城市轨道交通高架轨道结构的

合集下载

城市轨道交通高架结构设计荷载标准

城市轨道交通高架结构设计荷载标准

城市轨道交通高架结构设计荷载标准摘要城市轨道交通高架结构设计荷载标准是确保轨道交通高架结构安全稳定运行的重要技术标准。

本文将从轨道交通高架结构荷载标准的确定原则、具体的荷载要求以及高架结构设计中需注意的问题等方面进行论述和分析,以期为轨道交通高架结构的设计与建设提供一定的参考和借鉴。

关键词:城市轨道交通;高架结构;荷载标准1.引言城市轨道交通作为城市公共交通的重要组成部分,其发展已经成为现代城市交通发展的重要标志。

随着城市人口的增加和城市交通需求的提高,轨道交通系统已经成为解决城市交通拥堵和环境污染等问题的主要手段之一。

而在轨道交通系统中,轨道交通高架结构作为其重要的组成部分之一,其设计与建设对于轨道交通系统的运行安全与稳定具有重要意义。

城市轨道交通高架结构设计荷载标准是指在高架结构设计中,需要考虑到各种可能的荷载情况,以保证高架结构在运行过程中能够承受各种不同的外部荷载和内部荷载,保证其安全稳定地运行。

因此,在城市轨道交通高架结构设计过程中,需要遵循相关的荷载标准,以确保高架结构的设计符合国家标准,并且能够满足实际运行的要求。

2.城市轨道交通高架结构设计荷载标准的确定原则在确定城市轨道交通高架结构设计荷载标准时,需要遵循一定的原则和规定。

通常情况下,城市轨道交通高架结构设计荷载标准的确定需要遵循以下原则:2.1 安全性原则在确定荷载标准时,首要的原则是确保高架结构在实际运行过程中能够承受各种荷载,保证其安全稳定地运行。

因此,在设计荷载标准时,需要考虑到高架结构所承受的各种外部荷载和内部荷载,以确保高架结构在运行过程中能够保持结构的安全性和稳定性。

2.2 经济性原则在确定荷载标准时,需要考虑到高架结构的设计成本和运行成本,以确保高架结构的设计具有较低的经济成本。

因此,在设计荷载标准时,需要综合考虑各种外部荷载和内部荷载的实际情况,以确定各种荷载的设计数值,从而保证高架结构的设计具有较低的经济成本。

城市轨道交通高架结构设计荷载标准

城市轨道交通高架结构设计荷载标准

城市轨道交通高架结构设计荷载标准Urban rail transit elevated structures play a crucial role in modern transportation infrastructure, providing efficient and convenient means of travel for millions of city residents. These elevated structures are designed to support the weight of moving trains and passengers, withstand various environmental loads, and ensure the safety of the entire system. As such, it is essential to establish standardized design loads for urban rail transit elevated structures to guarantee their structural integrity and long-term performance.城市轨道交通高架结构在现代交通基础设施中起着至关重要的作用,为数百万城市居民提供高效便捷的出行方式。

这些高架结构设计用于支撑行驶中的火车和乘客的重量,承受各种环境荷载,并确保整个系统的安全。

因此,建立城市轨道交通高架结构的标准化设计荷载至关重要,以确保其结构完整性和长期性能。

When determining design loads for urban rail transit elevated structures, various factors must be considered, such as dead loads, live loads, wind loads, seismic loads, temperature effects, and other environmental loads. Dead loads refer to the weight of the structureitself, including the weight of the beams, columns, and platform. Live loads are the dynamic forces exerted by moving trains and passengers on the structure. Wind loads are critical for elevated structures as they can cause significant lateral forces on the structure, especially in high-rise urban areas subject to strong wind effects.确定城市轨道交通高架结构的设计荷载时,必须考虑各种因素,如静荷载、动荷载、风荷载、地震荷载、温度效应和其他环境荷载。

地铁设计规范中高架结构专业讲解

地铁设计规范中高架结构专业讲解

6、9.1.6条 关于梁的横向刚度(续)
⑶ 铁路城市轨道交通列车的转向架性能比较优越,速 度也不快(一般不超过80~100km/h),且无货车运行;但 是,轨道交通高架桥一般均由许多跨梁构成的长大桥梁,而 且行车密度特别大,从提高防脱轨安全度考虑,以及不产生 过大的横向加速度,以保证舒适度,有必要对梁横向刚度提 出一个参考限值。为使设计时容易操作,这个限值参照我国 铁路桥梁检定规范规定,即用梁的横向自振频率控制。
⑷ 本条规定的限值是按理想的固定与活动支座假定 得到的,因此,本规范9.3.5条规定,采用橡胶支座时 要分出固定和活动。
7、9.1.7 关于桥墩的纵向刚度(续)
⑸ 墩顶纵向水平线刚度包括内墩身和基础组成的综合 刚度按下式计算:
K H
i ∑δi=δp+δф+δh 式中:H-作用于支座顶面的纵向水平力(kN) δp-由于墩身弯曲引起的墩顶纵向位移(cm) δф-由于基础倾斜引起的墩顶纵向位移(cm) δh-由于基础平移引起的墩顶纵向位移(cm)
⑵对于双线桥,规定竖向荷载不折减。这是考虑到地铁、 轻轨列车行车度高、轴重一致的特点。以30m梁跨为例,按3 分钟间隔、全天运行17小时计,两车在桥上相遇的机率约为 382次/年。对一般铁路而言,当采用内燃和电力机车牵引 时,满载货物列车与机车荷载相近;也以30m次计,两车在 桥上相遇的机率约57次/年。显然,轨道交通列车在桥上两 车相遇的机率大得多。国外的一些规范如日本铁路结构设计 标准、英国BS5400(铁路列车)、美国AREA-1977(铁路列 车),原苏联CHμπ2.05(地铁及有轨电车)、德国DS804 (铁路列车)等双线桥加载都不折减。
⑹ 对于中小跨连续梁,可比照同跨简支梁;对较大跨 连续梁可参考“暂行规定”或专门确定;对于固定支座设 于端部的连续梁,固定墩刚度需另行增大;对联长≥120M 的连续梁,桥上应设钢轨伸缩调节器。

城市轨道交通系统的构成—轨道

城市轨道交通系统的构成—轨道
图3-1 轨道构成图
【理论知识】 3.1 城市轨道交通轨道的概念及构成
3、轨道结构与性能要求 (1)轨道是城市轨道交通运营设备的 基础,它直接承受列车荷载,并引导列车运行,在列车运行的动 力作用下,它的各个组成部分必须具有足够的强度和稳定性,承 受来自于列车的纵向和横向的位移推力,保证列车按照规定的速 度、方向及不间断地运行。 (2)同时轨道还需具有耐久性及适量的弹性,以确保列车安全、 平稳、快速运行和乘客舒适。 (3)城市轨道交通均采用电力牵引,故要求轨道结构具有良好 的绝缘性以减少杂散电流。 (4)根据环境保护对沿线不同地段的减振、降噪要求,轨道应 采用相应的减振轨道结构。 (5)从形式上看,全线轨道结构宜统一形式,采用统一的零部 件,并要求外观整齐、维修工作量少且方便。
【理论知识】 3.2 轨道结构之一:钢轨
图3-4 钢轨接头图
【理论知识】 3.2 轨道结构之一:钢轨
(2)较新的连接安装法 该法是持续焊接钢轨,使原本一节一节的钢 轨经焊接后成为无缝钢轨或长钢轨。
图3-5 伸缩接头
【理论知识】 3.2 轨道结构之一:钢轨
4.钢轨的功用 (1)防脱护轨 当列车以高速转弯时,外弯一面的轮缘受着极大的压力, 为防止轮缘负荷过重,在内弯的轨条处会装设一段钢轨,使另一边的 轮缘分担列车转向时所产生的离心力,而通常这附加的轨条会比正常 的轨条高些,以加强保护(见图3-6)。
2.钢轨的分类 (1)从钢轨的断面形状上分 1)槽形钢轨。 2)双头钢轨。 3)平底钢轨。
图3-3 钢轨断面形状图
【理论知识】 3.2 轨道结构之一:钢轨
(2)从钢轨的质量和强度上分 按钢轨的质量和强度不同,城市轨道交 通所使用的钢轨有如下四种(钢轨的强度以kg/m表示,数值越大表明 其所能承受的重量亦越大):43kg/m、50kg/m、60kg/m和75kg/m共四 种。 3.钢轨的连接安装 (1)传统的连接安装法 传统的连接安装法是把20m左右一节的钢轨固 定在轨枕之上,各节钢轨之间的接头(称为钢轨接头,亦称接缝),通 常使用鱼尾板和螺栓接合(见图3-4)。

城市轨道交通工程-第7章高架区间

城市轨道交通工程-第7章高架区间
(1)清基:先将柱顶凿毛,清理干净,并进行柱顶高程检查。 (2)钢筋绑扎:钢筋采用现场加工,现场绑扎,绑扎前先调整好预埋主筋间距,
并在盖梁底模上放线定位各钢筋骨架片,进行其他钢筋的安装绑扎,保证骨 架片间距;均匀设置混凝土垫块,以保证保护层厚度足够。 水养护。
7.1高架区间施工工序 A下部结构A3盖梁
(7)盖梁预应力张拉:盖梁需进行预应力张拉,预应力张 拉的施作必须在混凝土强度达到100%以后进行。锚县采 用自锚锚具,钢绞线为高强低松弛钢纹线。在横断面上 ,每批钢束强拉应按左右、上下原则对称进行:钢束均采 用两端张拉:预应力采用引伸量与张拉力双控,以张拉吨 位为主的施工控制原则。当张拉应力达到控制应力时要 持荷2min再锚固。
(4)浇注混凝土:混凝土 由汽车泵泵送人模,采 用分层法浇筑,且分层 厚度不超过30cm,振捣 棒分层振捣。浇注混凝 土完成后,人工用抹子 将顶面抹平压实;混凝 土浇筑完毕后,覆盖塑 料布保温养护。冬季施 工时采用暖棚法养护。
7.1高架区间施工工序 B上部结构B1支架法现浇箱梁
(5)张拉预应力筋:箱梁预应力按初张拉和终张拉两个阶段进行施 工,当梁体混凝土强度达到设计强度时,龄期不少于5d时,拆除 端模,松开内模,进行初张拉。初张拉完成后,梁体即可承受自重 及模架过孔荷载。当粱体混凝土强度及弹性模量均达到设计要 求,龄期不少于10d时进行终张拉、压浆及封锚施工。
(2)架立模板:支架拱架安装完毕.经检验合格后方可安装模 板;安装模板应与钢筋工序配合进行妨碍绑扎钢筋的模板 ,应待钢筋工序结束后再安装模板在安装过程中,必须设 置防倾覆设施。
底模安装完毕后进行钢筋的绑扎和波纹 Nhomakorabea的理设然后进行 侧模的安装和加固。模板安装完单后,应对其平面位置、 顶部高程、节点联系及纵横向稳定性进行检查,监理认可 后方可浇筑混凝土。

城市轨道交通线路的分类及组成

城市轨道交通线路的分类及组成

1.2 按线路的运营功能分类
(2)辅助线——联络线
定义:用于在同种制式的线路之间 实现列车过轨运行,其位置由线网规划 确定。
作用:是车辆送修的通道,也是调 转运营车辆的通道;可作为临时运营正 线,也可作为后建线路的设备运输通道。
1.2 按线路的运营功能分类
(2)辅助线——联络线
分类: 联络线按其布置形式可
1.1 路基 道传来的列车的压力,因而 必须具有足够的强度、稳定 性和耐久性。
1.2 桥梁
城市轨道交通系统中的桥梁, 除了仍然具备跨越障碍物的功 能外,还具有实现立体交通的 功能。
1.2 桥梁
3大特点: ① 长且平。长度从几百米到二三十公里不等; 处于城市之中,除与地下交接的过渡段起伏 较大外,其他区段相对比较平顺。 ② 窄。轨道交通高架桥单线桥宽5m左右,双 线桥宽度也不过9.5m。 ③ 要求高。为了满足乘客舒适性的要求,大 多数高架桥都设计为无缝线路。
将线路上行线、下行 线及折返线连接起来 的线路。
1.2 按线路的运营功能分类
(2)辅助线——渡线
作用:渡线可满足改变列车进路的需要, 也可改变列车运行方向。
提示:在中间站利用渡线进行区间列车 折返时,需占用正线进行作业,故对行车组 织要求十分严格,且列车运行间隔受其制约 将加大,导致线路通行能力下降,安全可靠 性存在隐患。所以运行速度较高、运行间隔 较短时,不宜采用渡线作为折返方式。
停车线
1.2 按线路的运营功能分类
(2)辅助线——折返线 定义:折返线是在线路两端终点站,或者准备开行折返列车的区间站,供运营列车往返运行时 调头而设置的线路。 形式:折返线包括环形折返线和尽端折返线,尽端折返又包括单线折返和双线折返两种形式。
1.2 按线路的运营功能分类

城市轨道交通的结构类型

城市轨道交通的结构类型

4300
400×400打入方柱
三、车站建筑与桥梁整体式结构
线路中心线 线路中心线
400 4450
E
D
6300
6300
22300
C
4450 400
B
A
第三节 地下车站结构
一、矩形框架结构
地下两层双柱三跨车站结构图
地下两层单柱双跨车站结构图
二、拱形结构
1. 大跨度双层单拱结构
500
8879
14440
渡 线 范 围 隧 道 横 剖 面 图
三、盾构法
盾构法是在盾构机刚壳体保护下,依靠其前部的刀盘或挖掘机 开挖地层,并在盾构机壳体内完成出渣、管片拼装、推进等工 作。采用盾构法修建的隧道一般为单圆或多圆隧道。
单圆盾构隧道
双圆盾构隧道
第五节 地面线的路基结构
地面线设计时注意以下几个问题: (1)要结合沿线土体的使用性质从长远的规划上综合慎重考虑是否设置地面线,因 城市轨道交通的行车密度大,地面线要防护隔离,浙江隔断线路两侧的联系,并带 来很大的噪声。 (2)在南方地区要充分考虑路基的防淹和排水问题,以确保线路的运营安全。带调 查搜集当地的暴雨积水强度来确定最小路面高程。如上海轨道交通9号线经过一处高 压走廊,因受高压线高度控制,局部线路由高架降为地面线,且路基高度根据当地 30年一遇的暴雨积水高度确定,并采取了一定的排水和保护措施。
(2)双箱单室箱梁(双线)


线
线



轨顶面 心
线
线
(3)单箱多室箱梁(双线或多线)


线
线



轨顶面 心
线
线

城市轨道交通第三章-轨道

城市轨道交通第三章-轨道

护轨☞防脱护轨
护轨☞桥梁护轨
护轨☞道岔护轨
轨道结构之一☞钢轨
• 钢轨的损伤与维修养护 (1)钢轨折断 (2)钢轨裂纹 (3)钢轨磨耗 (4)其他损伤
轨道结构之二☞轨枕
• 轨枕的概念 • 轨枕的分类
– 轨枕是轨道的基础部件,它承垫于钢轨之下,将钢轨承受的压力 传递到道床,同时有效地保持钢轨轨距和方向几何形位的轨道部 件。
二 三 轨道结构
独轨铁路轨道结构
轨道结构之一☞钢轨
• 钢轨的概念 • 钢轨的分类 • 钢轨的连接安装
• 钢轨的功用
• 钢轨的损伤与维修养护
– 轨道是指两条直线形呈平行分布的,安装在轨枕或路基只是得由 钢铁材料制成的金属构筑物。
轨道结构之一☞钢轨
• 钢轨的分类
按钢轨的断面形状分,分为槽形钢轨、双头钢轨和平底钢轨.
轨道结构之六☞其他附属设备
1.防爬设备
防爬设备主要由防爬器和防爬支撑组成。
轨道结构之六☞其他附属设备
轨道结构之六☞其他附属设备
2.轨距杆和轨撑
本章内容
一 城市轨道交通轨道的概念及构成
二 三 轨道结构
独轨铁路轨道结构
轨道结构之六☞其他附属设备
• 独轨铁道是指车辆在一根轨道上运行的一种城市轨道交通 系统。通常分为跨座式和悬挂式两种。
轨道结构之四☞道床
• 整体道床优缺点 优点: 纵向、横向稳定性好,具有较高的可靠性; 旅客乘坐舒适性更佳; 整体道床坚固稳定,使用寿命长; 较少的维修工作量和维修成本; 建筑高度较小,节省投资; 无缝线路不会发生胀轨跑道; 高速行车不会有石碴飞溅。
轨道结构之四☞道床
缺点: 造价高昂; 要求较高的施工精度和特殊的施工方法; 在运营过程中一旦出现病害,整治非常困难。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

城市轨道交通高架轨道结构的实施方法与工艺探讨摘要以上海市轨道交通明珠线为例,叙述了高架线路轨道结构的类型和施工工艺,提出了在实施中所产生的问题及解决问题的对策。

关键词城市轨道交通,高架线路,轨道结构我国第一条大容量的城市轨道交通明珠线一期工程,南起漕河泾北至江湾镇,正线全长24. 975 km , 其中高架线21. 514 km , 占全长的86. 1 % , 地面线3. 461 km , 占全长的13. 9 % 。

由于城市轨道交通大部分线路在高架上,与城市地下铁道不同,其轨道结构的实施就要考虑钢轨温度力的影响,桥梁、车站不均匀沉降的影响,大跨度预应力桥梁徐变及对城市环境的影响等。

1 明珠线轨道结构的类型城市轨道交通在我国属起步阶段,除上海市轨道交通明珠线工程正在建设实施外,全国其他各大城市,如北京、长春、沈阳、武汉、重庆、南京、杭州等地都已进行了可行性研究,并都把如何实施轨道结构作为一项亟待解决的重大课题。

上海市轨道交通明珠线工程高架线路的轨道结构采用了如下的型式。

1. 1. 1 钢轨:为60 kg/m 高碳微矾轨(PD3) 。

为了减少对轨道的振动和噪声,提高行车的平稳性,将标准轨焊接成长钢轨,即无缝线路。

考虑到温度压力影响,在车站的道岔前后及大跨度桥梁中部设置了钢轨温度伸缩调节器。

1. 1. 2 扣件: 为新型的小阻力WJ-2 型ω弹条扣件,弹性分开式,其钢轨调高量40 mm , 其中轨下调整量是10 mm , 铁垫板下调整量30 mm 。

轨距调整量±20 mm , 即每轨±10 mm 。

轨下采用不锈钢板复合胶垫。

WJ-2 扣件可承受最大横向力40 kN(疲劳荷载),承轨台上的支承块不设挡肩。

扣件节点刚度为40~60 kN/ mm 。

锚固螺栓拧紧扭距为300 N·m。

预埋绝缘套管抗拔力> 100 kN 。

钢轨与承轨台间电阻> 108 Ω。

1. 3 轨下基础:为支承块式承轨台道床结构,即将预制的钢筋混凝土短枕块(每块支承块顶面预留2 只锚固螺栓孔),在相邻两股钢轨下各垫一块,用锚固螺栓及扣件将钢轨与支承块连在一起,并将预制好的支承块置入混凝土道床中。

承轨台则为一种与桥梁梁部连成一体的一种沿纵向铺设在每股钢轨下面的条形钢筋混凝土结构,其特点是轨下基础和梁部紧密联结,具有很高的强度和稳定性,排水性好,符合城市景观要求。

但其精度要求高,施工难度大,尤其在梁跨较大时,由于梁部顶面的徐变难以控制,会影响承轨台的制作和顶面的标高,同时还存在台体与梁体施工不同步问题。

其日常养护维修量小。

一旦损坏,维修困难。

2 轨道结构的施工工艺高架线路支承块承轨台道床结构,它属于混凝土整体道床的一种形式。

其施工工艺要求较高。

承轨台的施工作业程序可分为3 个阶段进行。

1. 2. 1 施工准备阶段:首先对需铺设承轨台的线路进行测量,设置标桩,进行承轨台放样,并对需浇注混凝土的桥面进行凿毛和清理,然后检查调整桥面预埋插筋,绑扎承轨台下层钢筋。

2. 2. 2 铺调轨道阶段:将铁垫板锚固在支承块上,放置在按设计要求铺设的位置。

再将标准轨( 样板轨) 铺设在支承块短枕上,上好扣件,拧紧螺栓。

同时在安装好钢轨支撑架后,进行粗整轨道几何尺寸。

然后绑扎承轨台上层钢筋,安设定型模板,进行立模。

最后细调轨道几何尺寸准确到位并焊接支承块底部与承轨台之间联结钢筋。

2. 3 浇灌混凝土阶段:首先要在灌注前进行各项检查,确定轨道的几何尺寸准确无误后,用商品混凝土进行浇捣承轨台混凝土,对其表面进行收浆抹面,并进行混凝土养生。

在混凝土承轨台达到一定的强度后,再拆除模板、钢轨支撑架和标准(样板) 轨,同时对支撑架、模板进行整修,最后再对桥面浇制防水层,进行全面整理。

城市轨道交通高架线路的轨道结构,采用支承块式承轨台整体道床结构,其结构施工具有如下的特点: (1) 支承块式纵向承轨台新型整体轨下基础不同于一般轨排式整体轨下基础,其区别在于两股钢轨承轨台间无直接的横向联接,在施工中必须借助于钢轨支撑架,并采取一定的技术措施,才能使两股钢轨的各项几何尺寸( 平面位置、标高、轨底坡等) 准确到位。

此系纵向承轨台式新型整体轨下基础施工的关键。

(2) 在明珠线高架桥面上使用了GZ97 型钢轨支撑架支承钢轨。

钢轨底部通过扣件的连接悬挂预制的钢筋混凝土支承块,然后在现场灌筑隔断式钢筋混凝土纵向承轨台,与桥面直接连结而形成整体轨下基础结构的一整套施工技艺。

使用GZ97 型钢轨支撑架,其结构简单,操作方便,能有效地控制轨道的几何尺寸,采用拆装便捷的纵向承轨台钢模板,能保证现场施工的质量和满足施工进度的要求(如图1) 。

(3) 混凝土承轨台的浇灌利用泵车将商品混凝土泵送上桥,采用分段流水作业的方法,使高架上的轨下基础施工能够全线铺开,以利于加快施工进度。

图1 承轨台施工状态图3 承轨台施工中有关技术工艺的探讨3. 1 轨底坡控制按设计,高架线路的轨底坡为1/ 40 。

由于高架上承轨台是采用自上而下的施工工艺,即将钢轨件等架设在支撑架上,把安装好垫板及垫层的支承块用扣件将其悬挂在轨件下施工。

钢轨轨底坡的控制是靠支承架上焊1/ 40 内倾契型铁座加以控制,而施工后线路钢轨轨底坡是靠支承块上铁垫板形成的。

这样线路钢轨轨底坡与悬挂的支承块无法产生直接的因果关系,而是靠拧紧支承块上扣件螺栓形成接近1/ 40 的自然轨底坡。

在实施施工中,由于悬挂在钢轨上的混凝土支承块较重(75 kg/ 块),且悬挂后产生偏心力,而加拧扣件螺栓时的扭力矩按设计要求为80~100 N·m。

因此在实际作业中产生支承块铁垫板与轨底出现不密贴现象,有缝隙。

在静态下细调轨道几何尺寸时虽符合标准,但在承轨台浇灌后拆下标准轨、支架,换上再用轨后,实际轨距就出现了普遍偏小3~5 mm 、最大达7 mm 的现象。

针对出现的问题,笔者在承轨台浇筑实际操作的过程中研究发现,在上支承块加拧扣件螺栓时, 扭力矩不应受设计要求的80~100 N·m 的限制。

应加大扭矩,使轨底与支承块上铁垫板密贴,从而克服因重力偏心、扭力不足产生缝隙的影响,使施工后的线路轨底坡真正达到1/ 40 的要求。

至于设计要求的80~100 N·m 扭力矩标准的控制,应在更换无缝线路钢轨时加以实施,并最后满足轨道施工的技术标准。

3. 2 道岔铺设辙部位滑床板密贴控制通常在铺设碎石道床道岔时,将道岔滑床垫板及护轨垫板钉到岔枕上只需定好轨距,然后钉入道钉或拧上螺栓,较为简单。

而在高架上铺设支承块式承轨台整体道床道岔中,因滑床垫板及其联结的支承块两侧长短相差较大,且只在一侧用弹条扣件及螺栓将其悬挂到基本轨上,故偏心力很大,使其很难保证滑床板的水平。

尤其要把两侧AT 型尖轨下面的28 块滑床垫板保持在高差不大于0. 5 mm 的平面上, 这就是整体道床道岔施工难点所在。

若施工时超过上述标准,将出现滑床板与尖轨不密贴,影响运营后道岔尖轨的正常工作。

为了解决上述难题,采取的第一种方法是纵向吊架法,即在转辙器基本轨轨顶上放上数根钢轨支撑架的横梁,在横梁上设置8 根纵梁,在纵梁下悬挂28 个吊钩,分别钩住每一块滑床板及其支承块内侧的联结螺栓,由此将每块支承块调到水平位置。

但因放在基本轨上的横梁影响观测基本轨方向的视线,不得不舍弃此法,改用第二种方法,即用钢轨支撑架代替纵梁,使梁高于基本轨轨顶约150 mm 。

这样既不影响观测基本轨方向的视线,又不干扰轨距的丈量,明珠线16 标(江湾镇站尽头线) 的2 组道岔是采用这种吊架方式克服了上述困难而进行铺设的。

由于在铺设道岔过程中滑床板水平控制难度极大,第一次铺设后的道岔仍存在个别滑床板与尖轨底部不密贴现象。

在第二次铺设道岔中,又针对有关施工工艺作了改进。

道岔的尖轨是在工厂经检验后即与基本轨组装,尖端以铁丝捆扎后发运的。

到达现场后,尖轨与基本轨一并铺设,但该种道岔尖轨下在滑床台中设有弹片,弹片又以销钉销紧。

因尖轨的设置不仅影响滑床垫板的调平也给销钉的打入造成困难,为此在道岔的施工中采取将尖轨与基本轨分解,在滑床垫板调平及打入销子后将尖轨拨回滑床板,尖轨可在自由状态下检查轨头与基本轨、轨底与滑床台的密贴情况。

根据上述分析,把原用纵向横梁吊钩控制滑床板水平面改为用简易螺栓千斤顶支撑方法(简易螺栓千斤顶如图2 所示) 。

在施工中用螺栓调正滑床板水平面后,直接浇灌混凝土。

这样既在道岔铺设过程中减少了轨距等尺寸丈量的干扰, 又减少吊架装卸等过大工作量。

在进行该项施工时,同时可铺设各组道岔,也不必增加制做吊架的费用。

实践证明,用螺栓支撑法易调平又稳定。

图2 螺栓顶支撑法调平道岔示意图3. 3 梁面预留插筋方式梁面预留插筋的方式,效果比较好(见图3) 。

但是在承轨台施工中遇到了几个问题。

为使承轨台与梁面混凝土连结牢固,设计采用图3 梁面预留插筋布置示意图一是插筋的高度难以达到设计要求,尤其在曲线有超高地段,预埋筋的高程施工时不能满足精度要求;二是其平面位置做不到与承轨台范围吻合, 或宽或窄;三是门式筋纵向位置无法控制正好在两支承块之间,经常碰到支承块。

由于这3 个主要问题的存在,使承轨台施工中产生大量的钢筋纠偏、接高、凿梁面补焊插筋、承轨台尺寸加宽等等一系列附加工作,耽误很多时间,增加许多工作量,也增加投资费用(仅明珠线一期工程轨道插筋纠偏的钢筋就增加了100 吨以上) 。

为解决上述问题,笔者认为,在高架上铺承轨台工程中,梁面预留筋的型式必须加以改进。

建议采用矮型插筋,即高度全部控制在支承块底部以下,这样能保证不与支承块位置相矛盾;全部采用L 型插筋,不要门式筋,可以节约部分钢材;插筋面积范围缩小(间距缩小,根数不变),以达到施工有一定误差时不致于超出承轨台范围;轨道施工时, 在支承块定位后再考虑与承轨台构造筋焊接(要求预留插筋高度满足焊缝长度要求即可),按需要接高或加宽上面的钢筋。

这样就会大大减少人工和材料费,工期也不因此而受到影响。

4 结语我国各大城市都已把发展城市轨道交通摆在重要的议事日程,但在城市轨道交通的建设实施中,具体采用何种的轨道结构和运用何种的施工方法都还在探索研究阶段。

笔者在我国第一条城市轨道交通明珠线的轨道结构实施中,有如下几点体会:(1) 轨道工程能否如期贯通,将直接影响到接触网、通信信号、电缆等工程的施工进度。

轨道工程能否及时贯通,又取决于桥梁与车站土建工程的同步完成。

为使后序工程能顺利进行,前期土建工程的施工安排应先难后易,先繁后简。

使土建完成后桥梁与车站的沉降、徐变在基本相同的时间内趋于稳定,以免沉降不均,引起轨道异变。

这样不仅有利于轨道结构支承块式承轨台道床的实施,而且也大大缩短工期,并保证轨道的工程质量。

相关文档
最新文档