运筹学实验报告一

合集下载

运筹学实验报告

运筹学实验报告

实验报告运筹学学号:100103155姓名:周李斌专业:工业工程指导教师:周三玲二○一一年六月运筹学(一)实验报告一、实验目的:1)熟练掌握运筹学软件的相关操作2)学会使用软件求解运筹学中常见的数学模型,如线性规划问题、运输问题、目标规划问题、最短路问题、最大流问题等等3)了解线性规划问题在Excel中如何建立,主要是数据单元格、输出单元格、可变单元格和目标单元格的定义以及规划求解宏定义应用设置。

4)熟练掌握Excel规划求解宏定义模块使用。

二、实验仪器设备及材料计算机、Excel软件三、实验任务:Ⅰ、线性规划Ⅱ、目标规划Ⅲ、运输问题Ⅳ、最短路问题Ⅴ、最大流问题四、实验内容记录:问题1模型:Min z = -2X1-X2+3X3-5X4s.t. X1+2X2+4X3-X4<=62X1+3X2-X3+X4<=12X1+ X3+X4<=4X1,X2,X3,X4>=0实验步骤:1.建立问题模型如图所示:2.加载宏,用规划求解来计算3.结果分析:问题2模型:min z= P1d1-+P2d2++P3(5d3-+3d4-)+P4d1+ s.t. x1+x2+d1--d1+=80x1+x2+d2--d2+=90x1+x2+d3--d3+=70x1+x2+d4--d4+=45x1,x2,d i-,d i+≥0,i=1,2,3,4 实验步骤:1.建立问题模型如图所示:2.加载宏,用规划求解来计算3.结果分析问题3模型:求运输问题最优解实验步骤:1.建立问题模型如图所示:2.加载宏,用规划求解来计算3.结果分析问题4模型:求V1到各点的最短路2V2 V32 3 4 61 6V1 V5 V6 V43 4 3 7V7 V81实验步骤:1.建立问题模型如图所示:2.加载宏,用规划求解来计算3.结果分析得到f(v1,v8)=10,其余结果,方法同上。

问题5:求网络最大流V1 (1,1) V4(4,3) (3,2) (4,3 ) (7,6)Vs (3,2) V3 (2,2) Vt (10,4) (3,2) (5,3) (8,3)V2 (4,2) V5实验步骤:1.建立问题模型如图所示:2.加载宏,用规划求解来计算3.结果分析得最大流为V(f)=11,此时S=(Vs,V2),S=(V1,V3,V4,V5,Vf)实验总结(或心得体会)“通过构建、求解数学模型,规划、优化有限资源的合理利用,为科学决策提供量化一句的系统知识体系。

运筹学实验报告

运筹学实验报告

运筹学实验报告运筹学实验报告一、实验目的:本实验旨在了解运筹学的基本概念和方法,并通过实践,掌握运筹学在实际问题中的应用。

二、实验过程:1.确定运筹学的应用领域:本次实验选择了物流配送问题作为运筹学的应用领域。

2.收集数据:我们选择了一个小型企业的物流配送数据进行分析,并将数据录入到计算机中。

3.建立模型:根据所收集的数据,我们建立了一个代表物流配送问题的数学模型。

4.运用运筹学方法进行求解:我们运用了线性规划的方法对物流配送问题进行求解,并得到了最优解。

5.分析结果:通过分析最优解,我们得出了一些有关物流配送问题的结论,并提出了一些优化建议。

三、实验结果:通过运用运筹学方法对物流配送问题进行求解,我们得到了一个最优解,即使得物流成本最低的配送方案。

将最优解与原始的配送方案进行对比,我们发现最优解的物流成本降低了20%,节省了货物运输的时间,减少了仓储成本。

四、实验结论:通过本次实验,我们了解了运筹学的基本概念和方法,并成功应用运筹学方法解决了物流配送问题。

通过分析最优解,我们发现采用最优解可以降低物流成本,提高配送效率。

因此,我们得出结论:运筹学在物流配送问题中的应用具有重要意义,可以帮助企业降低成本、提高效率。

五、实验心得:通过本次实验,我对运筹学有了更深入的了解。

通过实践应用运筹学方法,我明白了运筹学的实用性和价值。

在以后的工作中,我会更加注重运筹学方法的应用,以解决实际问题,提高工作效率。

本次实验不仅增强了我的动手实践能力,也培养了我分析和解决问题的能力。

我将继续学习和探索运筹学的知识,为将来的工作打下坚实的基础。

运筹学实践教学报告范文(3篇)

运筹学实践教学报告范文(3篇)

第1篇一、引言运筹学作为一门应用数学分支,广泛应用于经济管理、工程技术、军事决策等领域。

本报告旨在通过运筹学实践教学,验证理论知识在实际问题中的应用效果,提高学生的实践能力和创新能力。

以下是对本次实践教学的总结和反思。

二、实践教学内容1. 线性规划问题本次实践教学选择了线性规划问题作为研究对象。

通过建立线性规划模型,我们尝试解决生产计划、资源分配等实际问题。

- 案例一:生产计划问题某公司生产A、B两种产品,每单位A产品需消耗2小时机器时间和3小时人工时间,每单位B产品需消耗1小时机器时间和2小时人工时间。

公司每天可利用机器时间为8小时,人工时间为10小时。

假设A、B产品的利润分别为50元和30元,请问如何安排生产计划以获得最大利润?- 建模:设A产品生产量为x,B产品生产量为y,目标函数为最大化利润Z = 50x + 30y,约束条件为:\[\begin{cases}2x + y \leq 8 \\3x + 2y \leq 10 \\x, y \geq 0\end{cases}\]- 求解:利用单纯形法求解该线性规划问题,得到最优解为x = 3,y = 2,最大利润为240元。

- 案例二:资源分配问题某项目需要分配三种资源:人力、物力和财力。

人力为50人,物力为100台设备,财力为500万元。

根据项目需求,每种资源的需求量如下:- 人力:研发阶段需20人,生产阶段需30人;- 物力:研发阶段需30台设备,生产阶段需50台设备;- 财力:研发阶段需100万元,生产阶段需200万元。

请问如何合理分配资源以满足项目需求?- 建模:设人力分配量为x,物力分配量为y,财力分配量为z,目标函数为最大化总效用U = x + y + z,约束条件为:\[\begin{cases}x \leq 20 \\y \leq 30 \\z \leq 100 \\x + y + z \leq 500\end{cases}\]- 求解:利用线性规划软件求解该问题,得到最优解为x = 20,y = 30,z = 100,总效用为150。

运筹学实验报告

运筹学实验报告

《运筹学》实验报告河南理工大学经管学院班级:人力11—1班姓名:陈浩学号:311110030120实验一线性规划1.某工厂要用三种原材料C、P、H混合调配出三种不同规格的产品A、B、D,已知产品的规格要求,产品单价,每天能供应的原材料数量及原材料单价分别见下表1和2。

该厂应如何安排生产,使利润收入为最大?表1产品名称规格要求单价(元/kg)原材料C不少于50%50A原材料P不超过25%原材料C不少于25%35B原材料P不超过50%D不限25表2原材料名称每天最多供应量(kg)单价(元/kg)C100 65P 100 25H 60 35解:(1)依题意得到模型:260260150125253550max 321321321≤++≤≤≤++=x x x x x x x x x z(2)建立新问题:(3)解得:实验二运输问题2.设有三个化肥厂(A, B, C)供应四个地区(I, II, III, IV)的农用化肥。

假定等量的化肥在这些地区使用效果相同。

各化肥厂年产量,各地区年需要量及从各化肥厂到各地区运送单位化肥的运价表如下表所示。

试求出总的运费最节省的化肥调拨方案。

需求地区化肥厂I II III IV 产量A B C 1614191313202219231715—506050最低需求最高需求305070703010不限注意:表格中的运价可以填入M(任意大正数)。

解:(1)建立新问题:得:(2)求解问题,观察求解结果:3.人事部门欲安排四人到四个不同岗位工作,每个岗位一个人。

经考核五人在不同岗位的成绩(百分制)如下表所示,如何安排他们的工作使总成绩最好,应淘汰哪一位。

工作人员人力资源物流管理市场营销信息管理甲乙丙丁戊8595828676928783908573787980929095908893解:(1)建立新问题(2)修改各个人名和任务名:(3)得:(4)解得:实验三整数规划4.某厂拟建两种不同类型的冶炼炉。

运筹学实验报告

运筹学实验报告

运筹学实验报告一实验一:线性规划【例l】某制药厂用甲、乙两台机器生产A、B两种药物。

每种药物要经过两道工序,在甲机器上搅拌,在乙机器上包装。

生产每千克药物所需的加工时间以及机器1周可用于加工的总时间如下表1所示。

已知生产每千克药物A的利润是30元,B是25元,问应如何安排1周的生产计划才能使工厂获利最大?表 1 两种药物在各机器上所需加工时间及各机器可用于加工的总时间(1)写出数学模型,建立新问题、输入选项(电子表格、变量取非负连续)、输入数据、存盘、求解模型、结果存盘、观察结果。

(2)将电子表格格式转换成标准模型。

(3)将结果复制到Excel或Word文档中。

(4)分析结果。

解:(1)从已知条件写出该问题的数学模型:max Z=30x1+25x2;2x1+4x2<=40;3x1+2x2<=30;x1>=0,x2>=0.建立新问题、输入选项(电子表格、变量取非负连续)、输入数据、存盘、求解模型、结果存盘、观察结果:求解模型过程Simplex Tableau -- Iteration 1X1 X2 Slack_C1 Slack_C2Basis C(j) 30.0000 25.0000 0 0 R. H. S. RatioSlack_C1 0 2.0000 4.0000 1.0000 0 40.0000 20.0000Slack_C2 0 3.0000 2.0000 0 1.0000 30.0000 10.0000C(j)-Z(j) 30.0000 25.0000 0 0 0Simplex Tableau -- Iteration 1X1 X2 Slack_C1 Slack_C2Basis C(j) 30.0000 25.0000 0 0 R. H. S. RatioSlack_C1 0 2.0000 4.0000 1.0000 0 40.0000 20.0000Slack_C2 0 3.0000 2.0000 0 1.0000 30.0000 10.0000C(j)-Z(j) 30.0000 25.0000 0 0 0Simplex Tableau -- Iteration 3X1 X2 Slack_C1 Slack_C2Basis C(j) 30.0000 25.0000 0 0 R. H. S. RatioX2 25.0000 0 1.0000 0.3750 -0.2500 7.5000X1 30.0000 1.0000 0 -0.2500 0.5000 5.0000C(j)-Z(j) 0 0 -1.8750 -8.7500 337.5000(2)将电子表格格式转换成标准模型。

大学生运筹学实训报告范文

大学生运筹学实训报告范文

一、引言运筹学是一门应用数学的分支,它运用数学模型、统计方法和计算机技术等工具,对复杂系统进行优化和决策。

为了更好地理解和掌握运筹学的理论和方法,提高实际操作能力,我们开展了大学生运筹学实训。

以下是本次实训的报告。

二、实训目的1. 理解运筹学的基本概念、原理和方法;2. 学会运用运筹学解决实际问题;3. 提高团队协作和沟通能力;4. 培养独立思考和创新能力。

三、实训内容1. 线性规划(1)实训目的:通过线性规划实训,掌握线性规划问题的建模、求解和结果分析。

(2)实训内容:以生产问题为例,建立线性规划模型,运用单纯形法求解最优解。

2. 整数规划(1)实训目的:通过整数规划实训,掌握整数规划问题的建模、求解和结果分析。

(2)实训内容:以背包问题为例,建立整数规划模型,运用分支定界法求解最优解。

3. 非线性规划(1)实训目的:通过非线性规划实训,掌握非线性规划问题的建模、求解和结果分析。

(2)实训内容:以旅行商问题为例,建立非线性规划模型,运用序列二次规划法求解最优解。

4. 网络流(1)实训目的:通过网络流实训,掌握网络流问题的建模、求解和结果分析。

(2)实训内容:以运输问题为例,建立网络流模型,运用最大流最小割定理求解最优解。

5. 概率论与数理统计(1)实训目的:通过概率论与数理统计实训,掌握概率论与数理统计的基本概念、原理和方法。

(2)实训内容:以排队论为例,建立概率模型,运用排队论公式求解系统性能指标。

四、实训过程1. 组建团队,明确分工;2. 针对每个实训内容,查阅相关资料,了解理论背景;3. 根据实际问题,建立数学模型;4. 选择合适的算法,进行编程实现;5. 对结果进行分析,总结经验教训。

五、实训成果1. 理解了运筹学的基本概念、原理和方法;2. 掌握了线性规划、整数规划、非线性规划、网络流和概率论与数理统计等运筹学工具;3. 提高了团队协作和沟通能力;4. 培养了独立思考和创新能力。

六、实训心得1. 运筹学是一门实用性很强的学科,它可以帮助我们解决实际问题,提高工作效率;2. 在实训过程中,我们要注重理论联系实际,将所学知识应用于实际问题的解决;3. 团队协作和沟通能力在实训过程中至关重要,要学会与团队成员共同进步;4. 实训过程中,我们要敢于尝试,勇于创新,不断提高自己的实践能力。

运筹学lingo实验报告(一)

运筹学lingo实验报告(一)

运筹学lingo实验报告(一)运筹学lingo实验报告介绍•运筹学是一门研究在给定资源约束下优化决策的学科,广泛应用于管理、工程、金融等领域。

•LINGO是一种常用的运筹学建模和求解软件,具有丰富的功能和高效的求解算法。

实验目的•了解运筹学的基本原理和应用。

•掌握LINGO软件的使用方法。

•运用LINGO进行优化建模和求解实际问题。

实验内容1.使用LINGO进行线性规划的建模和求解。

2.使用LINGO进行整数规划的建模和求解。

3.使用LINGO进行非线性规划的建模和求解。

4.使用LINGO进行多目标规划的建模和求解。

实验步骤1. 线性规划•确定决策变量、目标函数和约束条件。

•使用LINGO进行建模,设定目标函数和约束条件。

•运行LINGO求解线性规划问题。

2. 整数规划•在线性规划的基础上,将决策变量的取值限制为整数。

•使用LINGO进行整数规划的建模和求解。

3. 非线性规划•确定决策变量、目标函数和约束条件。

•使用LINGO进行非线性规划的建模和求解。

4. 多目标规划•确定多个目标函数和相应的权重。

•使用LINGO进行多目标规划的建模和求解。

实验结果•列举各个实验的结果,包括最优解、最优目标函数值等。

结论•运筹学lingo实验是一种有效的学习运筹学和应用LINGO的方法。

•通过本实验能够提高对运筹学概念和方法的理解,并掌握运用LINGO进行优化建模和求解的技能。

讨论与建议•实验过程中是否遇到困难或问题,可以进行讨论和解决。

•提出对于实验内容或方法的建议和改进方案。

参考资料•提供参考书目、文献、教材、网站等资料,以便学生深入学习和研究。

致谢•对与实验指导、帮助或支持的人员表示感谢,如老师、助教或同学等。

以上为运筹学lingo实验报告的基本框架,根据实际情况进行适当调整和补充。

实验报告应简洁明了,清晰表达实验目的、内容、步骤、结果和结论,同时可以加入必要的讨论和建议,以及参考资料和致谢等信息。

运筹学实验报告1

运筹学实验报告1

实验报告项目名称所属课程名称运筹学项目类型实验(实训)日期3月18号班级学号姓名指导教师浙江财经学院教务处制一、实验概述(一)实验目的掌握使用Excel软件求解线性规划问题。

(二)实验要求用Excel软件完成案例求解并进行结果分析。

(三)实验工具Excel软件二、实验内容案例营养配餐问题♦有A、B两种食品,含有每天必须的营养成分C、D,每天至少需要营养成分C和D 分别为2和3个单位。

食品A、B的成分和单价如下表,试做花钱最少的食谱,并求其费用。

(一)线性规划模型♦1、确定决策变量:设A、B两种食品每天的购买量分别为x1,x2单位。

♦2、确定目标函数:min W=0.9x1+0.8x2♦3、确定约束条件:成分C约束:x1+2x2 ≥2成分D约束:3x1+x2 ≥3x1 ≥0,x2 ≥0(二)电子表格模型A购买量0.8B购买量0.6目标函数 1.2成分C约束 2成分D约束 3A购买量0.8B购买量0.6(三)结果分析Microsoft Excel 11.0 运算结果报告工作表[Book1.xls]Sheet1报告的建立: 2012/3/18 18:51:54目标单元格(最小值)单元格名字初值终值$B$5目标函数0 1.2可变单元格单元格名字初值终值$B$2A购买量00.8 $B$3B购买量00.6约束单元格名字单元格值公式状态型数值$B$7成分C约束2$B$7>=2到达限制值$B$8成分D约束3$B$8>=3到达限制值$B$10B购买量0.6$B$10>=0未到限制值0.6$B$9A购买量0.8$B$9>=0未到限制值0.8分析:由上表可知:目标函数的最小值为1.2,当产品A的购买量为0.8,产品B的购买量为0.6时取得最小值。

取得最小值时成分C的含量与成分D的含量均达到最低要求。

Microsoft Excel 11.0 极限值报告工作表 [Book1.xls]极限值报告 1报告的建立: 2012/3/18 18:54:24目标式单元格名字值$B$5 目标函数 1.2变量下限目标式上限目标式单元格名字值极限结果极限结果$B$2 A购买量0.8 0.8 1.2 #N/A #N/A$B$3 B购买量0.6 0.6 1.2 #N/A #N/A分析:有该表可知:产品A购买量下极限为0.8单位,取下极限时目标函数结果为1.2,上极限为无穷大,目标值也为无穷大;产品B购买量下极限为0.6单位,取下极限时目标函数结果为1.2,上极限为无穷大,目标值也为无穷大。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

例3 某家具公司制造书桌、餐桌和椅子,所用资源有三种:木料、木工和漆工。

生产数据表如表所示,若要求桌子生产量不超过5件,问如何安排三种产品的生产可使产品利润最大?
书桌 餐桌 椅子 资源总数 木料 8 6 1 48 漆工 4 2 1.5 20 木工 2 1.5 0.5 8 成品单价
60
30
20
解:假设书桌、餐桌和椅子的生产数量分别为:X1、X2和X3,依题意建立如下线性规划模型:
12312312312312123603020864842 1.520.2 1.50.585,,0Maxf x x x x x x x x x s t x x x x x x x x =++++≤⎧⎪
++≤⎪⎪
++≤⎨⎪+≤⎪⎪≥⎩且取整数
(1)在LINGO 中输入:
max 60x1+30x2+20x3
st8x1+6x2+x3<=48 4x1+2x2+1.5x3<=20 2x1+1.5x2+0.5x3<=8 x1+x2<=5 end gin3
(2)执行运行结果为:
Global optimal solution found.
Objective value: 280.0000 Objective bound: 280.0000 Infeasibilities: 0.000000 Extended solver steps: 0 Total solver iterations: 3
Variable Value Reduced Cost X1 2.000000 -60.00000 X2 0.000000 -30.00000 X3 8.000000 -20.00000
Row Slack or Surplus Dual Price 1 280.0000 1.000000 2 24.00000 0.000000 3 0.000000 0.000000 4 0.000000 0.000000 5 3.000000 0.000000
(3)结果分析:得到最优解f= 280.0000,X1= 2.000000,X2 =0.000000,X3 =8.000000。

例4:有某种物资需要从3个产地运到4个销地,产量、销量及单位运费如表所示,试求总运费最少的运输方案和总运费。

(1)在LINGO 中输入:
model :
!3 Warehouse,4 Customer Transportation Problem; sets :
Warehouse/1..3/:a; Customer/1..4/:b;
Routes(Warehouse,Customer):c,x; endsets
!Here are the parameters; data :
a=30,25,21; b=15,17,22,12; c=6,2,6,7, 4,9,5,3, 8,8,1,5; enddata
! The objective;
[OBJ]min = @sum (Routes:c*x); ! The supply constraints; @for (Warehouse(i):[SUP]
@sum (Customer(j):x(i,j))<=a(i)); ! The demand constraints; @for (Customer(j):[DEM]
@sum (Warehouse(i):x(i,j))=b(j));
End
(2)执行运行结果为:
Global optimal solution found.
Objective value: 161.0000 Infeasibilities: 0.000000。

相关文档
最新文档