第四章 炔烃和二烯烃
炔烃和二烯烃

第四章炔烃和二烯烃(I )炔烃一、定义、通式和同分异构体定义:分子中含有碳碳叁键的不饱和烃。
通式:C n H 2n-2同分异构体:与烯烃相同。
二、结构在乙炔分子中,两个碳原子采用SP 杂化方式,即一个 2S 轨道与一个2P 轨道杂化, 组成两个等同的 SP 杂化轨道,SP 杂化轨道的形状与 SP 2、SP 3杂化轨道相似,两个SP 杂化 轨道的对称轴在一条直线上。
两个以SP 杂化的碳原子,各以一个杂化轨道相互结合形成碳碳6键,另一个杂化轨道各与一个氢原子结合,形成碳氢 6键,三个6键的键轴在一条直线上,即乙炔分子为直线型分子。
每个碳原子还有两个末参加杂化的P 轨道,它们的轴互相垂直。
当两个碳原子的两P轨道分别平行时,两两侧面重叠,形成两个相互垂直的 n 键。
三、命名炔烃的命名原则与烯烃相同,即选择包含叁键的最长碳链作主链,碳原子的编号从 距叁键最近的一端开始。
若分子中即含有双键又含有叁键时,则应选择含有双键和叁键的最长碳链为主链, 并将其命名为烯炔(烯在前、炔在后)。
编号时,应使烯、炔所在位次的和为最小。
例如:CfCfCHCHDHC 三 CH3-甲基-4-庚烯-1-炔CH 3但是,当双键和叁键处在相同的位次时,即烯、炔两碳原子编号之和相等时,则从 靠近双键一端开始编号。
如:Cf 二C 比三CH1-丁烯-3-炔四、 物理性质与烯烃相似,乙炔、丙炔和丁炔为气体,戊炔以上的低级炔烃为液体,高级炔烃为 固体。
简单炔烃的沸点、熔点和相对密度比相应的烯烃要高。
炔烃难溶于水而易溶于有机溶剂。
五、 化学性质 (一)加成反应1、催化加氢炔烃的催化加氢分两步进行,第一步加一个氢分子,生成烯烃;第二步再与一个氢分加成,生成烷烃。
催化剂HC 三 CH + H 2 —CH2、加卤素炔烃与卤素的加成也是分两步进行的。
先加一分子氯或溴,生成二卤代烯,在过量 的氯或溴的存在下,再进一步与一分子卤素加成,生成四卤代烷。
HC 三CH + Br2 -------- Br=CHBrCHB 广2CHB 2虽然炔烃比烯烃更不饱和,但炔烃进行亲电加成却比烯烃难。
炔烃

④ 叁键碳的电负性较大。
电负性: SP > SP2 > SP3 C—H 中的H具有微酸性
二、炔烃的同分异构和命名 1. 同分异构体----从丁炔开始有异构体.
同烯烃一样,由于碳链不同和叁键位置不同所引起的。 由于在碳链分支的地方不可能有叁键的存在,所以炔 烃的异构体比同碳原子数的烯烃要少。 炔烃不存在顺反异构现象。
HgCl2 [R-C= CH 2 ] RC≡CH+HOH H 2SO4 O H
R-C- CH 3
O
CH 2 =CH
H O
CH3 -CH
O
这种异构现象称为酮醇互变异构。由于两者互变 很快,酮式结构稳定,在平衡状态下,以酮式化 合物为主。
-C=C-OH
-C-C=O
H
R-C≡CH 得:甲基酮
液态氨
稳定性 碱性
叁键碳上氢原子的活泼性
(a) 叁键的碳氢键由sp杂化轨道与氢原子参加组成s共 价键,叁键的电负性比较强,使C-H s键的电子云更 靠近碳原子. 这种 ≡C-H键的极化使炔烃易离解为 质子和比较稳定的炔基负离子 (-C≡C-). (即:有利 于炔C-H异裂形成H+.)
(b) 炔烃H原子活泼,有弱酸性和可被某些金属原子取代. (c) 炔烃具有酸性,是与烷烃和烯烃比较而言,其酸性比水还弱.
KOH CH2 = CH-OCH3 HC≡CH+CH3OH 加热,加压
历程:
CH 3OH+KOH CH 3O K + +H 2O
醇钾CH3OK具有盐的性质,可以离解为甲氧基负离子和钾 离子。带负电的甲氧基离子首先和炔烃作用,生成碳负离 子中间体,然后再和一分子醇作用,获得一个质子而生成 甲基乙烯基醚。
4第四章 炔烃 二烯烃

RCCR` KMnO4 RCOOH + R`COOH
H2O
(2) 缓慢氧化——二酮
OO
CH3(CH2)7CC(CH2)7COOH
KMnO4 H2O
CH3(CH2)7-C-C-(CH2)7COOH
pH=7.5
92%~96%
•利用炔烃的氧化反应,检验叁键的存在及位置
•这些反应产率较低,不宜制备羧酸或二酮.
有机化学 Organic Chemistry 第四章 炔烃 二烯烃
第四章 炔烃 二烯烃
(一) 炔烃
定义:分子中含有碳碳叁键的烃叫做炔烃,它的通式:
CnH2n-2 官能团为: -CC-
4.1 炔烃的异构和命名**
(1)异构体——从丁炔开始有异构体.
•同烯烃一样,由于碳链不同和叁键位置不同所引起的.由 于在碳链分支的地方不可能有叁键的存在,所以炔烃的 异构体比同碳原子数的烯烃要少. •由于叁键碳上只可能连有一个取代基,因此炔烃不存在 顺反异构现象.
炔烃和烯烃一样,也能和卤化氢、卤素等起亲电加成反
应,但炔的加成速度比烯慢
(A) 和卤素的加成
Br2
RC CR
Br
+
RC CR
Br-
反式加成
Br
R
CC
R
Br
卤素的活性F2>Cl2>Br2>I2
Br Br Br2 R C C R
这一反应可用于炔烃的鉴别。
Br Br
控制条件也可停止在一分子加成产物上.
❖加氯必须用FeCl3作催化剂。
•含有双键的炔烃在命名时,一般 先命名烯再命名炔 .
碳链编号以表示双键与叁键位置的两个数字之和最小
为原则。在同等的情况下,要使双键的位次最小。
第四章 炔烃和二烯烃

4.1 炔烃
二、炔烃的命名 1. 衍生物命名法
衍生物命名法只适用于简单的炔烃。以乙炔为母体,将其它的炔 烃看作乙炔的衍生物。
例如:
4.1 炔烃
2. 系统命名法
与烯烃的命名类似 ① 要选择含有 C≡C 的最长碳链为主链; ② 编号从最距离叁键最近的一端开始,并用阿位伯数字表示叁键的 位置。例:
837KJ/mol 0.120nm
611KJ/mol 0.134nm 0.108nm
( 3x347=1041)
347KJ/mol
0.154nm 0.110nm
H C C H H2C CH H
H3C C H2 H
原因: ① -C≡C-中有1个σ和2个π键; ② sp 杂化轨道中的 s 成份多。(s 电子的特点就是离核近,即 s 电子
CNa CNa + 2CH3I
CH3C CC2H5 + NaBr
CH3C CCH3 + 2NaI
炔化物作为亲核试剂,也可以与醛酮 发生亲核加成反应,得到 羟基炔化合物:
4.1 炔烃
(3) 过渡金属炔化物的生成及炔烃的鉴定
CH CH + 2Ag(NH3)2NO3 CH CH + 2Cu(NH3)2Cl
4.1 炔烃
③分子中同时含有双键和参键时,先叫烯后叫炔,编号要使双键和
参键的位次和最小。
1 2 3 45
CH C-CH=CHCH3
3-戊烯-1-炔
6 54 3 2 1
CH C-CH=C-CH=CH2
3-乙基-1,3-己二烯-5-炔
CH2CH3
④若双键、叁键处于相同的位次供选择时,优先给双键以最低编号。
4.1 炔烃
第4章 炔烃、二烯烃

碳素酸的弱酸性
Na
+ 2 HC
+
HC
CH
CH
110℃
2 HC
CNa
+H
NH3
2
NaNH2
HC
CNa
+
13
R3C CH
Ka
R3C C
CH
+
44
H
+
物质名称
pKa
HOH
HC
H2 C
CH2
H3 C
CH3
15.7
25
50
端炔酸性的解释 端炔中的碳为sp杂化, 轨道中s成分较大, 核 对电子的束缚能力强, 电子云靠近碳原子, 使分子中的C-H键极性增加, 易断裂:
HC CH
+ 2 Ag(NH3)2NO3
+ 2 Cu(NH3)2Cl
AgC
CAg
+ 2 NH4NO3 + 2 NH3
乙炔银(白色)
HC CH
CuC
CCu
+ 2 NH4Cl + 2 NH3
乙炔亚铜(砖红色)
应用: 区别端炔与非端炔、端炔与烯烃。
RC CH
16
炔化物的生成
注意:炔化银或炔化亚铜在干燥状态下, 受热或震动容易爆炸。实验完毕后 加稀硝酸使其分解。
+
RC
CH2
> RCH
+
CH
22
炔烃的亲电加成
炔烃与烯烃反应活性比较: 炔烃的加成速度比烯烃慢。
加卤素
当化合物中同时含有双键和叁键时, 首先在双键上发生加成反应。
Br2 低温
Br Br
选择性加成
炔烃 二烯烃

第四章炔烃二烯烃学习要点:本章学习在了解炔烃和二烯烃结构的基础上,重点掌握这两类化合物的化学性质以及由共轭二烯烃的结构特征所引起的共轭效应及其对化学性质的影响。
第一节炔烃不饱和烃除了烯烃外还有炔烃。
例如气割气焊用的乙炔(HC≡CH),就是一个炔烃,凡含有碳碳叁键的不饱和烃均称为炔烃,碳碳叁键(-C≡C-)是它的官能团,它的通式为C n H2n-2,与碳原子数相同的二烯烃,环烯烃为同分异构体。
一、炔烃的结构以炔烃中结构最简单的乙炔为例,在乙炔中两个叁键碳原子都是只和两个原子相结合,因此它只需要用两个价电子来构成两个σ键,亦即炔碳原子中的s电子轨道只要和一个p电子轨道进行sp杂化就可以了,形成了两个相等的sp杂化轨道,如图4-1所示。
图4-1 碳原子轨道的sp杂化每个sp杂化轨道包含1/2s轨道成分和1/2p轨道成分,其形状与sp3,sp2杂化轨道相似,只是更“胖”些,两个sp杂化轨道对称地分布在碳的两侧,成为一条直线,两者之间的夹角为180º。
如图4-2所示。
所以在乙炔中每一个碳都以一个sp杂化电子轨道与氢的1s电子轨道相互重迭成为一个C-H键,两个碳又各以一个sp杂化轨道相重迭,形成C-C键,这些都是σ键。
图4-2 碳原子的sp杂化电子轨道两个C原子尚各余两个p电子轨道,它们的对称轴都与sp杂化轨道的对称轴互相垂直,这两个p轨道可以在各自侧面重迭形成两个π键,所以炔键叁键中一个是σ键,两个是π键。
实际上叁键中四个π电子的电子云是混合在一起,它们围绕着连接两个碳核的直线成圆筒形分布。
如图4-3所示。
图4-3 乙炔分子的圆筒形π电子云其他炔烃的碳碳叁键与乙炔相同,也是由一个σ键和两个π键组成。
二、炔烃的同分异构和命名炔烃中除了乙炔和丙炔没有异构体外,从丁炔开始有构造异构现象,但由于叁键碳上只有一个取代基,因此炔烃的构造异构体比烯烃少,也无顺反异构体。
例如丁烯有三个构造异构体,但丁炔只有两个构造异构体,如下:CH3CH2C CH CH3C CCH31-丁炔2-丁炔简单的炔烃可采用衍生物命名法,即以乙炔作母体,将其它基团看成取代基,而复杂的炔烃必须采用系统命名法,炔烃的命名与烯烃相似,只须将“烯”改为“炔”即可。
第四章炔烃和二烯烃全解

1
2
CH2
CH CH2 C CH
1-戊烯-4-炔
3
4
5
应命名为 3-戊烯-1-炔,而不命名为 2-戊烯-4-炔。
H3C C C CH2CHCH3
H3C C C C CH H H
5-乙基-1-庚烯-6-炔
not 3-乙基-6-庚烯-1-炔
(CH3)2CH C C H
H CH2C CH
(E)-6-甲基-4-庚烯-1-炔
CH3C CNa
HBr ROOR CH3CH2CH2Br
CH3C
CH
H2
Lindlar
CH3CH=CH2
CH3C
H2 Ni
CNa CH3C lig . NH3
CCH2CH2CH3
CH3CH2CH2CH2CH2CH3
3、与重金属盐的反应
♦ 1- 炔烃与银氨溶液反应,立即生成白色的炔化银沉 淀;与氯化亚铜氨溶液反应则生成砖红色的炔化亚 铜沉淀,只有端炔有此性质,是 区别端炔与非端炔 及烯烃的方法。
[Ag(NH3)2]
+
R C CH
R C CAg
炔化银
白色沉淀
HC
CH
[Cu(NH3)2]
+
CuC
CCu
砖红色沉淀
乙炔亚铜
区别乙烷、乙烯、乙炔
CH CH CH2=CH2 CH3CH3
Ag(NH3)2+
白色 ( ( ) )
(CH CH )
Br2/CCl4
褪色(CH2=CH2) ( -)
爆炸品——炔化银
炔烃的命名
炔烃的普通命名法是将其他炔烃看成乙炔 的衍生物命名。例如: (CH3)3C–C≡C–H 叔丁基乙炔 (CH3)3C–C≡C–C(CH3)3 二叔丁基乙炔 F3C–C≡C–H 三氟甲基乙炔 系统命名法与烯烃相似,只是将“烯”字 改为“炔”字。
第四章 炔烃和二烯烃 炔烃 二烯烃 共轭效应速度控制和平衡控制

H C=C H
R C=C H
(1)乙炔生成炔化银和炔化铜的反应
乙炔通入硝酸银的氨溶液或氯化亚铜的 氨溶液中,析出白色的乙炔银沉淀 或棕 红色的乙炔亚铜沉淀 。
RC CH + NaNH2 lig.NH3 RC C-Na+ + NH3
式烯烃。
C6H5 C6H5
C6H5-C≡C-C6 H5+H2 Lindlar Pd C=C
HH
(2)化学还原
在液氨中钠或锂还原炔烃主要得到反式 烯烃.
C3H7-C≡C-C3H7 +2Na+2NH3
C3H7
H
C==C + 2Na+NH-2
H
C3H7
(E)-4-辛烯 97%
化学还原过程:Na/lig NH3
更大. 乙炔的丙酮 溶液安定,乙炔在1.2MPa下压
入盛满丙酮浸润饱和的多孔物质的钢筒 中.
(1)乙炔的聚合反应
乙炔的聚合反应在不同的催化剂作用下, 发生二聚,三聚,四聚等低聚作用。与烯烃 的聚合反应不同,它一般不聚合成高聚 物。
在氯化亚铜-氯化铵的强酸溶液中,发生 线性型偶合而生成乙烯基乙炔。
碳叁键。
碳原子以SP杂化轨道 形成C-C键和C-H键。
每个碳原子以两个互相垂直的
未杂化的P轨道,两两互相侧面 重叠形成两个互相垂直的π键。
CC
乙炔分子的键参数:C≡C键长为0.12nm, 键能为835kJ/mol.
HC
CH
乙炔的π电子云
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
此外,每个碳原子还有两个互相垂直的未杂化的p轨道(px,py),它们与另一碳的两个p轨道两两相互侧面重叠形成两个互相垂直的π键。
两个正交p轨道的总和,其电子云呈环形的面包圈。
3.与HCN、EtOH、CH3COOH等的反应:
4.水化
炔烃在含硫酸汞的稀硫酸水溶液中易与水反应,汞盐是做催化剂。
这一反应相当于水加到叁键上, 先生成一个很不稳定的乙烯醇,羟基直接与碳碳双键相连,故称为烯醇。它进行分子内部重排成为羰基化合物。
这里的炔与H-OH的加成遵循马氏规则,其他炔烃水化时,则变成酮。
共轭效应产生的必要条件:①共平面性:共轭体系中各个σ键都在同一平面内。②参加共轭的p轨道互相平行。如果共平面性受到破坏,使p轨道的相互平行就发生偏离,减少了它们之间的重叠,共轭效应就随之减弱,或者消失。
(一)共轭效应的表现:
1.键长趋于平均化:
由于电子云密度分布的改变,在链状共轭体系中,共轭链愈长,则双键及单键的键长愈接近。趋于相等。
②选择一定的催化剂,能使炔烃氢化停留在烯烃阶段,并还可控制产物的构型。
(ⅰ)Lindlar催化剂和P-Z催化剂催化氢化,主要生成顺式烯烃。
Lindlar催化剂:用醋酸铅钝化后的沉积在碳酸钙上的钯:[ Pd/CaCO3]
P-Z催化剂:Ni2B,它是有醋酸镍和钠硼氢制成。
催化剂加氢顺式加成产物。
机理:
(1)
(2)
(3)
(4)
(机理:introduction organic chemistry p345-6)
(ⅱ)用钠或锂在液氨中还原,生成反式烯烃。
③炔烃部分氢化时,叁键首先氢化成烯烃。
根据催化氢化机理,第一步是吸附,然后π键打开,H2σ键断裂,形成C-Hσ键,最后解吸。打开第一个 π键需225KJ/mol打开C=C键需264.4KJ/mol故 优先氢化。
这类反应的一个缺点是,汞盐毒性大,影响健康,污染水域,所以目前世界各国都在寻找它的低毒或无毒催化剂。(但工业上主要改用以乙烯为原料的Waeker法)
PdCl2催化乙烯水合为乙醛(1938)CuCl2为辅助催化剂。
5.氧化
①KMnO4:
反应后高锰酸钾溶液颜色褪去,这个反应可用作定性鉴定。
②O3
炔烃和臭氧作用生成臭氧化合物,遇水很快为水分解生成酸。可由产物推测炔的结构。
③叁键比双键难于氧化,双键和叁键同时存在时,双键首先被氧化。
可以这样理解,炔是还原剂,CrO3是氧化剂,还原剂是失去电子的,炔与烯相比,炔不易失去电子,故不易被氧化。
6.聚合:
炔烃能起聚合反应,它一般不聚合成高聚物,在不同的催化剂作用下,发生不同的低聚反应,二聚、三聚、四聚。
①
②
③
7.炔化物的生成
①乙钠的生成
通常含有端基叁键 的1-炔烃都能发生这些反应。
因此,我们可以用能否与硝酸银的氨溶液生成白色的银化合物或与氯化亚铜的氨溶液生成棕红色的亚铜化合物来鉴定一个烃类化合物是否是1-炔烃。
这里或许有人要问,为什么叁键上的H能被Na、Ag、Cu等金属所取代呢?我们知道叁键碳是以sp杂化轨道与氢原子成键,在sp轨道中s成分占
如:
2.折射率较高
光线穿过真空的速度与穿过透明物质的速度之比称为该物质的折光率。实际测定时以空气为相对标准,即光线在空气中的速度与在透明物质中的速度之比称为该物质的折光率。光在物质中减速是因受分子中电子,特别是结合得不太紧的价电子的干扰而引起的。而这种干扰是与分子的极化直接相联的。分子越极化,折光率越高。说明该分子易极化,由于共轭体系π电子云易极化,因此它的折光率也比相应的孤立二烯烃高。
因氢化是H2还原剂H.“给出电子” 或C=C是氧化剂C“得到电子” 中C为sp杂化。s成分较sp2多,吸电子能力sp杂化的C比sp2杂化的C强故 易被还原首先氢化(得氢)。
(有机化学中,得到氢叫还原,在这个反应中,氢是还原剂,烯、炔是氧化剂,容易得到电子的优先被还原,炔中的C为sp杂化,吸电子能力较强,所以优先比烯被还原,得到氢)
分子轨道:
1,3-丁二烯的四个p轨道,可组成四个π电子的分子轨道。
在基态时四个p电子都在ψ1和ψ2中,而ψ3,ψ4则全空着。
说明在ψ1轨道中π电子云的分布对所有的碳碳键都加强;从ψ2分子轨道中看出C1-C2,与C3-C4之间的键加强了,但C2-C3之间无电子云。从成键轨道ψ1、ψ2电子云分布看出,所有的键都具有π键的性质,但C2-C3键所具有的π键性质小些。
现代物理方法证明:乙炔中所有的原子都在一条直线上, 键的键长为0.12nm,比C=C键的键长短。就是说乙炔分子中两个碳原子较乙烯的距离短,原子核对于电子的吸引力增强了。 键能为835KJ/mol.(第一个π键能225 835-610=225)
(C=C 610KJ/mol, π键能264.4 610-345.6=264.4;C-C 345.6KJ/mol)
用电子衍射法测定1,3-丁二烯的各键长为:C2-C3单键是0.1483nm,比乙烷的C-C键长0.1534nm短了一些。C=C双键是0.1337nm(邢其毅p161),比普通的C=C双键(0.134nm)略短。
氢化热:
CH2=CH-CH=CH2预计:125.5+125.5=251KJ/mol
实测:238KJ/mol比预计的低
四、炔烃的化学性质
反应都发生在叁键上,叁键是炔烃的官能团。
1.催化氢化
炔烃能与两分子H2加成,断开一个π键,加入一分子H2,成为烯烃;然后再断开第二个π键加入另一分子H2成为烷烃。
①
π键(均裂)
第一个π键键能225KJ/mol C=Cπ键键能264.4KJ/mol
常常是第一步反应的速率比第二步快,因此在适当的条件下,炔烃的加成可以终止在第一步,生成烯烃衍生物。如在弱的氢化催化剂(Pd或Ni)和适量的氢气中,炔烃可以被氢化到烯烃。若在强的氢化催化剂(Pt)和过量的氢气中,则炔烃被氢化成烷烃。
1. p-π共轭
p电子朝着双键方向转移,呈供电子效应(+C)。
①对同族元素来说,p电子轨道与碳原子p轨道体积越接近,重叠得越好,共轭能力越强, 的p电子轨道体积越大,与碳的p电子轨道重叠的越少,共轭能力越弱。
②对同周期的元素来说,p轨道的大小相接近,元素的电负性越强,越不易给出电子,p-π共轭就越弱。
五、乙炔
1.制法:工业制法主要有两种
(1)电石法
(2)由烃类裂解
2.性质:
易溶于丙酮。为了运输和使用的安全,通常把乙炔在1.2MPa下压入盛满丙酮浸润饱和的多孔性物质(如硅藻土、软木屑、或石棉)的刚筒中。乙炔是易爆炸的物质,高压的乙炔,液态或固态的乙炔受到敲打或碰击时容易爆炸,乙炔的丙酮溶液是安全的,故把它溶于丙酮中可避免爆炸的危险。
2.亲电加成:
亲电加成,炔需首先给出电子对与正离子结合,与烯相比,炔烃的 键的碳为sp杂化,吸电子能力比较强,故不易给出电子对,所以较烯烃不易进行亲电加成反应。再者,叁键的键长(0.12nm)比双键(0.134nm)短,它的p电子云有较多的重叠,所以π键较难被打开。
①与卤素:
(双烯优先与Br反应)
②与HX
实际上酮在有吡啶的干燥苯中与PCl5加热,即可制得炔烃。
2.由炔化物制备
(RX,2°,3°,主要起消除反应,使RX变为烯)
3.四卤代烷的脱卤
四卤代烷的脱卤反应很少应用,这是因为这种卤代物本身常常是从炔烃制得的。可用来保护叁键,将叁键转变为四卤代烷,之后再用锌粉处理的使叁键再生。
第二节二烯烃
一、二烯烃的分类及命名
二、二烯烃的结构及性质
1.丙二烯:CH2=C=CH2
结构:
性质:丙二烯较不稳定,性质较活泼,双键可以一个一个打开发生加成反应,也可发生水化和异构化反应。
2. 1,3-丁二烯
结构:
丁二烯分子中,每个碳原子都以sp2轨道相互重叠或与氢原子的1s轨道重叠,形成三个C-Cσ键和六个C-Hσ键。这些σ键都处在同一个平面上,它们之间的夹角都接近120°,此外每个碳原子还剩下一个来参加杂化的与这个平面垂直的p轨道。四个p轨道的对称轴互相平行侧面互相重叠,形成了包含四个碳原子的四个电子的共轭体系。
故乙炔的叁键是由一个σ键和两个相互垂直的π键组成。两个π键的电子云分布好象是围绕两个碳原子核心的圆柱状的π电子云。
乙炔分子中两个碳原子的sp轨道,有 s性质,s轨道中的电子较接近了核。因此被约束得较牢,sp轨道比sp2轨道要小,因此sp杂化的碳所形成的键比sp2杂化的碳要短,它的p电子云有较多的重叠。
1/2,比sp3和sp2轨道中的s成分都大,轨道的s成分愈大,电子云愈靠近原子核。因此乙炔碳氢键中的电子比在乙烯和乙烷中更靠近碳原子,这样就使 键的极性增强,(容易发生异裂)使氢原子具有一定的酸性,可以被金属取代。(徐积功p134)
比较有机化合物的酸性,也可以用PKa是Ka的负对数,和PH值一样,PKa值愈小,酸性愈强,H2O的PKa值约为16。 PKa值为25,因而是比H2O弱得多的酸。
3.用途
有多种用途,如:合成氯丁橡胶
六、炔烃的制备
1.由二元卤代烷脱卤化氢
①邻二卤代烷的脱卤
二卤代烷脱去第一分子卤化氢是比较容易的,是制备不饱和卤代烃的一个有用的方法。脱去第二分子卤化氢较困难,需使用较激烈的条件用热的KOH或NaOH(醇)溶液,或使较强的碱用NaNH2才能形成炔烃。
②偕二卤代烷脱卤化氢
两个双键被两个或两个以上单键隔开的二烯烃称为孤立二烯烃。即 (n≥1).如,1,4-戊二烯。
孤立二烯烃的性质和单烯烃相似。
(二)多烯烃的系统命名法
和烯烃相似,命名时,将双键的数目用汉字表示,位次用阿拉伯数字表示。如:
多烯烃的顺、反异构体,则用顺、反或Z、E表示: