151从分数到分式课件-课件【PPT】
合集下载
人教版数学八上 15.1.1从分数到分式 课件(共19张PPT)

;
(3) 5
1
3
b
;
(4)x y 。
x y
六、尝试解题(2)
解:(1)要使分式有意义,则分母3x≠0, 即 x ≠0
(2)
(3)
(4)
七、巩固训练
下列分式中的字母满足什么条件时分式有意义?
(1) 2 a
(3)2 a b 3a b
(2) 1 x y
(4)
x
2 2
1
八、尝试解题(3)
下列分式中的x 满足什么条件时,分式的值为零?
五、自主探究(2)
我们知道,要使分数有意义,分数 中的分母不能为 .同样由于分式的分 母也表示除数,而除数不能为_,所以 分式的分母也不能为_,即B不等_时 ,分式才有意义。那么分式无意义的条 件是分母为_。
六、尝试解题(2)
例1 下列分式中的字母满足什么条件时分式有意义?
(1) 2 ; 3x
(2) x x1
2.下列式子中,哪些是整式?哪些是分式?
1 a
,
x1
,3
m
,b
3
c
, ab
,
a6 ,
2b
3 (x y), x2 2x 1
4
5
,m n
m n
。
九、当堂检测
3. 当x满足什么条件时下列分式有意义?
(1) 1 ; 3x
(2) 1 3 x
;
(3)3
x x
5 5
;
(4) x 2
1
16
。
九、当堂检测
课前预热
1、我们在七年级已经学习了单项式 和多项式,请同学们回忆一下单项式 和多项式的概念。 2、根据单项式和多项式的概念完成 温故互查。
15.1.1从分数到分式 课件(共21张PPT)

xn
分式无意义,求m-n的值. 解:由x=3时,分式的值为0知:2×3-m=0,
得:m=6
由x=2时,分式无意义知:2+n=0,得:n=-2
所以:m-n=8.
课堂小结
本节课我们收获了哪些知识?
1.说一说什么是分式?
2.分式有意义的条件是什么?
3.分式的值为0的条件是什么?
课后作业
教材133页习题15.1第2、3题.
x 1
B. x2
x2 1 C. x2 1
x2 D. x 1
小试牛刀
4.已知分式 x2 9 的值为0,则x应满足的条件是( D )
x3
A.x=±3
B.x=-3
C.0
D.x=3
5.当x=1时,下列分式没有意义的是( B )
A. x 1
x
B. x
x 1
C.x 1
x
D. x
x 1
小试牛刀
6.已知分式2x m ,当x=3时,分式的值为0,当x=2时,
(分母含有字母)
分数是分式中的字母取某些值的结果,分式更具一般性.
合作探究
思考3:既然分式是不同于整式的另一类式子,那么它 们统称为什么呢?
数、式通性
有 整数
整式 有
理 数
分数
数的
分式
理 式
式的
扩充
扩充
小试牛刀
1.列式表示下列各量:
40
(1)某村有n个人,耕地40hm²,则人均耕地面积为 n hm².
m≠-2/3
(4) 1 x-y
(5)2a b 3a b
(6) x
2 2
1
x≠y
3a≠b
x≠±1
小试牛刀
分式无意义,求m-n的值. 解:由x=3时,分式的值为0知:2×3-m=0,
得:m=6
由x=2时,分式无意义知:2+n=0,得:n=-2
所以:m-n=8.
课堂小结
本节课我们收获了哪些知识?
1.说一说什么是分式?
2.分式有意义的条件是什么?
3.分式的值为0的条件是什么?
课后作业
教材133页习题15.1第2、3题.
x 1
B. x2
x2 1 C. x2 1
x2 D. x 1
小试牛刀
4.已知分式 x2 9 的值为0,则x应满足的条件是( D )
x3
A.x=±3
B.x=-3
C.0
D.x=3
5.当x=1时,下列分式没有意义的是( B )
A. x 1
x
B. x
x 1
C.x 1
x
D. x
x 1
小试牛刀
6.已知分式2x m ,当x=3时,分式的值为0,当x=2时,
(分母含有字母)
分数是分式中的字母取某些值的结果,分式更具一般性.
合作探究
思考3:既然分式是不同于整式的另一类式子,那么它 们统称为什么呢?
数、式通性
有 整数
整式 有
理 数
分数
数的
分式
理 式
式的
扩充
扩充
小试牛刀
1.列式表示下列各量:
40
(1)某村有n个人,耕地40hm²,则人均耕地面积为 n hm².
m≠-2/3
(4) 1 x-y
(5)2a b 3a b
(6) x
2 2
1
x≠y
3a≠b
x≠±1
小试牛刀
《从分数到分式》分式PPT教学课件

解:整式有9x+4,
分式有
7
x
,
9 y
20
, m 5 4
8y 3
y2
,
1
x 9
;
1
x 9
.
探究新知
知识点 2
分式有意义、无意义及分式值为零的条件
1.分式 的分母有什么条件限制?
当B=0时,分式 无意义.
当B≠0时,分式 有意义.
2.当
=0时分子和分母应满足什么条件?
当A=0而
点
分数线
分母
不
同
点
分数:分子、分母都为
数字
分式:分子、分母都为
整式,且分母中必须含
有字母;分子中可以不
含字母
探究新知
素养考点 1 分式的识别
例 指出下列代数式中,哪些是整式,哪些是分式?
x 2x 1 1
x 1 x 2 a 2 2ab b 2
,
, (a b),
,
,
2 3x 2
x
(2)当x
时,分式
(3)当b
5
1
时,分式
有意义;
分母 5–3b≠0 ,即 b≠
3
5 3b
(4)当x,y 满足关系
分母 x–y≠0 ,即 x≠y
x y
时,分式 x y 有意义.
探究新知
素养考点 2
根据分式的值为零的条件求字母的值
例2 当 x=1
|x|−1
时,分式
的值为零.
x+1
解:要使分式的值为零,只需分子为零且分母不为零,
+
人教版 八年级上册 15.1.1从分数到分式(共27张PPT)

,
60 20- v
请对照活动二,你填写好的式子认真比较分析,完成 下列思考,形成新的知识: (1)所填式子中,哪些是整式? (2)比较不是整式的这一类式子,它们有什么共同 点?它们与分数有什么相同点和不同点?
S , a
V S
,
100 20 v
,
60 20- v
它们都不是整式.
1.从式子形式上看,和分数的形式相同,都是 2.但分数的分子和分母都是整数, 而这类式子的分子和分母都是整式, 并且 都含有
1 x 4 2a 5 x , , 3 , , 2 , 2 x 3 3b 5 3 x y
m n x2 2x 1 c ,2 , . m n x 2x 1 3 ( a b)
分式: 1 4 x m n x2 2x 1 c , 3 , 2 , , 2 , ; 2 x 3b 5 x y m n x 2 x 1 3 ( a b)
2 7
.
来表示。 来表示。 来表示。
活动二
填空:
做一做
S a
10 (1)长方形的面积为10 cm2,长为7 cm,宽应为 7 cm;
长方形的面积为S,长为a,宽应为
.
(2)把体积为200x cm3的水倒入底面积为 33 cm2的圆柱形 200 x 容器中,水面高度为 33 cm;把体积为V的水倒 面积为S的圆柱形容器中,水面高度为
解:分母 x-1≠0 即 x≠1 答案:≠1
1 当x 取全体实数 时,分式 2 有意义 x 1
【变式】
(3)当b
1 时,分式 5 3b 无意义.
(4)当x,y 满足关系
时,分式
xy 无意义. xy
知识点三
人教版八年级数学上册第十五章15.1.1从分数到分式教学课件 (共22张PPT)

答案: ≠1
▪ 3.解:分母5-3b ≠0 即b ≠
5
答案: ≠ 5
3
▪
4.解:分母x-y
3 ≠0
即x
≠y
答案:x ≠y
课堂小结
▪ 通过本课时的学习,需要我们
1.知道分式的概念,会辨别分式和整式。 2.会求分式有意义时字母的取值范围。 3.会求分式值为零时字母的取值。
名言警句
人生像攀登一座山,而找寻 出路,却是一种学习的过程,我 们应当在这个过程中,学习稳定、 冷静,学习如何从慌乱中寻找到 生机。
类比分数、分式的概念及表达形式:
被除数÷除数=商
如: 8
÷
5
=
8 5
整数 整数 分数
被除式÷除式=商式
如:(v-v0)÷ t
v v0
=t
整式(A) 整式(B)分式(
A)
B
注意:分式是不同于整式的另一类有理式, 分母中含有字母是分式的一大特点。
1.分式
A的分母有什么条件限制?
B
当B=0时,分式 A无意义。 B
A
当B≠0时,分式 B有意义。
2.当
A B
=0时分子和分母应满足什
么条件?
当A=0且B ≠0时,分式 A的值为零。
B
例题解析
▪ 指出下列代数式中,哪些是整式?哪些是分 式?
x 2x +1 1 (a + b) x +1 x2 a2 2ab + b2
2 3x 2
x x ab
解析:
整式有:x ,1 (a + b),x +1
22
x
分式有:2x +1 , x2 ,a 2 2ab + b2
(人教版)八年级数学上册:15.1.1《从分数到分式》ppt课件

10 200 有什么相同点?
a S 与 7 33
和不同点?
A 都是 B (即A÷B)的形式
分数的分子A与分母B都是整数
而 的分子A与分母B都是整式,
并且分母 B中含有字母
给出分式定义:
一般地,如果A、B表示两个整式,
并且B中含有字母,那么式子 A
叫B做叫分做母分。式。其中A叫做分子,B
分式
注意
(1)A中可以不含字母; (2)B0且B中必须含有字母。
15.1.1从分数到分式
思考
• 填空:
• (1)长方形的面积为10c㎡,长为7㎝,宽应为
( )㎝;长方形的面积为S,长为a,宽应为
()
cm • (2)把体积为200
3的水倒入底面积为33c㎡
的圆柱形容器中,水面高度为()㎝;把体积为V的
水倒入底面积为S的圆柱形容器中,水面高为
() 。
观察发现
SV
时,分式 x 有意义;
x 1
分母 x-1≠0 即 x≠1
(3)当b
1 时,分式 5 3b 有意义;
分母 5-3b≠0 即 b≠
5 3
(4)当x、y 满足关系 有意义。分母 x-y≠0 即 x≠y
时,分式
x x
y y
分式
思考: (1)当x____时, (2)当x____时, (3)当x____时, (4)当x____时,
有意义; 是负数; 的值为0; 是正数
分式 小结
(1)分式有意义的条件:分母不为0; (2)分式无意义的条件:分母为0; (3)分式值为0的条件:分子为0,且 分母不为0; (4)分式值为正(负)数条件:分子分母 同号时,分式值为正;分子分母异号 时,分式值为负
从分数到分式ppt课件

−
针对演练
下列分式中的字母满足什么条件时,分式有意义?
(1)
(2)
+
−
(3)
+
−
(4)
−
−
(5)
−(ຫໍສະໝຸດ )+ +
解:(1)由题可得 ≠ , 则 ≠
(2)由题可得 − ≠ , 则 ≠ ±
(3)由题可得 − ≠ , 则 ≠
(1)分式的定义.
(2)分式有意义、无意义的条件
(3)当分式值为0时,分式中字母满足的条件
2.本节课运用了哪些数学思想方法?
类比思想
课后巩固
请同学们完成作业本的课后练习
分式 既可以表示2÷ ,又可以表示-5÷ , ÷ (-9)等
探索新知
下列各式中,哪些是整式?哪些是分式?两类式子的区别是什么?
整式与分式的区别:整式的分母中不含字母,而分式的分母中含有字母.
整式和分式统称为有理式.
巩固概念
1.列式表示下列各量:
(1)某村有n个人,耕地40 hm2,人均耕地面积为
“八纵八恒”高速铁路网规则
情景导入
赣州至南昌铁路线全长约419千米,
普通火车全程运行时间约5小时,高
铁全程运行时间比普通火车快约3小
时,问高铁和普通火车平均每小时运
行的速度?(只列式不计算结果)
普通火车: ( Τ)
km
高铁: ( Τh)
情景导入
赣州至南昌铁路线全长约419千米,普
(3)由题可得2 − = 0, 则 = 2
(4)由题可得2 − 4 = 0, 且 + 2 ≠ 0,则 = −2
针对演练
下列分式中的字母满足什么条件时,分式有意义?
(1)
(2)
+
−
(3)
+
−
(4)
−
−
(5)
−(ຫໍສະໝຸດ )+ +
解:(1)由题可得 ≠ , 则 ≠
(2)由题可得 − ≠ , 则 ≠ ±
(3)由题可得 − ≠ , 则 ≠
(1)分式的定义.
(2)分式有意义、无意义的条件
(3)当分式值为0时,分式中字母满足的条件
2.本节课运用了哪些数学思想方法?
类比思想
课后巩固
请同学们完成作业本的课后练习
分式 既可以表示2÷ ,又可以表示-5÷ , ÷ (-9)等
探索新知
下列各式中,哪些是整式?哪些是分式?两类式子的区别是什么?
整式与分式的区别:整式的分母中不含字母,而分式的分母中含有字母.
整式和分式统称为有理式.
巩固概念
1.列式表示下列各量:
(1)某村有n个人,耕地40 hm2,人均耕地面积为
“八纵八恒”高速铁路网规则
情景导入
赣州至南昌铁路线全长约419千米,
普通火车全程运行时间约5小时,高
铁全程运行时间比普通火车快约3小
时,问高铁和普通火车平均每小时运
行的速度?(只列式不计算结果)
普通火车: ( Τ)
km
高铁: ( Τh)
情景导入
赣州至南昌铁路线全长约419千米,普
(3)由题可得2 − = 0, 则 = 2
(4)由题可得2 − 4 = 0, 且 + 2 ≠ 0,则 = −2
《15.1.1 从分数到分式》课件(3套)

值时为负? -3<X<2
例2:当x为何值时,分式 6 的值为整数? x2
X为-8,-5,-4,-3,-1,0,1,4时分式值为整数。
课堂练习:
1、下列各式哪些是分式,哪些是整式?
8m n
①
+m2
3
1
②1+x+y2-
z
③ 3x 1 2
④1 x
2 ⑤ x22 x 1
a 2b a b 2 ⑥2
⑦ 3x2 4
(4)当x 、 y满足关系 时,分式 X+y
解:∵X-y≠0
X-y
.
X ≠y
有意义
∴当 X ≠y时,此分式有意义
x2 4
试一试
1. 已知分式 x 2 ,
(1) 当x为何值时,分式无意义?
(2) 当x为何值时,分式有意义?
解:(1)当分母等于零时,分式无意义。
即 x+2=0
∴ x = -2
∴当x = -2时分式:
∴x = ±2 而 x+2≠0
x2
(3)2 4
∴ x ≠ -2
x2 4
∴当x = 2时分式
的值为零。
32
5
x2
探究
A B
分式的符号
分式的值为正: 分子、分母同号;(A>0,B>0或A<0,B<0) 分式的值为负: 分子、分母异号;(A>0,B<0或A<0,B>0)
例1:当x为何值时,分式 x 3的值为正,x为何 2x
v
S
水面高度为___s___;
V
探究
S
请大家观察式子 a ,
v 100
60
s , 20 u , 20 u
例2:当x为何值时,分式 6 的值为整数? x2
X为-8,-5,-4,-3,-1,0,1,4时分式值为整数。
课堂练习:
1、下列各式哪些是分式,哪些是整式?
8m n
①
+m2
3
1
②1+x+y2-
z
③ 3x 1 2
④1 x
2 ⑤ x22 x 1
a 2b a b 2 ⑥2
⑦ 3x2 4
(4)当x 、 y满足关系 时,分式 X+y
解:∵X-y≠0
X-y
.
X ≠y
有意义
∴当 X ≠y时,此分式有意义
x2 4
试一试
1. 已知分式 x 2 ,
(1) 当x为何值时,分式无意义?
(2) 当x为何值时,分式有意义?
解:(1)当分母等于零时,分式无意义。
即 x+2=0
∴ x = -2
∴当x = -2时分式:
∴x = ±2 而 x+2≠0
x2
(3)2 4
∴ x ≠ -2
x2 4
∴当x = 2时分式
的值为零。
32
5
x2
探究
A B
分式的符号
分式的值为正: 分子、分母同号;(A>0,B>0或A<0,B<0) 分式的值为负: 分子、分母异号;(A>0,B<0或A<0,B>0)
例1:当x为何值时,分式 x 3的值为正,x为何 2x
v
S
水面高度为___s___;
V
探究
S
请大家观察式子 a ,
v 100
60
s , 20 u , 20 u