(整理)余热回收设计方案
空压机余热回收工程背景原理以及设计方案

空压机余热回收工程背景原理以及设计方案背景原理:空压机在工业生产中广泛应用,通过压缩空气的方式为生产设备提供所需的动力。
然而,空压机在工作过程中会产生大量余热,这些余热如果不经过合理的利用,将会造成能源的浪费和环境污染。
因此,空压机余热回收工程的背景意义在于提高能源利用效率,减少能源消耗,降低生产成本,保护环境。
空压机的工作原理是通过电机驱动压缩机运转,将大气中的空气压缩成高压气体,然后将高压气体进行冷却和分离,达到所需的气体质量。
在这个过程中,会产生两种余热:压缩热和冷却热。
压缩热是由于气体被压缩而产生的热量,通常在压缩机的排气管路中可以测量到。
这部分余热可以用来加热生产设备的热水,提高生产设备的热能利用效率。
冷却热是由于压缩空气冷却过程中产生的热量,通常在冷却水管路中可以测量到。
这部分余热可以用来加热车间的暖气和提供员工的热水,提高车间的舒适度和员工的工作效率。
设计方案:根据以上背景和原理,可以设计出以下的空压机余热回收工程方案:1.压缩热回收方案:a.安装热交换器:在空压机排气管路上安装热交换器,将排出的高温空气与需要加热的水进行热交换,将余热传递给水,从而提供热水供应。
b.温度控制系统:根据生产设备对热水温度的要求,安装温度控制系统来控制热交换器的工作,在达到所需温度后停止工作,以避免能源浪费。
2.冷却热回收方案:a.安装冷却系统:在冷却水管路上安装热交换器,将冷却水与需要加热的水进行热交换,将冷却水的余热传递给需要热水的系统,提供暖气和热水供应。
b.温度控制系统:根据车间的温度要求,安装温度控制系统来控制热交换器的工作,在达到所需温度后停止工作,以避免能源浪费。
3.综合管理系统:a.监测系统:安装温度、压力和流量传感器来监测热交换器的工作状态和能源利用效率,实时监控能源消耗和节能效果。
b.控制系统:根据监测系统的反馈信息,采用自动控制或人工干预的方式调整热交换器的工作状态,以达到最佳的能源利用效果。
空压机余热回收方案-大淑村20244

空压机余热回收方案-大淑村20244随着工业发展的加快,空压机成为各种工业领域中不可或缺的设备。
空压机的工作原理是通过压缩空气提供压缩空气动力,但同时也会产生大量的热能。
由于空压机的能效较低,其余热的浪费问题也逐渐引起了人们的关注。
因此,如何有效回收空压机的余热,成为了一个值得研究的课题。
本文将详细介绍空压机余热回收的方案。
一、余热回收的原理空压机在工作过程中,会通过压缩空气而产生大量的热能。
传统的空气压缩机通常不对这部分热能进行有效回收,直接排放到大气中,造成了能源的浪费。
而空压机余热回收的原理就是通过一系列的措施,将空压机产生的余热有效回收利用。
常见的余热回收途径主要包括:热水回收利用、空气回收利用和电能回收利用。
二、余热回收方案1.热水回收利用将空压机产生的热水用于生活热水供应,是一种常见的余热回收利用方式。
具体方案为在空压机排气管道上设置一个热交换器,用于将空压机排出的热气与冷却水进行热交换,使冷却水达到热水供应的要求。
这样既能减少燃料的消耗,同时也能有效利用空压机产生的余热。
2.空气回收利用将空压机排出的热空气回收利用,也是一种常见的余热回收方案。
具体方案为在空压机排气口设置一个回收装置,将热空气收集起来用于加热或干燥等用途。
这样可以在一定程度上减少能源消耗,提高整体能效。
3.电能回收利用将空压机产生的余热转换为电能,也是一种较为先进的余热回收方式。
具体方案为在空压机排气管道上设置一个热发电装置,利用热发电技术将排出的热气转换为电能。
这样既能充分利用余热,又能进一步提高空压机的能效。
三、余热回收的优势1.节能减排通过余热回收,可以减少能源消耗,降低碳排放,达到节能减排的目的。
尤其对于大型企业来说,余热回收可以带来可观的经济和环境效益。
2.提高能效余热回收将热能转化为有用的能源,提高了空压机的能效。
通过余热回收,可以在一定程度上提高空压机的运行效率,减少能源浪费。
3.多样化应用余热回收的应用范围广泛,可以用于生活热水供应、加热、干燥等领域。
热风余热回收方案

余热回收装置一、概述随着能源形势的日益严峻,环境污染问题的日益加剧,节能工作已迫在眉睫。
工业烟气余热回收利用作为节能工作中重要的一部分,不仅可以提高能源综合利用效率,而且可以有效降低有害气体的排放量,对环境保护工作起到积。
我国各主要工业部门余热资源率平均达到7.3%,而余热资源回收率仅为34.9%,回收潜力十分巨大。
从另一方面看,大量余热以各种形式被排放掉,这也是造成我国能源利用率低下的一个极为重要的原因。
在未来的节能效果中,70%以上要靠直接节能,即靠科学管理、改进设备和回收利用余热取得,且随着时间的推移,科学技术的发展,科学管理、改善操作的节能潜力将逐渐缩小,回收利用余热所占的比重将逐年增大。
二、方案描述本项目中尾气排放温度高达100℃左右,这部分能量直接排放到大气中,不仅是能源的浪费,也是对环境的影响。
所以我们通过利用尾气来预热空气,使该部分预热后的空气作为新的载湿气体,进入蒸汽换热器及电机热器进行加热来完成对物料的干燥。
这样提高了所需干燥空气的温度,减少了进一步加热空气所需的热量。
本方案的核心是:通过加装余热回收器,以及部分管道,与原有干燥系统串联,成为一个整体的半闭循环。
余热回收流程图三、经济效益分析我们利用直接排放的热量,用余热回收器来预热空气,这些热量所需的电费和油费来计算,就可以清楚地知道这些废热的价值。
下面我们用按照本项目一些条件来进行初步估算,同时利用设备选型中的部分计算参数:我们考虑环境温度下空气为15℃,经空气换热之后温度到60℃,载湿空气流量为10528 kg/h,则经换热之后可利用热量为:Qz=0.24X10528X(60-15)=113702 kcal/h1.我们将这部分热量转换成电功率,电加热效率取90% ,电费按则0.8 元/度:1度电=1千瓦小时=860.42千卡113702千卡÷(860.421千卡/度×0.9)×1.0元/度= 147元/小时。
《2024年北京某燃气热电厂余热回收系统设计》范文

《北京某燃气热电厂余热回收系统设计》篇一一、引言随着能源需求的不断增长和环境保护意识的日益加强,余热回收技术已成为提高能源利用效率、减少环境污染的重要手段。
北京某燃气热电厂作为城市能源供应的重要组成部分,其余热回收系统的设计对于提高能源利用效率、降低环境污染具有重要意义。
本文将详细介绍北京某燃气热电厂余热回收系统的设计思路、方法及实施措施。
二、项目背景与目标北京某燃气热电厂位于城市核心区域,承担着城市供暖及供电的重要任务。
为了提高能源利用效率,减少环境污染,本设计旨在将燃气热电厂排放的余热进行有效回收,实现能源的再利用。
项目目标包括:提高能源利用效率,降低环境污染,实现经济效益与社会效益的双赢。
三、余热回收系统设计原则1. 高效性:系统设计应充分考虑余热的回收效率,确保回收的热量能够满足供暖、供电等需求。
2. 安全性:系统设计应保证设备运行的安全可靠性,降低事故风险。
3. 环保性:系统设计应符合国家环保要求,减少对环境的影响。
4. 经济性:系统设计应在保证性能的前提下,尽可能降低投资成本和运行成本。
四、余热回收系统设计方案1. 系统组成余热回收系统主要由余热收集装置、余热回收装置、换热器、储热装置等组成。
其中,余热收集装置用于收集燃气热电厂排放的余热;余热回收装置通过换热器将余热转化为可利用的热量;储热装置用于储存回收的热量,以满足供暖、供电等需求。
2. 工作原理余热收集装置将燃气热电厂排放的余热引入余热回收装置,通过换热器将余热传递给工作介质,使工作介质温度升高。
然后,工作介质将热量传递给储热装置中的储热介质,实现热量的储存和利用。
在需要供暖或供电时,储热装置中的储热介质将热量释放出来,满足需求。
3. 技术参数(1)余热收集装置:收集效率≥90%,耐高温、耐腐蚀。
(2)余热回收装置:换热效率≥95%,运行稳定可靠。
(3)换热器:传热效率高,结构紧凑,易于维护。
(4)储热装置:储热量大,储存时间长,安全可靠。
余热回收工艺设计

余热回收工艺设计一、前言余热回收是一种重要的节能技术,可以有效地减少工业生产中的能源消耗和环境污染。
本文将从余热回收的原理、工艺设计、设备选型等方面进行详细介绍。
二、余热回收原理余热回收是指在工业生产过程中,将产生的废气、废水等含有高温高压的热能通过特定的设备进行回收利用,以达到节能减排的目的。
三、工艺设计1. 确定余热来源:首先需要确定哪些工序会产生余热,以及这些余热的温度和流量等参数。
通常情况下,高温高压蒸汽和废气是主要的余热来源。
2. 设计余热回收系统:根据不同的余热来源和需求,选择合适的余热回收系统。
常见的有换热器、蒸汽发生器、蒸汽涡轮发电机组等。
3. 设计管道布局:设计合理有效的管道布局可以最大化地提高余热回收效率。
需要考虑管道长度、直径、弯头数量及角度等因素。
4. 安装调试:根据设计方案进行设备安装和调试,确保余热回收系统能够正常运行。
四、设备选型1. 换热器:根据余热的温度和流量等参数,选择合适的换热器类型。
常见的有壳管式、板式、管式等。
2. 蒸汽发生器:根据需要产生的蒸汽量和压力等参数,选择合适的蒸汽发生器类型。
常见的有自然循环式、强制循环式等。
3. 蒸汽涡轮发电机组:如果需要将余热转化为电能,可以选择蒸汽涡轮发电机组。
根据需要产生的电能容量和负荷特性等参数,选择合适的蒸汽涡轮发电机组。
五、注意事项1. 安全性:在设计和使用过程中,需要考虑安全因素,避免因操作不当或设备故障导致事故发生。
2. 维护保养:定期对余热回收系统进行检查和维护保养,确保设备正常运行,并及时处理可能出现的故障问题。
3. 经济效益:在进行余热回收工艺设计时,需要考虑经济效益问题。
要综合考虑投资成本、运行维护成本、能源节约效益等因素,确保余热回收系统的经济效益最大化。
六、结论余热回收是一种有效的节能减排技术,可以在工业生产过程中实现能源的高效利用。
在进行余热回收工艺设计时,需要考虑余热来源、系统设计、设备选型等因素,并注意安全性、维护保养和经济效益等问题。
余热回收系统设计方案

国电太一13号、14号炉分控相变余热回收系统设计方案说明书太一13、14号炉余热回收系统设计方案热力系统设计方案本设计严格遵照投标文件的技术方案和技术要求,相关内容见投标文件。
本说明仅为细化图纸的说明,作为投标文件的补充。
本系统图是在投标文件的基础上进行了细化,增加了详细的管道、设备布置和规格。
烟道热源换热器分为4组布置在除尘器前的水平烟道上,重心在风机房最靠近除尘器的支撑横梁上,设安装平台,并进行横梁加固(由脱硝装置改造单位配套完成)。
膨胀节设在靠近除尘器一侧,换热器采用滑动支撑。
二次风道冷源换热器布置在送风机出口的水平风道,一次风道冷源换热器布置在一次风机出口的弯道前倾斜布置。
气流调节分为两个单元,即左侧的两个烟道换热器的出口蒸汽母管汇合后由一个调节阀控制,相应右侧两个烟道换热器的出口蒸汽母管汇合后由另一个调节阀控制,部分母管制简化了系统,也增加了系统的稳定。
水位的调节由四个水位计分别控制四个供水调节阀,左侧的两个水位计分别指示左侧两个烟道换热器的上部单元和下部单元,右侧的两个水位计分别指示右侧两个烟道换热器的上部单元和下部单元。
每个换热单元都独立设有隔离阀。
为防止冬季设备停运时管路冻裂,每个换热单元都独立设有放水阀。
烟道换热器进出口的阀门分左右侧,集中布置在风机房顶,汇总到母管后由风机房顶进入风机房二次风道换热器侧。
水箱和汽液换热器等设备布置在零米风道换热器之间,水泵布置在水箱附近-1.0米的泵坑。
为了夏季进一步降低排烟温度,本设计补充了凝结水加热器作为备用设备,凝结水加热器的耗汽量为余热回收系统最大负荷的35%。
本设计的排空管路由三个电磁阀控制,便于手动和自动操作。
本设计的补充氮气系统是为了在冷源换热器负压较大时,在不改变相变分压的前提下,增加系统全压,避免空气漏入系统内。
另外,本次工程还将原风道内的暖风器拆除,以减小系统的阻力,降低风机的电耗。
本余热回收系统可替代原暖风器系统,但供汽和回水仍用原系统管路。
余热回收设计方案

恒昌焦化焦炉烟气余热回收项目设计方案唐山德业环保设备有限公司二〇一二年三月一、焦化工艺概述:备煤车间送来的配合煤装入煤塔,装煤车按作业计划从煤塔取煤,经计量后装入炭化室内。
煤料在炭化室内经过一个结焦周期的高温干馏制成焦炭并产生荒煤气。
炭化室内的焦炭成熟后,用推焦车推出,经拦焦车导入熄焦车内,并由电机车牵引熄焦车到熄焦塔内进行喷水熄焦。
熄焦后的焦炭卸至凉焦台上,冷却一定时间后送往筛焦工段,经筛分按级别贮存待运。
煤在炭化室干馏过程中产生的荒煤气汇集到炭化室顶部空间,经过上升管、桥管进入集气管。
约800℃左右的荒煤气在桥管内被氨水喷洒冷却至84℃左右。
荒煤气中的焦油等同时被冷凝下来。
煤气和冷凝下来的焦油等同氨水一起经过吸煤气管送入煤气净化车间。
焦炉加热用的焦炉煤气,由外部管道架空引入。
焦炉煤气经预热后送到焦炉地下室,通过下喷管把煤气送入燃烧室立火道底部与由废气交换开闭器进入的空气汇合燃烧。
燃烧后的废气经过立火道顶部跨越孔进入下降气流的立火道,再经蓄热室,又格子赚把废气的部分显热回收后,经过小烟道、废气交换开闭器、分烟道、总烟道、烟囱排入大气。
对于其中经总烟道进入烟囱热烟气的仍有较大的余热回收价值。
二、余热回收工艺流程图技术方案如下:该系统由热管蒸气发生器、软水预热器、汽包、上升管、下降管、外连管路和控制仪表等组成,并且互相独立。
主要技术特点:1、地下烟道开孔技术:如何实现地下主烟道在焦炉正常行产情况下在线开孔,是本项目成功实施的第一关键。
我公司根据多次地下烟道的开孔经验,成功总结出一套行之有效施工方案。
地下烟道路截面尺寸如上图所示。
开孔及布筋图支模示意图支撑系统图2、防止地下烟道、余热回收设备、引风机间环流形成的技术。
由于地下烟道翻板阀与地下烟道周围的150-200的环隙,在风机工作的过程中,风机出口压头大于风机进口压头,且进口压头低于烟囱吸力,因此在设备烟气进口处与风机出口处间地下烟道有环流存在。
经验告诉我们在这种情况下,增大风机功率是没有作用的,因为随风机功率的增加,其环量也在增加,其结局是或影响焦炉总烟道负压度从而影响焦炉的正常生产,或影响余热回收的正常产汽量,这也是一般设备制造厂家在焦炉余热回收上失败的原因之一。
余热回收方案

余热回收方案一、能量使用情况与节能要求1.1 车间供热需求为了保证产品质量和产能产值,三号车间的两个产品半成品仓库,冬季需要控制室内温度为22℃~40℃,以保证产品的质量,无人员值守故不需考虑温控与新风、人员舒适度问题,但须考虑入库人员的安全。
两个仓库占地面积基本相似,均为:12.65x 7=88.55m2。
仓库层高为6m,每个仓库体积为532m3。
VA装配车间,需要控制室内温度为22℃~30℃,以保证工艺的正常生产,装配车间有操作工人,需要考虑操作人员的舒适性因此提出需要对车间的温度、湿度、新风量进行控制。
装配车间占地面积15x23=345m2,层高为 2.5m,总体积为862.5m3。
武汉市地处中国中部,夏季室内温度>25℃,因此夏季不需要对生产车间供热,冬季室内温度<25℃,需要对室内供热。
车间供热需求为季节性,夏季停运,冬季投用。
1.2节能要求公司要求不采用高品位的电能和蒸汽热能对车间供热,需要采用余热回收途径对车间供热,1.3 车间耗热量①根据仓库的性质,估算每个仓库的供热负荷为25kW。
②根据装配车间的性质,估算VA装配车间供热负荷为120kW。
1.4余热利用条件1.4.1 可利用的热能钢化玻璃工段有两台玻璃炉,其作用是玻璃软化后处理。
玻璃高温处理后由冷风急速冷却。
根据加工产品的不同,所需急冷温度由65~165℃。
急冷后的热风直接排入大气,外排热风温度为45℃~65℃。
外排热风仅为热空气,不含有毒有害气体。
为外排热风,每台玻璃炉配三台20000m3/h轴流风机。
根据估算,每台轴流风机按120%配置,维持室温25℃,每台轴流风机的热风可提供热负荷为100kW。
合计的余热足够满足车间的供热需求。
1.4.2可用余热回收型式。
根据现场情况,受热车间与玻璃炉间距比较近,可以将热风引入受热车间,由热风直接供暖。
该供暖方式简单易行,投资省,运行费用低,余热回收利用充分。
二、余热利用方案2.1余热回收在热风排风口开设旁通风口,设置一台轴流抽风机,并在排风口设置电动翻板阀。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
恒昌焦化焦炉烟气余热回收项目设计方案唐山德业环保设备有限公司二〇一二年三月一、焦化工艺概述:备煤车间送来的配合煤装入煤塔,装煤车按作业计划从煤塔取煤,经计量后装入炭化室内。
煤料在炭化室内经过一个结焦周期的高温干馏制成焦炭并产生荒煤气。
炭化室内的焦炭成熟后,用推焦车推出,经拦焦车导入熄焦车内,并由电机车牵引熄焦车到熄焦塔内进行喷水熄焦。
熄焦后的焦炭卸至凉焦台上,冷却一定时间后送往筛焦工段,经筛分按级别贮存待运。
煤在炭化室干馏过程中产生的荒煤气汇集到炭化室顶部空间,经过上升管、桥管进入集气管。
约800℃左右的荒煤气在桥管内被氨水喷洒冷却至84℃左右。
荒煤气中的焦油等同时被冷凝下来。
煤气和冷凝下来的焦油等同氨水一起经过吸煤气管送入煤气净化车间。
焦炉加热用的焦炉煤气,由外部管道架空引入。
焦炉煤气经预热后送到焦炉地下室,通过下喷管把煤气送入燃烧室立火道底部与由废气交换开闭器进入的空气汇合燃烧。
燃烧后的废气经过立火道顶部跨越孔进入下降气流的立火道,再经蓄热室,又格子赚把废气的部分显热回收后,经过小烟道、废气交换开闭器、分烟道、总烟道、烟囱排入大气。
对于其中经总烟道进入烟囱热烟气的仍有较大的余热回收价值。
二、余热回收工艺流程图技术方案如下:该系统由热管蒸气发生器、软水预热器、汽包、上升管、下降管、外连管路和控制仪表等组成,并且互相独立。
主要技术特点:1、地下烟道开孔技术:如何实现地下主烟道在焦炉正常行产情况下在线开孔,是本项目成功实施的第一关键。
我公司根据多次地下烟道的开孔经验,成功总结出一套行之有效施工方案。
地下烟道路截面尺寸如上图所示。
开孔及布筋图支模示意图支撑系统图 φ48架管60×60×15木枋φ12对拉螺杆@700水平施工缝3厚300宽钢板止水带φ14钢筋(L=100mm)与对拉螺杆焊接与对拉螺杆焊接40×40×3钢板止水环300竹胶板50×70木枋@30060×80木枋 =3001cm厚竹胶板@@立杆 =1200@梁底短管 =500两侧支模短管 =500@架管支撑系统2、防止地下烟道、余热回收设备、引风机间环流形成的技术。
由于地下烟道翻板阀与地下烟道周围的150-200的环隙,在风机工作的过程中,风机出口压头大于风机进口压头,且进口压头低于烟囱吸力,因此在设备烟气进口处与风机出口处间地下烟道有环流存在。
经验告诉我们在这种情况下,增大风机功率是没有作用的,因为随风机功率的增加,其环量也在增加,其结局是或影响焦炉总烟道负压度从而影响焦炉的正常生产,或影响余热回收的正常产汽量,这也是一般设备制造厂家在焦炉余热回收上失败的原因之一。
我们公司科学严谨的技术分析,在工艺设计上采取安全保障措施,从根本上避免了这一情况的发生。
3、地下双烟道吸力不平衡调节技术。
由于在实际生产过程中,两个地下烟吸力往往是不一致的,而风机的进口吸力是一样的,如何调整两个地下烟道吸是本项工程的另一关键技术。
三、余热回收工艺1、烟气工艺流程在地下主烟道翻板阀前开孔,将主烟道路热烟气从地下主烟道路引出,经余热回收系统换热降温后,将热烟气降至约170℃,经锅炉引风机再排入主烟道翻阀后的地下烟道,经烟囱排空。
2、水汽系统工艺流程外来20℃的一次水经过软化水处理系统,到软化水箱,由软化水箱经水泵进入除氧器,经除氧器除氧后。
再由给水泵补入软水预热器,然后进入锅炉汽包,汽包水和蒸汽发生器内水自然循环,在汽包内蒸汽与水分离产生0.5MPa饱和蒸汽。
①水系统的供水量每小时20吨,供水压力~1.5MPa,水源由软水总管供给软化水处理系统,然后经软化水箱进入除氧器,除氧器提供补水管,将处理后的水补给软水预热器。
②系统软化水采用全自动软水器,他可将软水器运行及再生的每一个步骤实现自动控制并采用流量感应器来启动再生。
③从软化水箱到除氧器和软水预热器的给水系统均配两台电动给水泵(均为一开一备),水泵扬程除满足系统压力外,还要克服水柱爬升高度及沿程阻力,型号为DG型锅炉给水泵。
④软水预热器、蒸汽发生器、汽包、软化水系统、除氧器均设有排污出水口,可定期清除内部残留污物及水垢。
系统水箱设有给水取样;蒸汽聚集器设有水取样点,对换热器水进行取样。
四.余热回收系统主要设备1余热锅炉系统锅炉本体范围内的主要系统如下:(1)蒸汽及水加热系统:蒸汽输出;汽水取样系统:加药系统给水系统排污系统(2)疏放水系统锅炉本体范围内的各设备、管道的最低点设置疏、放水点,确保各下降管、省煤器、蒸发器等的进出口联箱疏、放水的畅通。
(3)排污系统在汽包的盐段设连续排污,在水系统的下联箱设定期排污,排去适量的锅炉污水以确保蒸汽品质。
在锅炉本体下部配置1台定期排污扩容器,排污降温池布置在锅炉本体下部,且预留好排污降温池位置。
(4)汽水取样系统--锅炉本体汽水取样,取样系统包括:给水取样:PH值、电导率、O2炉水取样:PH值、磷酸根、电导率2余热锅炉系统设计:(1)锅炉烟气进口至出口,烟气阻力小于800Pa。
(2)系统正常排污量不超过锅炉给水流量的1%。
(3)锅炉疏放水系统能在一个小时内,将整台锅炉的水以重力放空。
(4)管道、阀门、排污扩容器及附件的设计压力和设计温度的确定符合标准规范有关确定。
(5)负责提供锅炉与其它设备之间的接口设计,并提供锅炉接口清单表。
(7)锅炉设有水压试验接口,提供试验方法和详细说明(包括试验用水的水质和水温)。
(9)锅炉的取样点、监视点、加药点、排污点、放气点及停炉放水点全部带有根部阀,如为法兰连接配带反向法兰、垫片及紧固件。
(10)供测量烟道及余热锅炉本体各段温度的测量元件。
(11)在符合设计条件及系统正常投运时,保证达到以下运行性能:①锅炉在设计工况参数下能达到额定值。
并保证长期安全运行,所有附件及配供的测控设备均能正常投运。
②主蒸汽额定汽温偏差为±5℃,在可能运行的条件工况下,各段受热面的金属壁温都在允许范围之内。
③锅炉从启动到最大连续负荷范围内,水循环安全可靠。
④锅炉适用于露天布置,并采取适当防雨,避雷的措施。
⑤锅炉设计在定压运行下有良好的对负荷变动的适应性,在变负荷运行时,锅炉应有足够的安全可靠性,以适应系统或控制装置在运行中产生的偏差。
⑥锅炉设计中有有效的停炉保护措施,并提供有关设备及系统3余热锅炉汽水系统工艺及设备布置余热锅炉包括:蒸发器、省煤器、共三组受热面以及汽包、除氧器。
3、锅炉整体布置余热锅炉采取卧式布置。
热管换热器分成热管联箱、热管支架等组件。
水处理间布置中压锅炉给水泵、软水泵,软水箱、汽水取样分析装置和锅炉锅内磷酸盐加药装置。
(3)中压汽包及内部装置中压汽包直段长度约为6000mm,两端相配椭球形封头,并设有人孔装置。
筒体和封头的材料均为16MnR。
该汽包通过两个支座(一个活动支座,一个固定支座)搁置在钢架梁上,汽包的中心线标高为12m。
由省煤器来的水从汽包前部进入分配管。
汽包内的汽水分离元件为均汽孔板和丝网捕沫器,布置在汽包顶部。
汽包正常水位在汽包中心线以下100mm处,正常水位范围为±75mm。
汽包内设有磷酸盐加药管、连续排污管、紧急放水管、再循环管。
底部为集中下降管。
在汽包上还设有双色水位计、压力表和安全阀(2个)等装置,以供锅炉运行时监督、控制用。
(4)汽包及内部装置汽包直段长度约为6000mm,两端相配椭球形封头,并设有人孔装置。
筒体和封头的材料均为16MnR。
该汽包也通过两个支座(一个活动支座,一个固定支座)搁置在钢架梁上,汽包的中心线标高为14m。
为保证锅炉正常运行时获得良好的蒸汽品质,该汽在其内部也设置了均汽孔板和丝网捕沫装置。
在汽包内部也设有给水分配管、加药管和排污管,同时在该汽包上还设有水位计、压力表和安全阀(2个)等装置,供锅炉运行时监督、控制用。
五、锅炉本体的设备性能(1)蒸汽发生器的性能蒸汽发生器的原理为:热流体的热量由热管传给水套管内的水(水由下降管输入),并使其汽化,所产汽、水混合物经蒸汽上升管到达汽包,经集中分离以后再经蒸汽主控阀输出。
这样由于热管不断将热量输入水套管内的水,并通过外部汽——水管道的上升及下降完成基本的汽——水循环,达到将热流体降温,并转化为蒸汽的目的。
、焦炉设计参数(单台,共两台):(2)热管省煤器的性能原理为:热流体的热量由翅片热管传给管内的水,水吸收热量,使热流体降温,达到预期的效果。
六、钢架、平台扶梯本体钢架采用全钢结构,按七度地震烈度设防。
钢架采用大型H型钢制成。
本体钢架采用桁架式结构,本体钢架将支撑整台锅炉正常运行时所产生的允许载荷以及风载、地震等载荷,并将其平稳地传递至地面基础,确保锅炉在允许载荷范围内长期安全可靠的运行。
锅炉外围采用紧身封闭式结构。
本锅炉在运行操作及检修所需的各部位均布置了平台,检修平台采用不透孔的花钢板结构,其余平台、步道及扶梯均采用适栅格结构,步道宽度为1000mm,扶梯宽度为800mm,斜度为45°,平台的允许载荷为2kPa(200kgf/m2),同时承载面积按不超过20%平台总面积计。
七.设备的主要特点提到设备的特点,就要先介绍一下热管技术和特点:1、热管(1)、工作原理热管是一种独立、密封的管子,内部抽成真空后,充入工质,工质以蒸发——冷凝的循环过程将热量从管的一端传到管子的另一端。
由于蒸发——冷凝过程,内部工质多处于饱和状态,因此热管几乎是在等温下传递热量,具有“热超导体”之称。
(2)、特点①、极高的传热性能随管内工质的不同,传热系数达107W/m2.℃,是普通碳钢的数万倍。
②、低温差下高传输热量能力一根直径12.7mm,长1000mm的紫铜棒,两端温差100℃时传输30W的热量;而一根直径、长度的热管传输100W的热量,两端温差只需几度;③、换热两流体均走管外,可以翅片化以强化传热;④、单管作业性由热管组成的换热设备单根热管损坏对设备的换热影响不大,即使部分热管损坏也不会影响的政正常运行;⑤、热源分汇在设计可以随意调整热管冷却段和蒸汽段的换热长度,以控制热管的壁温,因此可以使热管换热器避开露点。
这样就可避开露点腐蚀、不易积灰;⑥、热管与换热器单支点焊接,避免由热帐冷缩造成的应力。
2、根据热管的这些特点,从而决定了热管余热锅炉的特点;(1)、传热系数高。
废气和水及水蒸气的换热均在热管的外表面进行,而且废气热管外侧为翅片,这样换热面积增大,传热得到强化,因而使换热系数得到了很大的提高。
(2)、彻底解决泄漏问题:由于热管是单管作业,冷热流体完全隔开,有效防止水汽系统的泄漏。
在运行时,废气的大量冲刷,即使管子一端被腐蚀传,只能使该热管失效,而管子另一端是完好的,不会造成冷侧的气水泄漏到热侧,确保了系统的安全运行,彻底解决了设备泄漏问题。