cm 2.2.设第t 秒时,△PBQ 的面积为y cm 2.则∵AP=t cm,∴PB=(6-t )cm;又BQ=2t.∴y =12PB ·BQ=12(6-t )·2t =(6-t )t =-t 2+6t =-(t -3)2+9,当t =3时,y 有最大值9.故第3秒钟时△PBQ 的面积最大,最大值是9cm 2.处理方式:学生做完后,教师出示答案,指导学生校对,并统计学生答题情况.学生根据答案进行纠错.设计意图:学以致用,当堂检测及时获知学生对所学知识掌握情况,并最大限度地调动全体学生学习数学的积极性,使每个学生都能有所收益、有所提高,明确哪些学生需要在课后加强辅导,达到全面提高的目的.七、布置作业,课堂延伸必做题:课本47页,习题2.8第1、2、3题. 选做题:课本48页,习题2.8第4题. 结束语:师:同学们,本节课的学习你们给我留下了深刻的印象,同时也给了我太多的感动与惊喜,谢谢你们!就让我把这份感动与惊喜埋在心底“一生一世”,相信你们的明天会更美好!祝愿同学们:象雄鹰一样飞的更高,飞的更远!(多媒体播放歌曲“飞的更高”结束本课)2.4.1二次函数的应用一、教学目标1.掌握长方形和窗户透光最大面积问题,体会数学的模型思想和数学应用价值.2.学会分析和表示不同背景下实际问题中的变量之间的二次函数关系,并运用二次函数的知识解决实际问题.二、课时安排 1课时 三、教学重点掌握长方形和窗户透光最大面积问题,体会数学的模型思想和数学应用价值. 四、教学难点运用二次函数的知识解决实际问题. 五、教学过程 (一)导入新课引导学生把握二次函数的最值求法: (1)最大值: (2)最小值: (二)讲授新课 活动1:小组合作如图,在一个直角三角形的内部作一个矩形ABCD ,其中AB 和AD 分别在两直角边上. (1)设矩形的一边AB=xm,那么AD 边的长度如何表示?(2)设矩形的面积为ym 2,当x 取何值时,y 的值最大?最大值是多少?解:()31AD bm,b x 30.4==-+设易得 ()2332(30)3044y xb x x x x==-+=-+()2320300.4x =--+ 24:20,300.24b ac b x y a a-=-===最大值或用公式当时活动2:探究归纳先将实际问题转化为数学问题,再将所求的问题用二次函数关系式表达出来,然后利用顶点坐标公式或者配方法求出最值,有时必须考虑其自变量的取值范围,根据图象求出最值.(三)重难点精讲例题:某建筑物的窗户如图所示,它的上半部是半圆,下半部是矩形,制造窗框的材料总长(图中所有黑线的长度和)为15m.当x 等于多少时,窗户通过的光线最多(结果精确到0.01m)?此时,窗户的面积是多少?解:4715.yx x ++π=由 157.4x x y --π=得2215722()242x x x x S xy x π--ππ=+=+窗户面积271522x x =-+ 2715225().21456x =--+2b 154ac b 225x 1.07,s 4.02.2a 144a 56-=-=≈==≈最大值当时即当x ≈1.07m 时,窗户通过的光线最多.此时窗户的面积为4.02m 2. (四)归纳小结“最大面积” 问题解决的基本思路: 1.阅读题目,理解问题.2.分析问题中的变量和常量,以及它们之间的关系.3.用数量的关系式表示出它们之间的关系.4.根据二次函数的最值问题求出最大值、最小值.5.检验结果的合理性.(五)随堂检测1.(包头·中考)将一条长为20cm的铁丝剪成两段,并以每一段铁丝的长度为周长各做成一个正方形,则这两个正方形面积之和的最小值是 cm2.2.(芜湖·中考)用长度为20m的金属材料制成如图所示的金属框,下部为矩形,上部为等腰直角三角形,其斜边长为2x m.当该金属框围成的图形面积最大时,图形中矩形的相邻两边长各为多少?请求出金属框围成的图形的最大面积.3.(潍坊·中考)学校计划用地面砖铺设教学楼前的矩形广场的地面ABCD,已知矩形广场地面的长为100米,宽为80米,图案设计如图所示:广场的四角为小正方形,阴影部分为四个矩形,四个矩形的宽都是小正方形的边长,阴影部分铺设绿色地面砖,其余部分铺设白色地面砖.(1)要使铺设白色地面砖的面积为5 200平方米,那么矩形广场四角的小正方形的边长为多少米?(2)如图铺设白色地面砖的费用为每平方米30元,铺设绿色地面砖的费用为每平方米20元,当广场四角小正方形的边长为多少米时,铺设广场地面的总费用最少?最少费用是多少?4.(南通·中考)如图,在矩形ABCD中,AB=m(m是大于0的常数),BC=8,E为线段BC上的动点(不与B,C重合).连接DE,作EF⊥DE,EF与线段BA交于点F,设CE=x,BF=y.(1)求y关于x的函数关系式.(2)若m=8,求x为何值时,y的值最大,最大值是多少?(3)若12y m=,要使△DEF 为等腰三角形,m 的值应为多少?5.(河源·中考)如图,东梅中学要在教学楼后面的空地上用40米长的竹篱笆围出一个矩形地块作生物园,矩形的一边用教学楼的外墙,其余三边用竹篱笆.设矩形的宽为x ,面积为y .(1)求y 与x 的函数关系式,并求出自变量x 的取值范围. (2)生物园的面积能否达到210平方米?说明理由.【答案】 1.12.52. 2x m 矩形的一边长是2xm,其邻边长为((20422x1022x,2-+=-(121022222S x x x x ⎡⎤=•-++⎣⎦所以该金属框围成的面积302,.322x ==-+当时金属框围成的图形面积最大 )((()2x 60402m ,10221032210210m .=--⨯-=此时矩形的一边长为另一边长为()2S3002002m.=-最大3.解; (1)设矩形广场四角的小正方形的边长为x米,根据题意得:4x2+(100-2x)(80-2x)=5 200,整理得x2-45x+350=0,解得x1=35,x2=10,经检验x1=35,x2=10均适合题意,所以,要使铺设白色地面砖的面积为5 200平方米,则矩形广场四角的小正方形的边长为35米或者10米.(2)设铺设矩形广场地面的总费用为y元,广场四角的小正方形的边长为x米,则y=30[4x2+(100-2x)(80-2x)]+20[2x(100-2x)+2x(80-2x)] 即y=80x2-3 600x+240 000,配方得y=80(x-22.5)2+199 500,当x=22.5时,y的值最小,最小值为199 500,所以当矩形广场四角的小正方形的边长为22.5米时,铺设矩形广场地面的总费用最少,最少费用为199 500元.4. ⑴在矩形ABCD中,∠B=∠C=90°,∴在Rt△BFE中,∠1+∠BFE=90°,又∵EF⊥DE,∴∠1+∠2=90°,∴∠2=∠BFE,∴Rt△BFE∽Rt△CED,∴BF BECE CD=, ∴8y xx m-=即28x x ym-=⑵当m=8时,28,8x x y -=化成顶点式: ()21428y x =--+ (3)由12y m =,及28x x y m -=得关于x 的方程:28120x x -+=,得1226x x ==,∵△DEF 中∠FED 是直角,∴要使△DEF 是等腰三角形,则只能是EF=ED , 此时, Rt △BFE ≌Rt △CED ,∴当EC=2时,m=CD=BE=6;当EC=6时,m=CD=BE=2. 即△DEF 为等腰三角形,m 的值应为6或2. 5. 解:(1)依题意得:y=(40-2x)x . ∴y=-2x 2+40x .x 的取值范围是0< x <20.(2)当y=210时,由(1)可得,-2x 2+40x=210. 即x 2-20x+105=0. ∵ a=1,b=-20,c=105, ∴2(20)411050,--⨯⨯<∴此方程无实数根,即生物园的面积不能达到210平方米. 六.板书设计2.4.1二次函数的应用探究: 例题:“最大面积” 问题解决的基本思路: 1.阅读题目,理解问题.2.分析问题中的变量和常量,以及它们之间的关系.3.用数量的关系式表示出它们之间的关系.4.根据二次函数的最值问题求出最大值、最小值.5.检验结果的合理性. 七、作业布置 课本P47练习练习册相关练习八、教学反思课题:2.4.2二次函数的应用教学目标:知识与技能1.经历探索T恤衫销售中最大利润等问题的过程,体会二次函数是一类最优化问题的数学模型,并感受数学的应用价值.2.能够分析和表示实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题的最大(小)值,发展解决问题的能力.过程与方法经历销售中最大利润问题的探究过程,让学生认识数学与人类生活的密切联系及对人类历史发展的作用,发展学生运用数学知识解决实际问题的能力.情感态度与价值观1.体会数学与人类社会的密切联系,了解数学的价值。

二次函数的应用ppt课件

二次函数的应用ppt课件

②根据题意,得绿化区的宽为
= (x-20)(m),
∴y=100×60-4x(x-20).又 ∵28≤100-2x≤52,∴24≤x≤36. 即 y 与 x 的函数关系式及 x 的取值范围为 y=-4x2+80x+6 000 (24≤x≤36);
-7-
2.4 二次函数的应用
(2)y=-4x2+80x+6 000=-4(x-10)2+6 400. ∵a=-4<0,抛物线的开口向下,对称轴为直线 x= 10. 当 24≤x≤36 时,y 随 x 的增大而减小, ∴ 当 x=24 时,y 最大=5 616,即停车场的面积 y 的最大值为 5 616 m2; (3)设费用为 w. 由题意,得 w=100(-4x2+80x+6 000)+50×4x(x- 20)=-200(x-10)2 +620 000, ∴ 当 w=540 000 时,解得 x1=-10,x2=30. ∵24≤x≤36,∴30≤x≤36,且 x 为整数, ∴ 共有 7 种建造方案. 题型解法:本题是确定函数表达式及利用函数的性质设计工程方案的问题. 解题过程中应理解:(1)工程总造价是绿化区造价和停车场造价两部分的和; (2)根据投资额得出方程,结合图象的性质求出完成工程任务的所有方案.
(1)解决此类问题的关键是建立恰当的平面直角坐标系; 注意事项
(2)根据题目特点,设出最容易求解的函数表达式形式
-9-
2.4 二次函数的应用
典题精析 例 1 赵州桥的桥拱是近似的抛物线形,建立如图所示的平面直角坐标系, 其函数的关系式为 y=- x2,当水面离桥拱顶的高度 DO 是 4 m 时,水面宽 度 AB 为 ( ) A. -20 m B. 10 m C. 20 m D. -10 m

北师大版九年级数学下册2.4《二次函数的应用》课件(共18张PPT)

北师大版九年级数学下册2.4《二次函数的应用》课件(共18张PPT)

6050 0
60495
60480
6045 5
6042 0
60600 y/个
60500
60400
60300
60200
60100 60000
0 1 2 3 4 5 6 7 8 9 1011 1213 14 x/棵
议一议
何时橙子总产量最大
1.利用函数表达式描述橙子的总产量与增种橙子 树的棵数之间的关系.
(100+x)棵
这时平均每棵树结多少个橙子?
(600-5x)个
(2)如果果园橙子的总产量为y个, 那么请你写出y与x之间的关系式.
想一想
何时橙子总产量最大
果园共有(100+x)棵树,平均每棵树结(600-5x) 个橙子,因此果园橙子的总产量
y=(100+x)(600-5x)=-5x²+100x+60000. 在上述问题中,种多少棵橙子树,可以使果园橙子的总产量 最多?X/棵 1 2 3 4 5 6 7 8 9 10 11 12 13 14
点重合时,等腰△PQR以1cm/s的速度沿直线l向
左方向开始匀速运动,ts后正方形与等腰三角形
重合部分面积为Scm2,解答下列问题:
(1)当t=3s时,求S的值; (2)当t=3s时,求S的值; A
B
(3)当5s≤t≤8s时,求S 与t的函数关系式,并求
MP
S的最大值。
lD Q
C
R
做一做
何时橙子总产量最大
N
2y
xb
x
3
x
30
3
x2
30x
3 x 202
300.
4
4
4
或用公式 :当x
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
┐ B
G
A N
40cm
四、畅谈收获,课堂小结
本节课你有哪些收获?
1. 对于面积最值问题应该设图形一边长为自 变量,所求面积为函数建立二次函数的模型, 利用二次函数有关知识求得最值,要注意函数 的自变量的取值范围。 2. 用函数知识求解实际问题,需要把实际问 题转化为数学问题再建立函数模型求解,解要 符合实际题意,要注意数与形结合。


某跳水运动员进行10米 跳台跳水训练时,身体(看成 一点)在空中的运动路线是经 过原点O的一条抛物线.在跳 某规定动作时,正常情况下, 该运动员在空中的最高处距 水面32/3米,入水处距池边的 距离为4米,同时,运动员在距 水面高度为5米以前,必须完 成规定的翻腾动作,并调整好 入水姿势,否则就会出现失误 .
A D
B
C
2、如图,在一个直角三角形的内部作一个矩形 ABCD,其中AB和AD分别在两直角边上.
当AD取何值时,矩形的面积最大,最 大值是多少?
M D ┐ A B N C
30cm
40cm
2、如图,在一个直角三角形的内部作一个矩形 ABCD,其中AB和AD分别在两直角边上.
(3)当x取何值时,y的最大 值是多少?
解“最大面积” 的基本思路:
1.理解问题;
2.分析问题中变量和常量,以及它们之间的关系 3.用数学的方式表示出它们之间的关系; 4.做数学求解; 5.检验结果的合理性,拓展等.
函数y=ax2+bx+c(a≠0) 其他应用
跳绳时,绳甩到最高处的形状可以看为抛物线.如图所 示,正在甩绳的甲乙两名学生拿绳的手间距为4米,距地 面均为1米,学生丙丁分别站在距甲拿绳的手水平距离1 米2.5米处,绳子到最高处时刚好通过他们的头顶.已知 学生丙的身高是1.5米,求学生丁的身高? 丁 丙
A D
仔细读题后思考下列问题
(1)在这个题目中,哪些量 是常量?哪些量是变量? (2)羊圈的面积和哪些量有 关?
B C
1、如图,小亮父亲想用长为80米的栅栏,再 借助房屋的外墙围成一个矩形羊圈ABCD, 已知房屋外墙长50米,设矩形ABCD的边 AB=x米,面积为S平方米
(1)写出S与x之间的关系式,并指出x的取值范 围; (2)当x为多少米时, S最大?最大面积是多少?
一、复习回顾,引入新课
1、确定下列二次函数的对称轴和顶点坐标。
2、上题的两个二次函数有最大值还是有最小 值?你能说出来吗?
二、小组合作,探究新知
1、如图,小亮父亲想用长为80米的栅栏, 再借助房屋的外墙围成一个矩形羊圈 ABCD,已知房屋外墙长50米,当AB为多 少米时,羊圈的面积最大?最大面积是 多少?
三、迁移应用,升华提高
3、某建筑物的窗户如图所示,它的上半部
是半圆,下半部是矩形,制造窗框的材料总长(图 中所有的黑线的长度和)为15m.当x等于多少时, 窗户通过的光线最多(结果精确到0.01m)?此时, 窗户的面积是多少?
4、如图,在一个直角三角形的内部作一个矩形 ABCD,其中点A和点D分别在两直角边上,BC在斜 边上.矩形的最大面积又是多少呢?
30cm
(1).如果设矩形的一边AD=xcm,那么AB边的长 度如何表示? M 2 (2).设矩形的面积为ym , 求出y与x之间的关系式。 C
D ┐ A B
当AD取何值时,矩形的面积最大,最 大值是多少?
N
40cm
在“最大面积”解决问题的过程,基本思路 如下:
1.理解问题;
2.分析问题中变量和常量,以及它们之间的关系 3.用数学的方式表示出它们之间的关系;(列 出函数关系式) 4.做数学求解; 5.检验结果的合理性.
做一做
(1)求这条抛物线的解析 式; (2)在某次试跳中,测得 运动员在空中运动路线 是(1)中的抛物线,且 运动员在空中调整好入 水姿势时,距池边的水 平距离为18/5米,问此 次跳水会不会失误?并 通过计算说明理由.
相关文档
最新文档