滑模变结构ppt

合集下载

滑模变结构控制的基本原理精品PPT课件

滑模变结构控制的基本原理精品PPT课件

里亚普诺夫函数的必要条件
v x 1 ,.x .n . ,s x 1 ,.x .n .2,
在s=0附近v是一个非增函数,因此满足条件式

则定lim义d函ss数2 式0
x0 dt
是系统里的一个里亚
普诺夫函数。系v x 统1 ,本.身x .n就. 稳,s定x 1 ,于.条x .n件.2s,=0。
5.3 菲力普夫理论
ds lim x 0 dt
ds lim x 0 dt
ds lim x 0 dt
ds lim x 0 dt
ds lim x 0 dt
ds lim x 0 dt
ds 0 lim
x 0 dt ds
0 lim x 0 dt ds
0 lim x 0 dt
0 lim ds x 0 dt ds
两者的性质是不同的,其不同之处在于:系统的运动点到达
直线 q(x)x2 a1x10附近时,是穿越此直线而过的; 而运动点到达直线 q(x)x2c1x0附近时,是从直线两边 趋向此直线的。直线 q(x)x2c1x0具有一种“强迫”或
者“吸引”运动点沿此直线运动的能力。
5.2.1 滑动模态
在系统
dxf(x) xRn dt
ete2t et2e2t
b
0
1
5.1.1 开关控制
v =常数 2r 或 2r-m 因此
2 e t e 2 t
xt 2 e t 2 e 2 t
e t e 2 t x 10 e t 2 e 2 t x20
0.5et 0.5e2t
et e2t
v

x 1 x t 2 t2 x 1 0 2 x 1 0 x 2 0 x 2 1 0 e tv e x t 1 0 2 x 1 x 2 0 0 2 0 x 2 .5 0 v e 2 v te 0 2 t .5 v

滑模理论及其控制实例ppt课件

滑模理论及其控制实例ppt课件

x2 s0

O(0,0)
s0 x1
s0
•A
x•0
图1 滑模控制示意图
从定义中可以看出,设计变构控制的基本步骤,它包括两个相对部分,即寻求
切换函数s(x)和寻求控制量 u (x)和u (x) 。
8
滑模控制的特性:
1)设计反馈u(x),限定是变结构的,它能将系统的运动引导到一个超平面 s(x)=0上。且系统在该滑模面上的运动是渐进稳定的。
s0 x1
s0
•A
x•0
图1 滑模控制示意图
6
滑模控制器的设计思想:设计一个控制器,将从任一点出发的状态轨线 通过控制作用拉到滑模面上,然后沿着此滑模面滑动到原点。
根据所确定的滑模面函数 s(x),设计如下形式控制律
u
u
u
( (
x) , x),
s(x) 0 s(x) 0
其中 u (x) u (x) ,使得系统在任何初始点都能在有限时间内到达滑模面,
在机器人、航空航天、电力系统、伺服系统等领域得到了广泛应用。
3
基本概念
变结构控制是一类特殊的非线性控制,其非线性表现为控制作用的不 连续性。与其他控制策略的不同之处:系统的“结构”并不固定,而是在 动态过程中,根据系统当前的状态有目的地不断变化。
结构的变化若能启动“滑动模态”运动,称这样的控制为滑模控制。 注意:不是所有的变结构控制都能滑模控制,而滑模控制是变结构控制中 最主流的设计方法。
u
u u
( (
x) , x),
s(x) 0 s(x) 0
u Rm,t R
5)什么条件下可以确保滑动模态运动的存在以及系统在进入滑动模态运动 以后能具有良好的动态特性如渐近稳定等,是变结构控制理论所要研究 的主要问题。

第5章_滑模变结构控制

第5章_滑模变结构控制

航天器控制、电力系统等。
5.2 滑模变结构控制的理论基础
• 5.2.1 滑模变结构控制的定义
用二阶线性系统的相平面分析方法来说明 为了阐明变结构控制系统的基本概念,考虑下列简单的二阶系统,
u, 0 x x
( 0) 。 设状态反馈为 u x ,其中 的值可取为 或 , 当 时,系统的微分方程为
其中 s x cx ,c 2
xs 0 xs 0
2
4

则直线两侧的轨线都最终落在此直线并收敛到原点,因此相应的系统是渐进稳 定的。上述切换线直接由系统的参数 和切换参数 决定,因而当参数 未 知或存在扰动时,这种参数方法就显得相当困难。为此,我们再考虑选取切换 线为 2 c (0, ) cx , x=0及 s x 2 4
的解是否存在及如何描述系统在 S(t,x) =0的运动等问题。 许多学者研究了各种类型的具有不连续右端函数的微分方
程解的存在唯一性,其中概念上直观的方法由费里波夫
(Filipov)给出。下面作一简单介绍。
5.2 滑模变结构控制的理论基础
当系统(5-4)为单输入系统时,控制规律(5-5)变为 u ( t, x), s ( t , x) 0 u ( t , x) _ (5-6) s ( t , x) 0 u ( t, x),
2 (1) 当0< < 4 微分方程有一对不相等的正实根,相平 面坐标原点是不稳定的节点。
2 (1) 当 > 4 微分方程有一对共轭复特征值,其实部为正 数,相平面坐标原点是不稳定的焦点。
1,2

2

2
4

5.2 滑模变结构控制的理论基础

《滑模施工技巧》课件

《滑模施工技巧》课件

特殊结构与异形建筑
滑模施工对于特殊结构和异形建筑的施工具有优 势,未来将有更多此类建筑采用滑模施工技术。
3
复杂环境与恶劣条件
滑模施工在复杂环境和恶劣条件下的适应性较强 ,未来在地质灾害治理、军事工程等领域将有更 多应用。
01
结论
总结滑模施工技巧的重要性和应用价值
滑模施工技巧在建筑工程中具有显著的优势,能够提高施工效率、降低成 本和减少安全隐患。
混凝土浇筑与养护
按照浇筑方案进行混凝土浇筑 ,并做好养护工作,保证混凝 土质量。
模板拆除与维护
完成滑模提升后,拆除模板并 进行必要的维护和保养。
滑模施工中的注意事项
安全控制
加强施工现场安全管理 ,确保操作人员遵守安 全规定,防止安全事故
发生。
质量控制
严格控制施工质量,确 保混凝土浇筑和养护质 量符合要求,提高滑模
03
案例分析
某大型工业厂房采用滑模施工技术,实现了大面积混凝土 的连续浇筑。通过合理安排施工流程,有效缩短了工期, 降低了工程成本。同时,施工过程中加强质量监控,确保 了厂房结构的稳定性和安全性。
案例三:桥梁的滑模施工
总结词
详细描述
案例分析
技术难度高、质量要求严格
桥梁的滑模对施工质量要求严格。
施工效率。
进度控制
合理安排施工进度,充 分利用资源,确保工程
按时完成。
环境控制
加强施工现场环境管理 ,控制施工噪音、粉尘
等对环境的影响。
01
滑模施工案例分析
案例一:高层建筑的滑模施工
总结词
高效、安全、经济
详细描述
滑模施工技术在高层建筑中应用广泛,通过连续浇筑混凝土,实现快速建造,同时保证施工安全和经济效益。

DC-DC变换器的滑模变结构控制及动态品质研究.ppt

DC-DC变换器的滑模变结构控制及动态品质研究.ppt
自入学以来,我班绝大部分同学在课余时间里,合理安排时间,参加了许多不同 种类组织,锻炼了自己的工作能力。其中,曾担任社团负责人 4 名,院辩论队队长 1 名、副队长 2 名,现担任院团委部长 1 名,院学生会副主席 1 名、部长 3 名,院足球 队负责人 1 名。在参加校院级各项活动中,我班有十名同学代表我院参加校运会;五 名同学代表我院参加校太极拳比赛,获得第二名的好成绩;三名同学代表我院参加第 十一届“世纪杯”辩论赛,并闯进前八强;我班吴寿华同学在江西农业大学第四届棋 王争霸赛中荣获冠军、并代表我校参加南昌市高校首届象棋棋王争霸赛,获得第二名 的优异成绩。此外,我班积极参加了各项活动并取得了一定的成绩:如在我院首届班 班排舞大赛中勇夺冠军;在班班辩论赛中表现突出荣获冠军。此外,我班在院团委的 支持下,成功承办了学院第五届“青春风采杯”演讲比赛,赢得了老师和广大同学的 一致好评。
建立核心,完善制度,形成有效的管理机制。班委成员是民主选举产生的,班委 们始终秉承“以人为本,以班为纲”的治班理念,坚持以它作为班级管理的指导思想, 督促班级成员“做好自己,共创美好未来”。全体班干部均能以全责为己任,紧密协 作,不仅按时按质按量地完成了学校、学院安排的各项任务,而且能够创造性的开展 富有特色的活动。班委会工作最大的特点就是有计划、有制度、有总结,根据我班的 具体情况,本着“从实际出发,一切为班级和全体同学服务”的宗旨,制定并逐步完 善管理制度,使同学们对班委会满意,使学院和老师对我们放心。全体班委成员心往 一处想、劲往一处使,尽最大努力为班集体服务、为普通同学服务,在增强班级凝聚 力的同时,努力使全班同学向党、团组织靠拢,使同学们在提高能力的同时思想素质 也得到更进一步的提高。 三、学习方面:
尊敬的各位领导、老师,亲爱的同学们: 大家下午好! 正值全校师生还沉浸在我校本科教育七十周年的喜庆当中,我校一年一度的学生

滑模变结构控制基本理论课件

滑模变结构控制基本理论课件

图6 控制器u(t)局部轨迹
8
滑模变结构控制基本理论
例2 滑模观测器设计
系统模型如下同例1,但增加了一项故障项 fa (t)
x1 x2
x2
25x2
为状态变量,u为输入,y为输出,
fa (t)为未知非线性函数,代表故障。
设计任务:利用可测输入u和可测输出y对状态变量 x2 进行观测,对
滑模变结构控制基本理论
图9 故障及其重构值
图10 故障及其重构值局部图
滑模变结构控制基本理论
请大家指正
(CB)1[CAx ( sgn(s) ks)]
即 s 0, s 0,
u (t) (CB)1[CAx ks] u (t) (CB)1[CAx ks]

A
0 0
1 25
,
B
0 133
,C
c1
c2 15
1, 5, k 10
s Cx c1x1 x2 c1x1 x1
ui (x) ≠ ui (x)
(1) 存在滑动模态;
(2) 满足到达条件:即在切换面以外的相轨迹将于有限时间内到达
切换面;
(3) 滑模运动渐近稳定并具有良好的动态品质。
3
滑模变结构控制基本理论
滑模面设计:
滑模面的选取影响到变结构控制的性能, 线性结构的滑模面使系统处于滑动模态时, 稳定性分析简洁,参数设计容易,工程实现方便。
到达滑模面后: s 0,
c1x1 x1 0
x1(t) x1(0)ec1t
因为,c1 15 ,0所以上式收敛到零,且仅与c1有关,而与对象参数无关[不变性]。
6
滑模变结构控制基本理论
图1 滑模面运动相轨迹
图2 X1运动轨迹

滑模变结构控制基本理论课件

滑模变结构控制基本理论课件

04
CATALOGUE
滑模变结构控制的实现与仿真
滑模控制器的MATLAB/Simulink实现
控制器设计
根据滑模变结构控制原理,利用 MATLAB/Simulink进行控制器设计,
包括滑模面函数、控制律等。
控制器参数调整
根据仿真结果,调整控制器参数,优 化控制性能。
模型建立
根据被控对象模型,在Simulink中建 立相应的仿真模型。
基于模拟退火算法的滑模控制器优化
模拟退火算法是一种基于物理退火原 理的优化算法,通过模拟金属退火过 程,寻找最优解。
模拟退火算法具有全局搜索能力强、 能够处理离散和连续问题等优点,适 用于滑模变结构控制的优化问题。
在滑模控制器优化中,模拟退火算法 可以用于优化滑模面的设计、滑模控 制器的参数等,提高滑模控制器的性 能和鲁棒性。
滑模控制器稳定性的分析方法
滑模控制器稳定性的分析方法包括基于 Lyapunov函数的方法、基于Razumikhin函数的 方法等。
滑模控制器稳定性的判定准则
滑模控制器稳定性的判定准则包括Lyapunov稳 定性定理、Razumikhin稳定性定理等。
03
CATALOGUE
滑模变结构控制的优化方法
基于遗传算法的滑模控制器优化
1
遗传算法是一种基于生物进化原理的优化算法, 通过模拟基因突变、交叉和选择等过程,寻找最 优解。
2
在滑模控制器优化中,遗传算法可以用于优化滑 模面的设计、滑模控制器的参数等,提高滑模控 制器的性能和鲁棒性。
3
遗传算法具有全局搜索能力强、能够处理多变量 和非线性问题等优点,适用于滑模变结构控制的 优化问题。
案例分析
通过具体案例分析,深入了解滑模控制器在 实际应用中的优势和不足。

滑模变结构控制基础

滑模变结构控制基础
2.1.3 系统结构定义 系统的一种模型,即由某一组数学方程描述的模型,
称为系统的一种结构,系统有几种不同的结构,就是说它 有几种(组)不同数学表达式表达的模型。
可编辑ppt
4
2.1 滑模变结构控制简介
2.1.4 滑模控制优点 滑动模态可以设计且与对象参数和扰动无关,具有快
速响应、对参数变化和扰动不灵敏( 鲁棒性)、无须系统 在线辨识、物理实现简单。
s(x)>0
A
B
C
s(x)<0
s(x)=0
可编辑ppt
10
2.3.1 右端不连续微分方程
若切换面上某一区域内所有点都是止点,则一旦状 态点趋近该区域,就会被“吸引”到该区域内运动。此 时,称在切换面上所有的点都是止点的区域为“滑动模 态”区域。系统在滑动模态区域中的运动就叫做“滑动 模态运动”。按照滑动模态区域上的点都必须是止点这 一要求,当状态点到达切换面附近时,必有:
所以,一般将变结构控制就称为滑模控制(SMC),为 了突出变结构这个特点,本书统称为滑模变结构控制。
可编辑ppt
3
2.1 滑模变结构控制简介
2.1.2 滑动模态定义
人为设定一经过平衡点的相轨迹,通过适当设计,系 统状态点沿着此相轨迹渐近稳定到平衡点,或形象地称为 滑向平衡点的一种运动,滑动模态的”滑动“二字即来源 于此。
2.1.5 滑模控制缺点 当状态轨迹到达滑动模态面后,难以严格沿着滑动模
态面向平衡点滑动,而是在其两侧来回穿越地趋近平衡点, 从而产生抖振——滑模控制实际应用中的主要障碍。
可编辑ppt
5
2.2 滑模变结构控制发展历史
20世纪50年代:
前苏联学者Utkin和Emelyanov提出了变结构控 制的概念,研究对象:二阶线性系统。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
上面的前三点是滑模变结构控制的三个基本问题, 只有满足了这三个条件的控制才叫滑模变结构控 制。
考虑一般的情况,在系统
x f (x) x Rn
的状态空间中,有一个切换面s(x) s(x1, x2, , xn ) 0 它将状态空间分成上下两部分 s 0 及 s 0 。
我们称 s(x) 0 为不连续面、滑模面、切换面。
滑模变结构控制设计方法
设计滑模变结构控制器的基本步骤包括两个相对 独立的部分:
(1)设计切换函数 s(x),使它所确定的滑动模态渐近稳定且具有良 好的动态品质; ①线性: s(x) Cx,C Rn 主要适用于速度和精度要求都不高的非线性系统。
注意:
不是所有的变结构控制都能滑模控制,而滑模控制 是变结构控制中最主流的设计方法。
通俗说法:
如果存在一个(或几个)切换函数,当系统的状态 达到切换函数值时,系统从一个结构自动转换成另 一个确定的结构,那么这种结构称之为变结构系统。
以右端不连续微分方程为例:
具有右端不连续微分方程的系统可以描述为
结构变化得到体现,即根据条件 s(x)的正负改变结构
( f (x,u)为一种系统结构,f (x,u)为另一种系统结构。从
而满足一定的控制要求。
滑模变结构控制发展历史
20世纪50年代: 前苏联学者Utkin和Emelyanov提出了变结构控制的概
念,研究对象:二阶线性系统。 20世纪60年代: 研究对象:高阶线性单输入单输出系统。主要讨论高
滑模变结构控制
变结构系统
问题:什么是变结构系统? 变结构控制(variable. structure control, VSC)本质上
是一类特殊的非线性控制,其非线性表现为控制的 不连续性。这种控制策略与其他控制的不同之处在 于系统的“结构”并不固定,可以在动态过程中, 根据系统当前的状态(如偏差及其各阶导数等)有目的 地不断变化,迫使系统按照预定“滑动模态”的状 态轨迹运动,所以又常称变结构控制为滑动模态控 制(sliding mode control, SMC),即滑模变结构控制。
s(x)>0
A
B
C
s(x)<0
s(x)=0
在切换面上的运动点有3种情况。
(1)通常点——状态点处在切换面上附近时,从切换面上的这个点
穿越切换面而过,切换面上这样的点就称做作常点,如图中点A所
示。
(2)起始点——状态点处在切换面上某点附近时,将从切换面的两 边中的一边离开切换面上的这个点,切换面上这样的点就称做作起
我国学者贡献: 高为炳院士等首先提出趋近律的概念,首次提出
了自由递阶的概念。
海洋运载器方面的应用:
Yoerger and Slotine (1985), Slotine and Li(1991), Healey and Lienard (1993) and Mc Gookin et al. (2000a, 2000b)
V
1 2
s2
V ss 0
V正定, V 半负定,且不恒为0,系统在s=0处渐近稳定。
满足上述到达条件,状态点将向切换面趋近,切换面为 止点区。
滑模变结构控制的品质
滑模变结构控制的整个控制Байду номын сангаас程由两部分组成:
① 正常运动段:位于切换面之外, 如图的 x0 A段所
示。 ② 滑动模态运动段:位于切换面上的滑动模态区之
阶线性系统在线性切换函数下控制受限与不受限及二次 型切换函数的情况。 1977年: Utkin发表一篇有关变结构控制方面的综述论文,系统 提出变结构控制VSC和滑模控制SMC的方法。同时,在 1992年详细讨论了滑模技术。
此后
各国学者开始研究多维滑模变结构控制系统,由 规范空间扩展到了更一般的状态空间中。
滑模变结构控制的定义
有一控制系统状态方程为
x f (x,u,t) x n u
需要确定切换函数
s(x) s 求解控制作用
u ( x) , s( x) 0
u
(
x)
,
s(x) 0
其中切换函数 s(x)应满足以下条件:
(1)可微; (2)过原点,即 s(0) 0
(1)满足可达性条件,即在切换面以外的运动点都 将在有限时间内到达切换面; (2) 滑动模态存在性; (3) 保证滑动模态运动的稳定性; (4)达到控制系统的动态系统要求。
该区域内运动。此时,称在切换面上所有的点都是止点
的区域为“滑动模态”区域。系统在滑动模态区域中的
运动就叫做“滑动模态运动”。按照滑动模态区域上的
点都必须是止点这一要求,当状态点到达切换面附近时,
必有:
lim
s0
s
0
lim
s0
s
0
称为局部到达条件。
对局部到达条件扩展可得全局到达条件:
ss 0
相应地,构造李雅普诺夫型到达条件:
x f (x,u) x n u
f ( x,u) f ( x,u ), s( x) 0
f
(x,u)
f
(x,u)
f
( x,u ),
s(x) 0
其中:s( x) s(x1, x2 ,..., xn )是状态的x 函数,为切换函数。
满足可微分,即 ds(x)存在。 微分方程的右端 f (x, u)不连续, dt
点,如图中点B所示。
(3)终止点——状态点处在切换面上某点附近时,将从切换面的两 边中的一边趋向该点,切换面上这样的点就称做作止点,如图中点
C所示。
s(x)>0
A
B
C
s(x)<0
s(x)=0
在滑模变结构中,通常点和起止点无多大意义,但终
止点却有特殊的含义。若切换面上某一区域内所有点都
是止点,则一旦状态点趋近该区域,就会被“吸引”到
定义1:系统结构 系统的一种结构为系统的一种模型,即由某一组数
学方程描述的模型。系统有几种不同的结构,就是 说它有几种(组)不同数学表达式表达的模型。
定义2 :滑动模态
人为设定一经过平衡点的相轨迹,通过适当设计, 系统状态点沿着此相轨迹渐近稳定到平衡点,或形 象地称为滑向平衡点的一种运动,滑动模态的”滑 动“二字即来源于此。
内,如图 A O 段所示。
x0
O
A
s(x) 0
滑模变结构控制的品质取决于这两段运动的品质。由 于尚不能一次性地改善整个运动过程品质,因而要求选 择控制律使正常运动段的品质得到提高。
选择切换函数使滑动模态运动段的品质改善。两段运 动各自具有自己的高品质。
选择控制律 u (x) :使正常运动段的品质得到提高。 选择切换函数 s(x): 使滑动模态运动段的品质改善。
相关文档
最新文档