2018年上海初三年级数学各区一模压轴题汇总[15套全]
上海市16区2018年九年级上学期期末(一模)数学试题分类汇编_押轴题专题

上海市16区2018届九年级上学期期末(一模)数学试卷分类汇编押轴题专题宝山区25.(本题共14分,其中(1)(2)小题各3分,第(3)小题8分)如图,等腰梯形ABCD 中,AD //BC ,AD =7,AB =CD =15,BC =25,E 为腰AB 上一点且AE :BE =1:2,F 为BC 一动点,∠FEG =∠B ,EG 交射线BC 于G ,直线EG 交射线CA 于H .(1)求sin ∠ABC ; (2)求∠BAC 的度数;(3)设BF =x ,CH =y ,求y 与x 的函数关系式及其定义域.长宁区25.(本题满分14分,第(1)小题3分,第(2)小题6分,第(3)小题5分)已知在矩形ABCD 中,AB =2,AD =4. P 是对角线BD 上的一个动点(点P 不与点B 、D 重合),过点P 作PF ⊥BD ,交射线BC 于点F . 联结AP ,画∠FPE =∠BAP ,PE 交BF 于点E . 设PD=x ,EF =y .(1)当点A 、P 、F 在一条直线上时,求 ABF 的面积;(2)如图1,当点F 在边BC 上时,求y 关于x 的函数解析式,并写出函数定义域; (3)联结PC ,若∠FPC =∠BPE ,请直接写出PD 的长.DA DAP D A崇明区25.(本题满分14分,第(1)小题4分,第(2)小题5分,第(3)小题5分) 如图,已知ABC △中,90ACB ∠=︒,8AC =,4cos 5A =,D 是AB 边的中点,E 是AC 边上一点,联结DE ,过点D 作DF DE ⊥交BC 边于点F ,联结EF . (1)如图1,当DE AC ⊥时,求EF 的长;(2)如图2,当点E 在AC 边上移动时,DFE ∠的正切值是否会发生变化,如果变化请说出变化情况;如果保持不变,请求出DFE ∠的正切值;(3)如图3,联结CD 交EF 于点Q ,当CQF △是等腰三角形时,请直接写出....BF 的长.(第25题图1)ABCD FE BD FE CA(第25题图2) BD F奉贤区25.(本题满分14分,第(1)小题满分3分,第(2)小题满分5分,第(3)小题满分6分) 已知:如图,在梯形ABCD 中,AB ∥CD ,∠D =90°,AD =CD =2,点E 在边AD 上(不与点A 、D 重合),∠CEB =45°,EB 与对角线AC 相交于点F ,设DE =x . (1)用含x 的代数式表示线段CF 的长;(2)如果把△CAE 的周长记作△CAE C ,△BAF 的周长记作△BAF C ,设△△CAEBAFC y C =,求y 关于x 的函数关系式,并写出它的定义域;(3)当∠ABE 的正切值是35时,求AB 的长.虹口区25.(本题满分14分,第(1)小题满分5分,第(2)小题满分5分,第(3)小题满分4分)已知AB =5,AD =4,AD ∥BM ,3cos 5B =(如图),点C 、E 分别为射线BM 上的动点(点C 、E 都不与点B 重合),联结AC 、AE ,使得∠DAE =∠BAC ,射线EA 交射线CD 于点F .设BC =x ,AFy AC=. (1)如图1,当x =4时,求AF 的长;(2)当点E 在点C 的右侧时,求y 关于x 的函数关系式,并写出函数的定义域; (3)联结BD 交AE 于点P ,若△ADP 是等腰三角形,直接写出x 的值.黄浦区25.(本题满分14分)如图,线段AB =5,AD =4,∠A =90°,DP ∥AB ,点C 为射线DP 上一点,BE 平分∠ABC 交线段AD 于点E (不与端点A 、D 重合).(1)当∠ABC 为锐角,且tan ∠ABC =2时,求四边形ABCD 的面积; (2)当△ABE 与△BCE 相似时,求线段CD 的长;(3)设CD =x ,DE =y ,求y 关于x 的函数关系式,并写出定义域.嘉定区25. 在正方形ABCD 中,AB =8,点P 在边CD 上,tan ∠PBC =43,点Q 是在射线BP 上的一个动点,过点Q 作AB 的平行线交射线AD 于点M ,点R 在射线AD 上,使RQ 始终与直线BP 垂直。
2018上海中考一模数学压轴题汇总

长 家 都 魔
长 家 都崇明区 魔
长 家 都 魔
长 家 都 魔
25.
长 家 都 魔
长 家 都 魔
长 家 都 魔
长 家 都 魔
宝山区
长 家 都 魔
长 家 都 魔
25.
长 家 都 魔
长 家 都 魔
嘉定区
长 家 都 魔
25.
长 家 都 魔
长 家 都 魔
长 家 都 魔
静安区
长 家 都 魔
长 家 都 魔
长 家 都 魔
长 家 都 魔
浦东新区
长
家
都
魔
Байду номын сангаас 25.
长
家
都
魔
长 家 都 魔
长 家 都 魔
长 家 都 魔
浦东新区
长 家 都 魔
25.
长 家 都 魔
长 家 都 魔
长 家 都 魔
徐汇区
长 家 都 魔
25.
长 家 都 魔
长 家 都 魔
长 家 都 魔
杨浦区
2018 上海一模压轴题汇总 宝山区
长 家 都 魔
崇明区
长 家 都 魔
黄浦区
长 家 都 魔
嘉定区
长 家 都 魔
静安区
长 家 都 魔
浦东新区
长 家 都 魔
松江区
长 家 都 魔
徐汇区
长 家 都 魔
杨浦区
长 家 都 魔
长宁区
长 家 都 魔
参考答案
宝山区
长 家 都 魔
长 家 都 魔
长 家 都 魔
长 家 都 魔
25.
长 家 都 魔
长 家 都 魔
2018年初三数学一模虹口、静安、徐汇、青浦集锦

, AC 初三数学31、已知抛物线 y = ax 2+ bx + c 上部分点的横坐标 x 与纵坐标 y 的对应值如下表:①抛物线开口向下②抛物线的对称轴为直线 x = -1 ③ m 的值为0④图像不经过第三象限上述结论中正确的是() A. ①④ B. ②④ C. ③④ D. ②③2、如图,在 R t ABC 中,∠ACB = 90 = 1, tan ∠CAB = 2 ,将 ABC 绕点 A 旋转后,点 B 落在 AC 的延长线上的点 D ,点C 落在点 E ,DE 与直线 BC 相交于点 F ,那么CF =. 3、对于封闭的平面图形,如果图形上或图形内的点 S 到图形上的任意一点 P 之间的线段都在图形内或图形上,那么这样的点 S 称为“亮点”.如图,对于封闭图形 A BCDE , S 1 是“亮点”,S 2 不是“亮点”,如果A B / / DE , AE / / DC ,AB = 2, AE = 1,∠B = ∠C = 60 ,那么该图形中所有“亮点”组成的图形的面积为. 4、 已知 A (-2, y ) 、B (-3, y ) 是抛物线 y = ( x -1)2+ c 上两点,则 yy .(填“>”、 1 2 1 2“=”或“<”)5、如图,在梯形 ABCD 中, AD / /BC ,EF 是梯形 ABCD 的中位线, AH / /CD 分别交EF、BC 于点G 、 H ,若 A D = a , BC = b ,则用 a 、b 表示 E G = .6、如图,在 Rt ABC 中,∠C = 90 ,点G 是 ABC 的重心,CG = 2 ,sin ∠ACG =2 ,则 BC 3长为 .7、如图,某兴趣小组用无人机进行航拍测高,无人机从 1 号楼和 2 号楼的地面正中间 B 点垂直起飞到高度为 50米的A 处,测得1 号楼顶部E的俯角为60°,测得2 号楼顶部F的俯角为45°.已知1 号楼的高度为20 米,.则2号楼的高度为米(结果保留根号)8、如果抛物线y=(x-m)2+m+1的对称轴是直线x=1 ,那么它的顶点坐标为9、已知抛物线y = 2x2 - 4x - 6 .(1)请用配方法求出顶点的坐标;(2)如果该抛物线沿x 轴向左平移m (m > 0)个单位后经过原点,求m 的值.10、如图,已知ABC ,点D 在边AC 上,且AD = 2CD ,AB / / EC ,设BA =a, BC =b .(1)试用a 、b 表示CD ;(2)在图中作出BD 在BA 、BC 上的分向量,并直接用a 、b 表示BD .11、如图,在平行四边形ABCD 中,点E 在边BC 上,CE = 2BE ,AC 、DE 相交于点F .(1)求DF : EF 的值;(2)如果CB =a,CD =b ,试用a 、b 表示向量EF .12、如图,在ABC 中,点D、E分别在边A B 、AC上,AE2 =AD ⋅AB, ∠ABE =∠ACB .(1)求证:DE / / B C ;(2)如果S ADE : S四边形DBCE =1: 8 ,求S ADE : S BDE 的值.13、如图,在平面直角坐标系x Oy中,抛物线y=-x2 +bx +c 与x轴相交于原点O 和点B(4,0),点A(3,m)在抛物线上.(1)求抛物线的表达式,并写出它的对称轴;(2)求tan∠OAB 的值.(3)点D 在抛物线的对称轴上,如果∠BAD = 45︒,求点D 的坐标;15、如图,在平面直角坐标系xOy 中,抛物线y =-2x2 +bx +c 与x 轴交于点A(-3, 0)和点B ,与y 轴交于点C (0, 2).(1)求抛物线的表达式,并用配方法求出顶点D 的坐标;(2)若点E 是点C 关于抛物线对称轴的对称点,求tan ∠CEB 的值.如图,在港口A 的南偏东37°方向的海面上,有一巡逻艇B ,A 、B 相距20 海里,这时在巡逻艇的正北方向及港口A 的北偏东67°方向上,有一渔船C 发生故障.得知这一情况后,巡逻艇以25 海里/小时的速度前往救援,问巡逻艇能否在1 小时内到达渔船C 处?18、已知:如图,在ABC 中,点D 、E 分别在边BC 、AC 上,点F 在DE 的延长线上,AD =AF ,AE ⋅CE =DE ⋅EF .(1)求证:ADE ∽ACD ;如果AE ⋅BD =EF ⋅AF ,求证:AB =AC .19、如图,已知菱形ABCD ,点E 是AB 的中点,AF ⊥BC 于点F ,联结EF 、ED 、DF ,DE 交AF 于点G ,且AE 2 =EG ⋅ED .(1)求证:DE ⊥EF ;(2)求证:BC 2 = 2DF ⋅BF .。
2018年上海市中考数学押题试卷及答案.docx

2018 年上海市初中毕业统一学业考试数学模拟试卷题号一二三总分得分考生注意:1 、本卷共25 题;2 、试卷满分150 分,考试时间100 分钟;一、选择题(本大题共 6 小题,每小题 4 分,共24分,在每小题给出的四个选项中,有且只有一个选项是正确的,请将正确选项的代号填在括号里。
)1.下列函数中是二次函数的是A. B. C. D.2.下列方程中,有实数根的是A. B. C. D.3.如果∽,、 B 分别对应 D 、E,且 AB:: 2,那么下列等式一定成立的是A. BC::2B.的面积:的面积: 2C.的度数:的度数:2D.的周长:的周长:24. 在中,点D、E分别在AB、AC的延长线上,下列不能判定的条件是A. EA::ABB. DE::ABC. EA::DBD. AC::DB5.下列关于向量的说法中,不正确的是A.B. 若,则或C.D.A.相等的圆心角所对的两条弦相等B.圆既是中心对称图形也是轴对称图形C.平分弦的直径一定垂直于这条弦D.相切两圆的圆心距等于这两圆的半径之和二、填空题(本大题共12 小题,每小题 4 分,共 48 分,请将结果直接写在横线上。
)7.已知,那么______.8.已知线段 AB 长是 2 厘米, P 是线段 AB 上的一点,且满足,那么 AP 长为 ______厘米.9.点,和点,都在抛物线上,则 m 与 n 的大小关系为 m______ 填“”或“” .10.如果二次函数的顶点在 x 轴上,那么______.11.如图,在梯形ABCD中,,,,若的面积等于6,则的面积等于 ______.12.在中,,如果,那么______.13.在中,,,垂足为点 D,如果,,那么 AD 的长度为 ______.14.如图,四边形ABCD 、 CDEF 、 EFGH 都是正方形,则______.15.将一个三角形经过放大后得到另一个三角形,如果所得三角形在原三角形的外部,这两个三角形各对应边平行且距离都相等,那么我们把这样的两个三角形叫做“等距三角形”,它们对应边之间的距离叫做“等距” 如果两个等边三角形是“等距三角形”,它们的“等距”是1,那么它们周长的差是 ______.16.如图,在边长为 2 的菱形 ABCD 中,,点 E、F 分别在边AB、BC 上将沿着直线EF 翻折,点 B 恰好与边AD 的中点 G 重合,则BE 的长等于______ .17.已知的半径为,的半径为R,若与相切,且,则R的值为______.18. 如图,在中,,点,分别在,上,且,将沿 DE 折叠,点 C 恰好落在AB 边上的点 F 处若,,则CD 的长为 ______.三、解答题(本大题共7 小题,共78.0 分)19.(10分)计算:.20. ( 10 分)已知:如图,中,,,点 D、 E 分别在边 AB、 BC 上,且 AD ::,.求的正切值;如果设,,试用、表示.21.(10分)如图,已知OC是半径,点P在的直径BA的延长线上,且,垂足为弦CD垂直平分半径AO,垂足为,.求:的半径;求弦 CD 的长.22. ( 10 分)如图,港口 B 位于港口 A 的南偏东方向,灯塔 C 恰好在 AB 的中点处一艘海轮位于港口 A 的正南方向,港口 B 的正西方向的 D 处,它沿正北方向航行5km到达 E 处,测得灯塔 C 在北偏东方向上,这时, E 处距离港口 A 有多远?参考数据:,,23.(12分)如图,中,,过点C作交的中位线DE 的延长线于 F ,联结 BF ,交AC 于点 G.求证:;若 AH 平分,交BF于H,求证:BH是HG和HF的比例中项.24.(12分)如图,在平面直角坐标系xOy 中,抛物线与联结 AC、 BC,若的面积为6,求此抛物线的表达式;在第小题的条件下,点Q 为 x 轴正半轴上一点,点G 与点 C,点 F 与点 A 关于点 Q 成中心对称,当为直角三角形时,求点Q 的坐标.25. ( 14 分)已知在矩形ABCD中,,是对角线BD上的一个动点点P不与点B D、重合,过点 P 作,交射线 BC 于点联结 AP,画,交 BF 于点设,.当点 A、 P、 F 在一条直线上时,求的面积;如图 1,当点 F 在边 BC 上时,求 y 关于 x 的函数解析式,并写出函数定义域;联结 PC,若,请直接写出PD 的长.答案和解析【答案】1. D2. D7.8.9.10.1711.212.13.14.15.16.17.6 或 14cm18.19.解:原式.20.解:,设,::,即.3. D 4. B 5. B 6. B,,则.,.,又,,.,.,,,.:: 5,,,,,,.21. 解:设,弦CD 垂直平分半径 AO,,,,,,,,∽,,,则的半径为6;由得:,,由勾股定理得:,,.22. 解:如图作于设,在中,,,,在中,,,,,,,,,,,,处距离港口 A 有 35km.23. 证明:,是中位线,四边形 BCFD 是平行四边形,,,即;连接 CH ,平分,,在与中,≌,,,∽,,,,,即 BH 是 HG 和 HF 的比例中项.24. 解:抛物线的对称轴为直线,而抛物线与x 轴的一个交点 A 的坐标为,抛物线与 x 轴的另一个交点 B 的坐标为,设抛物线解析式为,即,当时,,,,,,解得,抛物线解析式为;设点 Q 的坐标为,过点G作轴,垂足为点H ,如图,点 G 与点 C,点 F 与点 A 关于点 Q 成中心对称,,,,,,,当时,,,,∽,,即,解得,的坐标为,;当时,,,,∽,,即,解得,的坐标为,;不存在,综上所述,点Q 的坐标为,或,.25. 解:如图,矩形 ABCD ,,,、 P、 F 在一条直线上,且,,,,,,.如图 1 中,,又∽,,,,,,,,,,即,,,,当点 F 在线段 BC 上时,如图中,,,,,,∽,,,整理得:,解得.如图 2 中,当点 F 在线段 BC 的延长线上时,作于H,连接DF.由∽,可得,,解得或舍弃,综上所述, PD 的长为或.【解析】A,是一次函数,1. 解:、B、,是一次函数,C、当时,不是二次函数,D 、是二次函数.故选: D.依据二次函数的定义进行判断即可.本题主要考查的是二次函数的定义,掌握二次函数的特点是解题的关键.A,方程没有实数根;2. 解:、由题意B、去分母得到:,,没有实数根;C、由题意,没有实数根,D 、去分母得到:,有实数根,故选 D.A、移项根据二次根式的性质即可判断;B、去分母后,化为整式方程即可判断;C、根据乘方的意义即可判断;D、去分母化为整式方程即可判断;本题考查了无理方程,解题的关键要注意是否有实数根,有实数根时是否有意义,用到的知识点是根的判别式.3. 解:A、BC与EF是对应边,所以,BC::2不一定成立,故本选项错误;B、的面积:的面积: 4,故本选项错误;C、的度数:的度数: 1,故本选项错误;D、的周长:的周长: 2正确,故本选项正确.故选 D .根据相似三角形对应边成比例,相似三角形面积的比等于相似比的平方,周长的比等于相似比对各选项分析判断即可得解.本题考查对相似三角形性质的理解:相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方;相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比.4.解:::,,选项 A 能判定;B.::,,选项 B 不能判定;C.::,,选项 C 能判定;D.::,,选项 D 能判定.故选: B.根据平行线分线段成比例定理对各个选项进行判断即可.本题考查平行线分线段成比例定理,如果一条直线截三角形的两边或两边的延长线所得的对应线段成比例,那么这条直线平行于三角形的第三边.5. 解:A、正确根据去括号法则可得结论;B、错误因为,模相等,平面向量不一定共线,故结论错误;C、正确根据模的性质即可判断;D、正确根据数乘向量的性质即可判断;故选: B.根据平面向量、模、数乘向量等知识一一判断即可;本题考查平平面向量、模、数乘向量等知识,解题的关键是灵活运用所学知识解决问题,属于中考基础题.6.解: A、错误应该是在同圆或等圆中,相等的圆心角所对的两条弦相等;B、正确;C、错误此弦非直径时,平分弦的直径一定垂直于这条弦;D、错误应该是外切两圆的圆心距等于这两圆的半径之和;故选: B.根据轴对称图形、垂径定理、两圆相切的条件等知识一一判断即可;本题考查命题与定理,垂径定理,两圆相切的性质、轴对称图形等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.7. 解:,,.故答案为:.利用已知将原式变形进而代入求出答案.此题主要考查了比例的性质,正确得出,之间关系是解题关键.8. 解:是线段AB上的一点,且满足,为线段 AB 的黄金分割点,且AP 是较长线段,厘米.故答案为.根据黄金分割点的定义,知AP 是较长线段,得出,代入数据即可得出AP 的长.本题考查了黄金分割的概念:如果一个点把一条线段分成两条线段,并且较长线段是较短线段和整个线段的比例中项,那么就说这个点把这条线段黄金分割,这个点叫这条线段的黄金分割点;较长线段是整个线段的倍9. 解:二次函数的解析式为,该抛物线开口向上,对称轴为,在对称轴y 的左侧 y 随 x 的增大而减小,,.故答案为:.由在抛物线可知抛物线开口向上,且对称轴为,根据二次函数的性质即可判定.题主要考查对二次函数图象上点的坐标特征,二次函数的性质等知识点的理解和掌握,能求出对称轴和根据二次函数的性质求出正确答案是解此题的关键.10. 解:二次函数的顶点在x轴上,,即,.故答案为: 17.由二次函数的顶点在x 轴上结合二次函数的性质,即可得出关于m 的一元一次方程,解之即可得出结论.本题考查了二次函数的性质,牢记二次函数的顶点坐标为,是解题的关键.11. 解:,,,∽,,.故答案为2.由,,,可得,推出,即可解决问题;本题考查相似三角形的判定和性质、平行线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.12. 解:在中,,,设,则,由勾股定理得到:,;故答案是:.设,则,由勾股定理求得BC 的长度,继而由三角形函数的定义求得的值.此题主要考查了锐角三角函数关系,正确记忆锐角三角函数关系是解题关键.13. 解:,,,,,,解得:.故答案为:.首先利用勾股定理得出BC 的长,再利用三角形面积求法得出AD 的长.此题主要考查了勾股定理以及三角形面积求法,得出BC 的长是解题关键.14.解:连接 AG,设正方形的边长为a,,,,,,∽,,,故答案为:设正方形的边长为a,求出 AC 的长为,再求出与中夹的两边的比值相等,根据两边对应成比例、夹角相等,两三角形相似,即可判定与相似,进而得出.本题主要利用两边对应成比例,夹角相等两三角形相似的判定和相似三角形对应角相等的性质,求出两三角形的对应边的比值相等是解本题的关键.15. 解:设等边三角形和的边长分别为a b O为位似中、,点心,作交 EF 于 G,如图,根据题意,与的位似图形,点 O、 E、 B 共线,在中,,,,同理得到,而,,,.故答案为.设等边三角形和的边长分别为a、 b,点 O 为位似中心,作交EF于G,如图,利用位似的性质得到点O、E、B 共线,根据等边三角形的性质得,,利用含30度的直角三角形三边的关系得到,同理得到,再利用得到,然后计算即可.本题考查了含 30 度角的直角三角形的性质:在直角三角形中,角所对的直角边等于斜边的一半也考查了等边三角形的性质和位似的性质.16. 解:如图,作交BA的延长线于,交BG于O.四边形 ABCD 是菱形,,,度数等边三角形,,,,,在中,,∽,,,,故答案为.如图,作交 BA 的延长线于,交BG于利用勾股定理求出BG,再根据∽,可得,由此即可解决问题;本题考查菱形的性质、翻折变换、相似三角形的判定和性质、勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形、相似三角形解决问题,属于中考填空题中的压轴题.17. 解:当和内切时,的半径为;当和外切时,的半径为;故答案为: 6 或 14cm.和相切,有两种情况需要考虑:内切和外切内切时,的半径圆心距的半径;外切时,的半径圆心距的半径.主要是考查两圆相切与数量关系间的联系,一定要考虑两种情况.18. 解:由折叠可得,,,,,四点共圆,,又,,,,同理可得,,,即 F 是 AB 的中点,中,,由,,,四点共圆,可得,由,可得,,又,∽,,即,,故答案为:.根据,,,四点共圆,可得,再根据,可得,进而根据,得出,同理可得,由此可得 F 是 AB 的中点,求得,再判定∽,得到,进而得出 CD 的长.本题主要考查了折叠问题,四点共圆以及相似三角形的判定与性质的运用,解决问题的关键是根据四点共圆以及等量代换得到 F 是 AB 的中点.19.直接利用特殊角的三角函数值代入求出答案.此题主要考查了实数运算,正确记忆特殊角的三角函数值是解题关键.20.设,则想办法求出DE 、 CE,根据即可解决问题;根据,只要求出、即可解决问题;本题考查平面向量、锐角三角函数、平行线的性质等知识,解题的关键是灵活运用所学知识,学会利用参数解决问题,属于中考常考题型.21. 设,证明∽,得,代入 x 可得结论;由勾股定理得CE 的长,根据垂径定理可得CD 的长.本题考查了垂径定理,线段垂直平分线的性质,相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用.22. 如图作于设,在中,可得,在中,可得,由,推出,由,推出,可得,求出 x 即可解决问题.本题考查了解直角三角形的应用--方向角问题,结合航海中的实际问题,将解直角三角形的相关知识有机结合,体现了数学应用于实际生活的思想.23.根据平行四边形的判定得出四边形BCFD 是平行四边形,进而利用相似比解答即可;根据全等三角形的判定得出≌,进而利用全等三角形的性质证明∽,再根据相似三角形的性质证明即可.本题主要考查相似三角形的判定与性质,熟练掌握三角形相似判定方法是解题的关键.24.先利用抛物线的对称性得到,,则可设交点式,然后展开即可得到C点坐标;利用三角形面积公式得到,然后求出 a 即可得到抛物线解析式;设点 Q 的坐标为,过点 G 作轴,垂足为点 H ,如图,利用中心对称的性质得,,,,则,,讨论:当时,证明∽,利用相似比得到,解方程求出 m 即可得到此时Q 的坐标;当时,证明∽,利用相似比得到,解方程求出 m 即可得到此时Q 的坐标.本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质、中心对称的性质和相似三角形的判定与性质;会利用待定系数法求抛物线解析式;灵活应用相似比表示线段之间的关系;理解坐标与图形的性质;会利用分类讨论的思想解决数学问题.25.首先证明,由,推出,可得,根据计算即可;首先证明∽,可得,由,推出,,即,由,可得,代入比例式即可解决问题;分两种情形分别求解:当点 F 在线段 BC 上时,如图中;如图2 中,当点 F 在线段 BC 的延长线上时,作于 H,连接寻找相似三角形,构建方程即可解决问题;本题考查四边形综合题相似三角形的判定和性质、锐角三角函数、矩形的性质等知识,解题的关键是正确寻找相似三角形解决问题,学会用分类讨论的思想思考问题,学会利用参数构建方程解决问题,属于中考压轴题.。
2018年上海市各区中考一模压轴题图文解析15.88

所以 QC=5-3m,QE=5m-x.
由 FC DE 5 ,得 x 3m 5 . QC QE 6 5 3m 5m x 6
解得 x 175 .此时 BF=6-x= 527 .
117
117
图6
图7
Hale Waihona Puke 图86例2018 年上海市奉贤区中考一模第 24 题
如图 1,在平面直角坐标系中,已知抛物线 y 3 x2 bx c 与 x 轴交于点 A(-2,0)和点 8
QF QD 2m 5 x
在 Rt△DFM 中,由勾股定理,得 (4m)2 42 (3 x)2 .
联立 x 3m 和 (4m)2 42 (3 x)2 ,消去 m,整理,得11x2 58x 75 0 . 2m 5 x
解得 x= 25 .此时 BF=6-x= 41 .
11
11
③如图 8,当 FQ=FC=x 时,DE=DQ=3m.
图2
(3)因为△APM 是直角三角形,如果△BPN 与△APM 相似,那么△BPN 也是直角三
角形.
由于∠BPN=∠APM=∠ABO 为定值,所以存在两种情况:
①如图 3,当∠BNP=90°时,BN//x 轴.所以 yN=yB=2.
解方程 4 m2 10 m 2 2 ,得 m 5 ,或 m 0 (舍去).此时 M (5 , 0) .
33
2
2
②如图 4,当∠NBP=90°时,作 NH⊥y 轴于 H,那么△NHB∽△BOA.
所以 NH BO 2 .所以 NH 2 BH .
BH AO 3
3
解方程 m 2 ( 4 m2 10 m) ,得 m 11 ,或 m 0 (舍去).此时 M (11, 0) ..
33 3
2018年上海市各区中考一模压轴题图文解析.Removed-Output

图1
图
图
动感体验
请打开几何画板文件名“18 崇明一模 25”,拖动点 E 运动,可以体验到,△CQF 有三
次机会成为等腰三角形.
图文解析
( )在 Rt△ABC 中,AC=8,os A= 4 ,所以 AB=10,BC=6. 5
当 DE⊥AC 时,四边形 DECF 是矩形.此时 DE BC,DF AC.
C△BAF
AF 2
2x . 2 x2 4
22
9
整理,得 y 2 2 .定义域是 <x< . 2 x
( )如图 ,在 Rt△ABE 中,由 tan∠ABE= AE = 3 ,得 AB= 5 AE = 5 (2 x) .
AB 5
3
3
由△BAF∽△CAE,根据相似三角形的周长比等于相似比,得 y= C△CAE = AC .
边上一点,联结 DE,过点 D 作 DF⊥DE 交 BC 边于点 F,联结 EF.
( )如图 ,当 DE⊥AC 时,求 EF 的长;
( )如图 ,当点 E 在 AC 边上移动时,∠DFE 的正切值是否会发生变化,如果变化
请说出变化情况;如果保持不变,请求出∠DFE 的正切值;
( )如图 ,联结 CD 交 EF 于点 Q,当△CQF 是等腰三角形时,请直接写出 BF 的长.
C△BAF
AB
所以
22 2 x
5
2 (2
2 x)
.解得
x=
1 2
.所以
AB=
5 3
(2
x)
=
5 2
.
3
图4
图
第( )题的过程很繁,结果为什么很简单?
由△CEF∽△BAF(如图 ),可得△AEF∽△BCF(如图6).
2018年上海市中考数学押题试卷含答案.docx
2018 年上海市初中毕业统一学业考试数学模拟试卷题号一二三总分得分考生注意:1 、本卷共 25 题;2 、试卷满分150 分,考试时间100 分钟;一、选择题(本大题共 6 小题,每小题 4 分,共24分,在每小题给出的四个选项中,有且只有一个选项是正确的,请将正确选项的代号填在括号里。
)1.下列函数中是二次函数的是A. B. C. D.2.下列方程中,有实数根的是A. B. C. D.3.如果∽,、B分别对应D E AB2,那么下列等式一定成立的是、,且::A. BC:: 2B.的面积:的面积:2C.的度数:的度数:2D.的周长:的周长:24. 在中,点D、E分别在AB、AC的延长线上,下列不能判定的条件是A. EA::ABB. DE::ABC. EA::DBD. AC::DB5.下列关于向量的说法中,不正确的是A.B. 若,则或C.D.6.下列四个命题中,真命题是A. B.相等的圆心角所对的两条弦相等圆既是中心对称图形也是轴对称图形二、填空题(本大题共12 小题,每小题 4 分,共 48 分,请将结果直接写在横线上。
)7. 已知,那么______.8.已知线段AB长是2厘米,P是线段AB上的一点,且满足,那么AP长为______厘米.9.点,和点,都在抛物线上,则 m 与 n 的大小关系为m______填“ ”或“ ” .10.如果二次函数的顶点在 x 轴上,那么______.11.如图,在梯形ABCD 中,,,,若的面积等于 6,则的面积等于 ______.12.在中,,如果,那么______.13.在中,,,垂足为点 D,如果,,那么 AD 的长度为 ______.14.如图,四边形ABCD 、 CDEF 、 EFGH 都是正方形,则______.15.将一个三角形经过放大后得到另一个三角形,如果所得三角形在原三角形的外部,这两个三角形各对应边平行且距离都相等,那么我们把这样的两个三角形叫做“等距三角形”,它们对应边之间的距离叫做“等距” 如果两个等边三角形是“等距三角形”,它们的“等距”是1,那么它们周长的差是 ______.16. 如图,在边长为 2的菱形 ABCD 中,,点 E、F 分别在边 AB、BC 上将沿着直线EF 翻折,点 B 恰好与边AD 的中点 G 重合,则 BE 的长等于______ .17.已知的半径为,的半径为 R,若18.如图,在中,,点,分别在将沿 DE 折叠,点 C 恰好落在 AB 边上的点则CD 的长为 ______.三、解答题(本大题共7 小题,共 78.0 分)与相切,且,上,且F 处若,,则 R 的值为 ______.,,19.(10分)计算:.20. (10 分)已知:如图,中,,,点 D、E 分别在边 AB、BC 上,且 AD::,.求的正切值;如果设,,试用、表示.21.(10分)如图,已知OC是半径,点P在的直径BA的延长线上,且,垂足为弦CD垂直平分半径AO,垂足为,.求:的半径;求弦 CD 的长.22. (10 分)如图,港口 B 位于港口 A 的南偏东方向,灯塔 C 恰好在 AB 的中点处一艘海轮位于港口 A 的正南方向,港口 B 的正西方向的 D 处,它沿正北方向航行5km 到达 E 处,测得灯塔 C 在北偏东方向上,这时, E 处距离港口 A 有多远?参考数据:,,23.(12分)如图,中,,过点C作交的中位线DE 的延长线于 F ,联结 BF ,交AC 于点 G.求证:;若 AH 平分,交BF于H,求证:BH是HG和HF的比例中项.24.(12分)如图,在平面直角坐标系xOy 中,抛物线与x轴相交于点,和点B,与y轴交于点C,对称轴为直线.求点 C 的坐标用含a的代数式表示;联结 AC、 BC,若的面积为6,求此抛物线的表达式;在第小题的条件下,点Q 为 x 轴正半轴上一点,点G 与点 C,点 F 与点 A 关于点 Q 成中心对称,当为直角三角形时,求点Q 的坐标.25.(14分)已知在矩形ABCD 中,,是对角线BD 上的一个动点点P不与点B、D重合,过点 P 作,交射线BC 于点联结AP,画,交BF于点设,.当点 A、P、 F 在一条直线上时,求的面积;如图 1,当点 F 在边 BC 上时,求y 关于 x 的函数解析式,并写出函数定义域;联结 PC,若,请直接写出PD 的长.答案和解析【答案】1. D2. D 7.8.9.10.1711.212.13.14.15.16.17.6 或 14cm18.19.解:原式.20.解:,设,::,即.3. D 4. B 5. B 6. B,,则.,.,又,,.,.,,,.:: 5,,,,,,.21. 解:设,弦CD 垂直平分半径 AO,,,,,,,,∽,,,则的半径为6;由得:,,由勾股定理得:,,.22. 解:如图作于设,在中,,,,在中,,,,,,,,,,,,处距离港口 A 有 35km.23. 证明:,是中位线,四边形 BCFD 是平行四边形,,,即;连接 CH ,平分,,在与中,≌,,,∽,,,,,即 BH 是 HG 和 HF 的比例中项.24. 解:抛物线的对称轴为直线,而抛物线与x 轴的一个交点 A 的坐标为,抛物线与 x 轴的另一个交点 B 的坐标为,设抛物线解析式为,即,当时,,,,,,解得,抛物线解析式为;设点 Q 的坐标为,过点G作轴,垂足为点H ,如图,点 G 与点 C,点 F 与点 A 关于点 Q 成中心对称,,,,,,,当时,,,,∽,,即,解得,的坐标为,;当时,,,,∽,,即,解得,的坐标为,;不存在,综上所述,点Q 的坐标为,或,.25. 解:如图,矩形 ABCD ,,,、 P、 F 在一条直线上,且,,,,,,如图 1 中,,又∽,,.,,,,,,,,即,,,,当点 F 在线段 BC 上时,如图中,,,,,,∽,,,整理得:,解得.如图 2 中,当点 F 在线段 BC 的延长线上时,作于H,连接DF.由∽,可得,,解得或舍弃,综上所述, PD 的长为或.【解析】A,是一次函数,1. 解:、B、,是一次函数,C、当时,不是二次函数,D 、是二次函数.故选: D .依据二次函数的定义进行判断即可.本题主要考查的是二次函数的定义,掌握二次函数的特点是解题的关键.A,方程没有实数根;2. 解:、由题意B、去分母得到:,,没有实数根;C、由题意,没有实数根,D 、去分母得到:,有实数根,故选 D.A、移项根据二次根式的性质即可判断;B、去分母后,化为整式方程即可判断;C、根据乘方的意义即可判断;D、去分母化为整式方程即可判断;本题考查了无理方程,解题的关键要注意是否有实数根,有实数根时是否有意义,用到的知识点是根的判别式.A BC与EF是对应边,所以,BC::2不一定成立,故本选项错误;3. 解:、B、的面积:的面积: 4,故本选项错误;C、的度数:的度数: 1,故本选项错误;D 、的周长:的周长: 2正确,故本选项正确.故选D.根据相似三角形对应边成比例,相似三角形面积的比等于相似比的平方,周长的比等于相似比对各选项分析判断即可得解.本题考查对相似三角形性质的理解:相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方;相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比.4.解:::,,选项 A 能判定;B.::,,选项 B 不能判定;C.::,,选项 C 能判定;D .::,,选项 D 能判定.故选: B.根据平行线分线段成比例定理对各个选项进行判断即可.本题考查平行线分线段成比例定理,如果一条直线截三角形的两边或两边的延长线所得的对应线段成比例,那么这条直线平行于三角形的第三边.5.解: A、正确根据去括号法则可得结论;B、错误因为,模相等,平面向量不一定共线,故结论错误;C、正确根据模的性质即可判断;D 、正确根据数乘向量的性质即可判断;故选: B.根据平面向量、模、数乘向量等知识一一判断即可;本题考查平平面向量、模、数乘向量等知识,解题的关键是灵活运用所学知识解决问题,属于中考基础题.6.解: A、错误应该是在同圆或等圆中,相等的圆心角所对的两条弦相等;B、正确;C、错误此弦非直径时,平分弦的直径一定垂直于这条弦;D 、错误应该是外切两圆的圆心距等于这两圆的半径之和;故选: B.根据轴对称图形、垂径定理、两圆相切的条件等知识一一判断即可;本题考查命题与定理,垂径定理,两圆相切的性质、轴对称图形等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.7. 解:,,.故答案为:.利用已知将原式变形进而代入求出答案.此题主要考查了比例的性质,正确得出,之间关系是解题关键.8. 解:是线段AB上的一点,且满足,为线段 AB 的黄金分割点,且AP 是较长线段,厘米.故答案为.根据黄金分割点的定义,知AP 是较长线段,得出,代入数据即可得出AP 的长.本题考查了黄金分割的概念:如果一个点把一条线段分成两条线段,并且较长线段是较短线段和整个线段的比例中项,那么就说这个点把这条线段黄金分割,这个点叫这条线段的黄金分割点;较长线段是整个线段的倍9. 解:二次函数的解析式为,该抛物线开口向上,对称轴为,在对称轴y 的左侧 y 随 x 的增大而减小,,.故答案为:.由在抛物线可知抛物线开口向上,且对称轴为,根据二次函数的性质即可判定.题主要考查对二次函数图象上点的坐标特征,二次函数的性质等知识点的理解和掌握,能求出对称轴和根据二次函数的性质求出正确答案是解此题的关键.10. 解:二次函数的顶点在x 轴上,,即,.故答案为: 17.由二次函数的顶点在x 轴上结合二次函数的性质,即可得出关于m 的一元一次方程,解之即可得出结论.本题考查了二次函数的性质,牢记二次函数的顶点坐标为,是解题的关键.11. 解:,,,∽,,.故答案为2.由,,,可得,推出,即可解决问题;本题考查相似三角形的判定和性质、平行线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.12. 解:在中,,,设,则,由勾股定理得到:,;故答案是:.设,则,由勾股定理求得BC 的长度,继而由三角形函数的定义求得的值.此题主要考查了锐角三角函数关系,正确记忆锐角三角函数关系是解题关键.13. 解:,,,,,,解得:.故答案为:.首先利用勾股定理得出BC 的长,再利用三角形面积求法得出AD 的长.此题主要考查了勾股定理以及三角形面积求法,得出BC 的长是解题关键.14.解:连接 AG,设正方形的边长为a,,,,,,∽,,,故答案为:设正方形的边长为a,求出 AC 的长为,再求出与中夹的两边的比值相等,根据两边对应成比例、夹角相等,两三角形相似,即可判定与相似,进而得出.本题主要利用两边对应成比例,夹角相等两三角形相似的判定和相似三角形对应角相等的性质,求出两三角形的对应边的比值相等是解本题的关键.15. 解:设等边三角形和的边长分别为a、 b,点 O 为位似中心,作交 EF 于 G,如图,根据题意,与的位似图形,点O、E、 B 共线,在中,,,,同理得到,而,,,.故答案为.设等边三角形和的边长分别为a、 b,点 O 为位似中心,作交EF于G,如图,利用位似的性质得到点O、 E、 B 共线,根据等边三角形的性质得,,利用含30 度的直角三角形三边的关系得到,同理得到,再利用得到,然后计算即可.本题考查了含30 度角的直角三角形的性质:在直角三角形中,角所对的直角边等于斜边的一半也考查了等边三角形的性质和位似的性质.16. 解:如图,作交BA的延长线于,交BG于O.四边形 ABCD 是菱形,,,度数等边三角形,,,,,在中,,∽,,,,故答案为.如图,作交 BA 的延长线于,交BG于利用勾股定理求出BG,再根据∽,可得,由此即可解决问题;本题考查菱形的性质、翻折变换、相似三角形的判定和性质、勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形、相似三角形解决问题,属于中考填空题中的压轴题.17.解:当和内切时,的半径为;当和外切时,的半径为;故答案为: 6 或 14cm.和相切,有两种情况需要考虑:内切和外切内切时,的半径圆心距的半径;外切时,的半径圆心距的半径.主要是考查两圆相切与数量关系间的联系,一定要考虑两种情况.18. 解:由折叠可得,,,,,四点共圆,,又,,,,同理可得,,,即 F 是 AB 的中点,中,,由,,,四点共圆,可得,由,可得,,又,∽,,即,,故答案为:.根据,,,四点共圆,可得,再根据,可得,进而根据,得出,同理可得,由此可得 F 是 AB 的中点,求得,再判定∽,得到,进而得出 CD 的长.本题主要考查了折叠问题,四点共圆以及相似三角形的判定与性质的运用,解决问题的关键是根据四点共圆以及等量代换得到 F 是 AB 的中点.19.直接利用特殊角的三角函数值代入求出答案.此题主要考查了实数运算,正确记忆特殊角的三角函数值是解题关键.20. 设,则想办法求出 DE 、 CE,根据即可解决问题;本题考查平面向量、锐角三角函数、平行线的性质等知识,解题的关键是灵活运用所学知识,学会利用参数解决问题,属于中考常考题型.21. 设,证明∽,得,代入 x 可得结论;由勾股定理得CE 的长,根据垂径定理可得CD 的长.本题考查了垂径定理,线段垂直平分线的性质,相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用.22. 如图作于设,在中,可得,在中,可得,由,推出,由,推出,可得,求出 x 即可解决问题.本题考查了解直角三角形的应用--方向角问题,结合航海中的实际问题,将解直角三角形的相关知识有机结合,体现了数学应用于实际生活的思想.23.根据平行四边形的判定得出四边形BCFD 是平行四边形,进而利用相似比解答即可;根据全等三角形的判定得出≌,进而利用全等三角形的性质证明∽,再根据相似三角形的性质证明即可.本题主要考查相似三角形的判定与性质,熟练掌握三角形相似判定方法是解题的关键.24.先利用抛物线的对称性得到,,则可设交点式,然后展开即可得到 C 点坐标;利用三角形面积公式得到,然后求出 a 即可得到抛物线解析式;设点 Q 的坐标为,过点G作轴,垂足为点H,如图,利用中心对称的性质得,,,,则,,讨论:当时,证明∽,利用相似比得到,解方程求出m 即可得到此时Q 的坐标;当时,证明∽,利用相似比得到,解方程求出m 即可得到此时Q 的坐标.本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质、中心对称的性质和相似三角形的判定与性质;会利用待定系数法求抛物线解析式;灵活应用相似比表示线段之间的关系;理解坐标与图形的性质;会利用分类讨论的思想解决数学问题.25.首先证明,由,推出,可得,根据计算即可;首先证明∽,可得,由,推出,,即,由,可得,代入比例式即可解决问题;分两种情形分别求解:当点 F 在线段 BC 上时,如图中;如图 2 中,当点 F 在线段 BC 的延长线上时,作于 H,连接寻找相似三角形,构建方程即可解决问题;本题考查四边形综合题相似三角形的判定和性质、锐角三角函数、矩形的性质等知识,解题的关键是正确寻找相似三角形解决问题,学会用分类讨论的思想思考问题,学会利用参数构建方程解决问题,属于中考压轴。
【初三英语试题精选】2018届中考数学一模试卷分类汇编:押轴题(上海市16区附答案)
2018届中考数学一模试卷分类汇编:押轴题(上海市16区
附答案)
上海市16区3=2 ———————————————————————(2分)
②∠BEC=∠BAE=90°,延长CE交BA延长线于T,
由∠ABE=∠EBC,∠BEC=∠BET=90°,BE=BE,得△BEC≌△BET,得BC=BT,
且CE=TE,又CD∥AT,得AT=CD
令CD=x,则在△BCH中,BC=BT=5+x,BH=5-x,∠BHC=90°,
所以,即,解得———(2分)
综上,当△ABE∽△EBC时,线段CD的长为2或—————————(1分)
(3)延长BE交CD延长线于M,——————————————————(1分)
由AB∥CD,得∠M=∠ABE=∠CBM,所以CM=CB
在△BCH中,
则DM=CM-CD= ,
又DM∥AB,得,即,————(2分)
解得——————————(2分)
嘉定区
25 在正方形ABCD中,AB=8,点P在边CD上,tan∠PBC= ,点Q是在射线BP上的一个动点,过点Q作AB的平行线交射线AD于点M,点R在射线AD上,使RQ始终与直线BP垂直。
(1)如图8,当点R与点D重合时,求PQ的长;
(2)如图9,试探索的比值是否随点Q的运动而发生变化?若有变化,请说明你的理由;若没有变化,请求出它的比值;
(3)如图10,若点Q在线段BP上,设PQ=x,RM=y,求y关于x的函数关系式,并写出它的定义域。
【解答】
(1)因为 AB=8,tan∠PBC=。
2018年上海一模压轴题汇编
2018年压轴题汇编初中数学组2018.11月一模冲刺 1(宝山)(本题满分12分,每小题各6分)如图,△ABC 中,AB =AC ,过点C 作CF ∥AB 交△ABC 的中位线DE 的延长线于F ,联结BF ,交AC 于点G .(1)求证:GAE AC EGC =; (2)若AH 平分∠BAC ,交BF 于H ,求证:BH 是HG 和HF 的比例中项.(崇明)(本题满分12分,每小题各6分)如图,点E 是正方形ABCD 的边BC 延长线上一点,联结DE ,过顶点B 作BF ⊥DE ,垂足为F ,BF 交边DC 于点G . (1)求证:GD ·AB =DF ·BG ;(2)联结CF ,求证:∠CFB =45°.(奉贤)(本题满分12分,每小题满分各6分) 已知:如图8,四边形ABCD ,90DCB ︒∠=,对角线BD AD ⊥,点E 是边AB 的中点,CE 与第23题 H GEDC (第23题图)GB A E F一模冲刺 2BD 相交于点F ,2BD AB BC =⋅。
(1)求证:BD 平分ABC ∠; (2)求证:BE CF BC EF ⋅=⋅(虹口)(本题满分12分,第(1)小题满分6分,第(2)小题满分6分)如图,在△ABC 中,点D 、E 分别在边AB 、AC 上,DE 、BC 的延长线相交于点F ,且EF ·DF =BF ·CF .(1)求证:AD ·AB =AE ·AC ;(2)当AB =12,AC =9,AE =8时,求BD 的长与ADEECFS S ∆∆的值.(黄浦)(本题满分12分) 如图,BD 是△ABC 的角平分线,点E 位于边BC 上,已知BD 是BA 与BE 的比例中项.(1)求证:∠CDE =12∠ABC ;FEDC BA 第23题图一模冲刺 3(2)求证:AD ·CD =AB ·CE .(嘉定)(本题满分12分,每小题6分)如图6,已知梯形ABCD 中,AD //BC ,AB =CD ,点E 在对角线AC 上,且满足 ∠ADE =∠BAC .(1)求证:CD ·AE =DE ·BC ; (2)以点A 为圆心,AB 长为半径画弧交边BC 于点F ,联结AF .求证:AF 2=CE ·CA .(金山)如图,已知在Rt △ABC 中,∠ACB =90°,AC >BC ,CD 是Rt △ABC 的高,E 是AC 的中点,ED 的延长线与CB 的延长线相交于点F .(1)求证:DF 是BF 和CF 的比例中项;(2)在AB 上取一点G ,如果AE ·AC =AG ·AD ,求证:EG ·CF =ED ·DF . F B CA D E 图6 E一模冲刺 4(静安)(本题满分12分,其中第(1)小题6分,第(2)小题6分)已知:如图,梯形ABCD 中,DC //AB ,AD =BD ,AD ⊥DB ,点E 是腰AD 上一点,作∠EBC =45°,联结CE ,交DB 于点F . (1)求证:△ABE ∽△DBC ;(2)如果56BC BD =,求BCE BDA S S ∆∆的值.(闵行)如图,已知在△ABC 中,∠BAC =2∠B , AD 平分∠BAC ,DF ∥BE ,点E 在线段BA 的延长线上,联结DE ,交AC 于点G ,且∠E =∠C . (1)求证:AD 2=AF ·AB ; (2)求证:AD ·BE =DE ·AB .第23题图FE D C BA GBC A EDF(第23题图)一模冲刺 5(浦东)(本题满分12分,其中第(1)小题6分,第(2)小题6分)如图,已知,在锐角△ABC 中,CE ⊥AB 于点E ,点D 在边AC 上,联结BD 交CE 于点F ,且EF ·FC =FB ·DF . (1)求证:BD ⊥AC ;(2)联结AF ,求证:AF ·BE =BC ·EF .(普陀)(本题满分12分)已知:如图9、四边形ABCD 的对角线AC 和BD 相交于点E ,AD DC =,2DC DE DB =⋅. 求证:(1)BCE ADE △∽△(第23题图)F A B CED一模冲刺 6(2)AB BC BD BE ⋅=⋅(青浦)(本题满分12分,第(1)小题4分,第(2)小题8分)如图8,已知点D 、E 分别在△ABC 的边AC 、BC 上,线段BD 与AE 交于点F ,且 CD ·CA =CE ·CB .(1)求证:∠CAE =∠CBD ; (2)若BE ABEC AC=,求证:AB ·AD =AF ·AE .(松江)(本题满分12分,每小题各6分)已知四边形ABCD 中,∠BAD =∠BDC =90°,2BD AD BC =⋅.(1)求证:AD ∥BC ;(2)过点A 作AE ∥CD 交BC 于点E .请完善图形并求证:2CD BE BC =⋅.图 9E DC B A FBCADE图8A一模冲刺 7(徐汇)(本题满分12分,第(1)小题满分5分,第(2)小题满分7分)如图,在△ABC 中,AB =AC ,点D 、E 、F 分别在边BC 、AB 、AC 上,且∠ADE =∠B , ∠ADF =∠C ,线段EF 交线段AD 于点G . (1)求证:AE =AF ;(2)若DF CFDE AE,求证:四边形EBDF 是平行四边形.(杨浦)(本题满分12分,第(1)小题5分,第(2)小题7分)已知:梯形ABCD 中,AD //BC ,AD =AB ,对角线AC 、BD 相交于点E ,点F 在边BC 上,且∠BEF =∠BAC .(1)求证:△AED ∽△CFE ;(2)当EF ∥DC 时,求证:AE =DE .(第23题图)G ABCDEF E BCA D F(长宁)(本题满分12分,第(1)小题6分,第(2)小题6分)如图,在△ABC 中,点D 在边BC 上,联结AD ,∠ADB=∠CDE ,DE 交边AC 于点E ,DE 交BA 延长线于点F ,且AD 2=DE ·DF . (1)求证:△BFD ∽△CAD ; (2)求证:BF ·DE =AB ·AD .(宝山)(本题共12分,每小题各4分)设a ,b 是任意两个不等实数,我们规定:满足不等式a ≤x ≤b 的实数x 的所有取值的全体叫做闭区间,表示为[a ,b ].对于一个函数,如果它的自变量x 与函数值y 满足:当m ≤x ≤n 时,有m ≤y ≤n ,我们就称此函数是闭区间[m ,n ]上的“闭函数”.如函数y =-x +4,当x =1时,y =3;当x =3时,y =1,即当1≤x ≤3时,恒有1≤y ≤3,所以说函数y =-x +4是闭区间[1,3]上的“闭函数”,同理函数y =x 也是闭区间[1,3]上的“闭函数”.(1)反比例函数2018y x是闭区间[1,2018]上的“闭函数”吗?请判断并说明理由; (2)如果已知二次函数y =x 2-4x +k 是闭区间[2,t ]上的“闭函数”,求k 和t 的值; (3)如果(2)所述的二次函数的图像交y 轴于C 点,A 为此二次函数图像的顶点,B 为直线x =1上的一点,当△ABC 为直角三角形时,写出点B 的坐标.第23题图BCD一模冲刺 9(崇明)(本题满分12分,每小题各4分)如图,抛物线y =43x 2+bx +c 过点A (3,0)、B (0,2).M (m ,0)为线段OA 上一个动点(点M 与点A 不重合),过点M 作垂直于x 轴的直线与直线AB 和抛物线分别交于点P 、N .(1)求直线AB 的解析式和抛物线的解析式;(2)如果点P 是MN 的中点,那么求此时点N 的坐标;(3)如果以B ,P ,N 为顶点的三角形与△APM 相似,求点M 的坐标.PN B y By(奉贤)(本题满分12分,每小题满分各4分)如图9、在平面直角坐标系中,已知抛物线238y x bx c =++与x 轴交于点()20A -,和点B ,与y 轴交于点()0,3C -,经过点A 的射线AM 与y 轴相交于点E ,与抛物线的另一个交点为F ,且13AE EF =。
2018-2019学年上海中考数学各区一模压轴题汇编
目录Ⅰ第18题(填空小压轴) (2)【2019届一模徐汇】 (2)【2019届一模浦东】 (2)【2019届一模杨浦】 (3)【2019届一模普陀】 (3)【2019届一模奉贤】 (3)【2019届一模松江】 (3)【2019届一模嘉定】 (4)【2019届一模青浦】 (4)【2019届一模青浦】 (4)【2019届一模静安】 (5)【2019届一模宝山】 (5)【2019届一模长宁】 (5)【2019届一模金山】 (6)【2019届一模闵行】 (6)【2019届一模虹口】 (6)Ⅱ第23题(几何证明题) (7)【2019届一模徐汇】 (7)【2019届一模浦东】 (7)【2019届一模杨浦】 (7)【2019届一模普陀】 (8)【2019届一模奉贤】 (8)【2019届一模松江】 (9)【2019届一模嘉定】 (9)【2019届一模青浦】 (10)【2019届一模静安】 (10)【2019届一模宝山】 (11)【2019届一模长宁】 (11)【2019届一模金山】 (12)【2019届一模闵行】 (12)【2019届一模虹口】 (13)Ⅲ第24题(二次函数综合) (13)【2019届一模徐汇】 (13)【2019届一模浦东】 (14)【2019届一模普陀】 (16)【2019届一模奉贤】 (16)【2019届一模松江】 (17)【2019届一模嘉定】 (18)【2019届一模青浦】 (19)【2019届一模静安】 (20)【2019届一模宝山】 (21)【2019届一模长宁】 (22)【2019届一模金山】 (23)【2019届一模闵行】 (24)【2019届一模虹口】 (25)Ⅳ第25题(压轴题) (25)【2019届一模徐汇】 (25)【2019届一模浦东】 (26)【2019届一模杨浦】 (27)【2019届一模普陀】 (28)【2019届一模奉贤】 (29)【2019届一模松江】 (30)【2019届一模嘉定】 (31)【2019届一模青浦】 (32)【2019届一模静安】 (33)【2019届一模宝山】 (33)【2019届一模长宁】 (34)【2019届一模金山】 (35)【2019届一模闵行】 (36)【2019届一模虹口】 (37)Ⅰ第18题(填空小压轴)【2019届一模徐汇】18.在梯形ABCD中,AB∥DC,∠B=90°,BC=6,CD=2,3tan4A=.点E为BC上一点,过点E作EF∥AD交边AB于点F.将△BEF沿直线EF翻折得到△GEF,当EG过点D时,BE的长为▲ .【2019届一模浦东】18. 将矩形纸片ABCD沿直线AP折叠,使点D落在原矩形ABCD的边BC上的点E处,如果∠AED的余弦值为35,那么ABBC=__________.(第18题图)【2019届一模杨浦】18.Rt △ABC 中,∠C =90°,AC =3,BC =2,将此三角形绕点A 旋转,当点B 落在直线BC 上的点D 处时,点C 落在点E 处,此时点E 到直线BC 的距离为 ▲ .【2019届一模普陀】18.如图5,△ABC 中,8AB AC ==,3cos 4B =,点D 在边BC 上,将△ABD 沿直线AD 翻折得到△AED ,点B 的对应点为点E ,AE 与边BC 相交于点F ,如果2BD =,那么EF = ▲ .【2019届一模奉贤】18.如图5,在△ABC 中,AB =AC =5,3sin =5C ,将△ABC 绕点A 逆时针旋转得到△ADE ,点B 、C 分别与点D 、E 对应,AD 与边BC 交于点F .如果AE //BC ,那么BF 的长是 ▲ .【2019届一模松江】18.如图,在直角坐标平面xoy 中,点A 坐标为(3,2),∠AOB =90°,∠OAB =30°,ABACB(第18题图)图 5ABCD图5ABC与x 轴交于点C ,那么AC :BC 的值为______.【2019届一模嘉定】18.在△ABC 中,°=∠90ACB ,点D 、E 分别在边BC 、AC 上,AE AC 3=,°=∠45CDE (如图3),△DCE沿直线DE 翻折,翻折后的点C 落在△ABC 内部的点F ,直线AF 与边BC 相交于点G ,如果AE BG =,那么=B tan ▲ .【2019届一模青浦】17.如图,在Rt △ABC 中,∠ACB=90°,AC=1,tan ∠CAB=2,将△ABC 绕点A 旋转后,点B 落在AC 的延长线上的点D ,点C 落在点E ,DE 与直线BC 相交于点F ,那么CF= ▲ .【2019届一模青浦】18.对于封闭的平面图形,如果图形上或图形内的点S 到图形上的任意一点P 之间的线段都在图形内或图形上,那么这样的点S 称为“亮点”. 如图,对于封闭图形ABCDE ,S 1是“亮点”,S 2不是“亮点”,如果AB ∥DE ,AE ∥DC , AB=2,AE=1,∠B=∠C= 60°,那么该图形中所有“亮点” 组成的图形的面积为 ▲ .【2019届一模静安】18.如图6,将矩形ABCD 沿对角线BD 所在直线翻折后,点A 与点E 重合,且ED 交BC 于点F ,联结AE .如果2tan 3DFC ∠=,那么BDAE的值是 ▲ .【2019届一模宝山】18.如图4,Rt △ABC 中,∠ACB =90°,AC =4,BC =5,点P 为AC 上一点,将△BCP 沿直线BP 翻折,点C 落在C ’处,连接AC ’,若AC ’∥BC ,则CP 的长为 ▲ .【2019届一模长宁】18.如图,点P 在平行四边形ABCD 的边BC 上,将ABP ∆沿直线AP 翻折,点B 恰好落在边AD 的垂直平分线上,如果5=AB ,8=AD ,34tan =B ,那么BP 的长为 ▲ . AC(图4)B(第18题图)图6F BA CDEA【2019届一模金山】18.如图,在ABC Rt ∆中,o90=∠C ,8=AC ,6=BC .在边AB 上取一点O ,使BC BO =,以点O 为旋转中心,把ABC ∆逆时针旋转o90,得到C B A ′′′∆(点A 、B 、C 的对应点分别是点A ′、B ′、C ′),那么ABC ∆与C B A ′′′∆的重叠部分的面积是 ▲ .【2019届一模闵行】18.如图,在Rt △ABC 中,∠ACB = 90°,BC = 3,AC = 4,点D 为边AB 上一点.将△BCD 沿直线CD 翻折,点B 落在点E 处,联结AE .如果AE // CD ,那么BE = ▲ .【2019届一模虹口】18.如图,正方形ABCD 的边长为4,点O 为对角线AC 、BD 的交点,点E 为边AB 的中点,△BED 绕着点B 旋转至△BD 1E 1,如果点D 、E 、D 1在同一直线上,那么EE 1的长为 ▲ .ABC第18题OABC (第18题图)A DE OⅡ第23题(几何证明题)【2019届一模徐汇】23.(本题满分12分,第(1)小题满分6分,第(2)小题满分6分)如图,已知菱形ABCD,点E是AB的中点,AF BC⊥于点F,联结EF、ED、DF,DE交AF于点G,且2AE EG ED=⋅.(1) 求证:DE EF⊥;(2) 求证:22BC DF BF=⋅.【2019届一模浦东】23.(本题满分12分,其中每小题各6分)已知:如图8,在平行四边形ABCD中,M是边BC的中点,E是边BA延长线上的一点,联结EM,分别交线段AD于点F、AC于点G.(1)求证:GF EF GM EM=;(2)当22BC BA BE=⋅时,求证:∠EMB=∠ACD.【2019届一模杨浦】23.(本题满分12分,每小题各6分)B(第23题图)(图8)D B已知:如图,在△ABC 中,点D 在边AB 上,点E 在线段CD 上,且∠ACD =∠B =∠BAE. (1)求证:AD DEBC AC=; (2)当点E 为CD 中点时,求证:22AE ABCE AD=.【2019届一模普陀】23.(本题满分12分)已知:如图9,△ADE 的顶点E 在△ABC 的边BC 上,DE 与AB 相交于点F ,AE AF AB =⋅2,DAF EAC ∠=∠.(1)求证:△ADE ∽△ACB ;(2)求证:DF CE DE CB=.【2019届一模奉贤】23.(本题满分12分,第(1)小题满分5分,第(2)小题满分7分)已知:如图9,在△ABC 中,点D 在边AC 上,BD 的垂直平分线交CA 的延长线于点E , (第23题图)ECF图9ABDE交BD 于点F ,联结BE ,EC EA ED •=2. (1)求证:∠EBA =∠C ;(2)如果BD =CD ,求证:AC AD AB •=2.【2019届一模松江】23.(本题满分12分,第(1)小题5分,第(2)小题7分)已知:如图,在梯形ABCD 中,AD ∥BC ,AB=DC ,E 是对角线AC 上一点,且AC ·CE=AD ·BC . (1)求证:∠DCA=∠EBC ;(2)延长BE 交AD 于F ,求证:AB 2=AF ·AD .【2019届一模嘉定】23.(本题满分12分,每小题6分)如图6,已知点D 在△ABC 的外部,AD //BC ,点E 在边AB 上,AE BC AD AB ⋅=⋅. (1)求证:AED BAC ∠=∠;(2)在边AC 取一点F ,如果D AFE ∠=∠,ABCDEF图9(第23题图)EDCBAF(第23题图)EDCBAD A求证:ACAFBC AD =.【2019届一模青浦】23.(本题满分12分,第(1)小题7分,第(2)小题5分)已知:如图,在△ABC 中,点D 、E 分别在边BC 、AC 上,点F 在DE 的延长线上,AD=AF ,AE CE DE EF ⋅=⋅.(1)求证:△ADE ∽△ACD ;(2)如果AE BD EF AF ⋅=⋅,求证:AB=AC .【2019届一模静安】23.(本题满分12分,其中第(1)小题6分,第(2)小题6分)已知:如图9,在ABC ∆中,点D 、E 分别在边BC 和AB 上,且AD AC =,EB ED =,分别延长ED 、AC 交于点F .(1)求证:ABD ∆∽FDC ∆;(2)求证:2AE BE EF =⋅.ABCDEF(第23题图) 图9AC BDEF【2019届一模宝山】23.(本题满分12分)地铁10号线某站点出口横截面平面图如图8所示,电梯AB 的两端分别距顶部9.9米和2.4米,在距电梯起点A 端6米的P 处,用1.5米的测角仪测得电梯终端B 处的仰角为14°,求电梯AB 的坡度与长度. 参考数据:,,.【2019届一模长宁】23.(本题满分12分,第(1)小题5分,第(2)小题7分)如图,点D 、E 分别在ABC ∆的边AC 、AB 上,延长DE 、CB 交 于点F ,且AC AD AB AE ⋅=⋅. (1)求证:C FEB ∠=∠;(2)联结AF ,若FD CD AB FB =,求证:FB AC AB EF ⋅=⋅.24.014sin ≈°25.014tan ≈°97.014cos ≈°Q 9.9米 B出口顶部1.5米(图8) AP 6米 2.4米°14 第23题图CEDABF【2019届一模金山】23.如图,M 是平行四边形ABCD 的对角线上的一点,射线AM 与BC 交于点F ,与DC 的延长线交于点H .(1)求证:MH MF AM ⋅=2.(2)若DM BD BC ⋅=2,求证:ADC AMB ∠=∠.【2019届一模闵行】23.(本题共2小题,每小题6分,满分12分)如图,在△ABC 中,点D 为边BC 上一点,且AD = AB ,AE ⊥BC ,垂足为点E .过点D 作DF // AB ,交边AC 于点F ,联结EF ,212EF BD EC =⋅. (1)求证:△EDF ∽△EFC ; (2)如果14EDF ADC S S =V V ,求证:AB = BD .ABCD HF M第23题ABCDE F(第23题图)【2019届一模虹口】23.(本题满分12分,第(1)小题满分6分,第(2)小题满分6分)如图,在△ABC 中,AB=AC ,D 是边BC 的中点,DE ⊥AC ,垂足为点E . (1)求证:DE CD AD CE ⋅=⋅;(2)设F 为DE 的中点,联结AF 、BE ,求证:=AF BC AD BE ⋅⋅.Ⅲ第24题(二次函数综合)【2019届一模徐汇】24.(本题满分12分,第(1)小题4分,第(2)小题4分,第(3)小题4分)如图,在平面直角坐标系xoy 中,顶点为M 的抛物线C 1:2(0)y ax bx a =+<经过点A 和x 轴上的点B ,AO =OB =2,120AOB ∠=o .(1)求该抛物线的表达式; (2)联结AM ,求AOM S V ;(3)将抛物线C 1向上平移得到抛物线C 2,抛物线C 2与x 轴分别交于点E 、F (点E 在点F 的左侧),如果△MBF 与△AOM 相似,求所有符合条件的抛物线C 2的表达式.(第24题图)第23题图E【2019届一模浦东】24. (本题满分12分,其中每小题各4分)已知:如图9,在平面直角坐标系xOy 中,直线12y x b =−+与x 轴相交于点A ,与y 轴相交于点B . 抛物线244y ax ax =−+经过点A 和点B ,并与x 轴相交于另一点C ,对称轴与x 轴相交于点D .(1)求抛物线的表达式; (2)求证: △BOD ∽△AOB ;(3)如果点P 在线段AB 上,且∠BCP =∠DBO , 求点P 的坐标.【2019届一模杨浦】24.(本题满分12分,每小题各4分)在平面直角坐标系xOy 中,抛物线2(0)y ax bx c a =++?与y 轴交于点C (0,2), 它的顶点为D (1,m ),且1tan 3COD ?. (1)求m 的值及抛物线的表达式;(2)将此抛物线向上平移后与x 轴正半轴交于点A ,与y 轴交于点B ,且OA =OB .若点A 是由原抛物线上的点E 平移所得,求点E 的坐标;(3)在(2)的条件下,点P 是抛物线对称轴上的一点(位于x 轴上方),且∠APB =45°.求P 点的坐标.O xy 1 2 3 4 1 2 3 45-1-2 -3-1 -2 -3 (第24题图)【2019届一模普陀】24.(本题满分12分)如图10,在平面直角坐标系中,抛物线23y ax bx =+−(0)a ≠与x 轴交于点A ()1,0−和点B ,且3OB OA =,与y 轴交于点C ,此抛物线顶点为点D .(1)求抛物线的表达式及点D 的坐标;(2)如果点E 是y 轴上的一点(点E 与点C 不重合),当BE DE ⊥时,求点E 的坐标; (3)如果点F 是抛物线上的一点,且135FBD ∠=o ,求点F 的坐标.【2019届一模奉贤】24.(本题满分12分,每小题满分6分)如图10,在平面直角坐标系中,直线AB 与抛物线2y ax bx =+交于点A (6,0)和点B (1,-5). (1)求这条抛物线的表达式和直线AB 的表达式; xOy xOy 图10(2)如果点C 在直线AB 上,且∠BOC 的正切值是32, 求点C 的坐标.【2019届一模松江】24.(本题满分12分,第(1)小题3分,第(2)小题4分,第(3)小题5分)如图,抛物线c bx x y ++−=221经过点A (﹣2,0),点B (0,4). (1)求这条抛物线的表达式;(2)P 是抛物线对称轴上的点,联结AB 、PB ,如果∠PBO=∠BAO ,求点P 的坐标;(3)将抛物线沿y 轴向下平移m 个单位,所得新抛物线与y 轴交于点D ,过点D 作DE ∥x 轴交新抛物线于点E ,射线EO 交新抛物线于点F ,如果EO =2OF ,求m 的值.【2019届一模嘉定】24.(本题满分12分,每小题4分)在平面直角坐标系xOy (如图7)中,抛物线22++=bx ax y 经过点)0,4(A 、)2,2(B ,与y 轴的交点为C .(1)试求这个抛物线的表达式;(2)如果这个抛物线的顶点为M ,求△AMC(3)如果这个抛物线的对称轴与直线BC 交于点D (第24题图)y xOBA在线段AB 上,且°=∠45DOE ,求点E 的坐标.【2019届一模青浦】24.(本题满分12分, 其中第(1)小题3分,第(2)小题5分,第(3)小题4分)在平面直角坐标系xOy 中,将抛物线2y x =−平移后经过点A (-1,0)、B (4,0),且平移后的抛物线与y 轴交于点C (如图).(1)求平移后的抛物线的表达式;(2)如果点D 在线段CB 上,且CD CAD 的正弦值;(3)点E 在y 轴上且位于点C 的上方,点P 在直线BC 上,点Q 在平移后的抛物线上,如果四边形ECPQ 是菱形,求点Q 的坐标.【2019届一模静安】24.(本题满分12分,其中第(1)小题4分,第(2)小题3分,第(3)小题5分)在平面直角坐标系xOy 中(如图10),已知抛物线2(0)y ax bx c a ++≠的图像经过点(40)B ,、(53)D ,,设它与x 轴的另一个交点为A (点A 在点B 的左侧),且ABD ∆的面积是3. (1)求该抛物线的表达式; (2)求ADB ∠的正切值;(3)若抛物线与y 轴交于点C ,直线CD 交x 轴于点E ,点P 在射线AD 上,当APE ∆与ABD ∆相似时,求点P 的坐标.(第24题图)(备用图)BD ﹒﹒【2019届一模宝山】24.(本题满分12分,第(1)小题满分6分,第(2)小题满分6分)如图9,已知:二次函数的图像交x 轴正半轴于点A ,顶点为P ,一次函数的图像交x 轴于点B ,交y 轴于点C , ∠OCA 的正切值为. (1)求二次函数的解析式与顶点P 坐标;(2)将二次函数图像向下平移m 个单位,设平移后抛物线顶点为P ’,若,求m 的值.2y x bx =+132y x =−23A CO (图9)【2019届一模长宁】24.(本题满分12分,每小题4分)如图,在直角坐标平面内,抛物线经过原点O 、点)3,1(B ,又与x 轴正半轴相交于点A ,°=∠45BAO ,点P 是线段AB 上的一点,过点P 作OB PM //,与抛物线交于点M ,且点M 在第一象限内. (1)求抛物线的表达式;(2)若AOB BMP ∠=∠,求点P 的坐标;(3)过点M 作x MC ⊥轴,分别交直线AB 、x 轴于点N 、C ,若ANC ∆的面积等于PMN ∆的面积的2倍,求NCMN 的值. 第24题图xO A By备用图xO A By【2019届一模金山】24.已知抛物线c bx x y ++=2经过点()6,0A ,点()3,1B ,直线1l :()0≠=k kx y ,直线2l :2−−=x y ,直线1l 经过抛物线c bx x y ++=2的顶点P ,且1l 与2l 相交于点C ,直线2l 与x 轴、y 轴分别交于点D 、E .若把抛物线上下平移,使抛物线的顶点在直线2l 上(此时抛物线的顶点记为M ),再把抛物线左右平移,使抛物线的顶点在直线1l 上(此时抛物线的顶点记为N ). (1)求抛物线c bx x y ++=2的解析式.(2)判断以点N 为圆心,半径长为4的圆与直线2l 的位置关系,并说明理由.(3)设点F 、H 在直线1l 上(点H 在点F 的下方),当MHF ∆与OAB ∆相似时,求点F 、H 的坐标(直接写出结果). 第24题【2019届一模闵行】24.(本题共3小题,每小题4分,满分12分)已知:在平面直角坐标系xOy中,抛物线2y a x b x=+经过点A(5,0)、B(-3,4),抛物线的对称轴与x 轴相交于点D.(1)求抛物线的表达式;(2)联结OB、BD.求∠BDO的余切值;(3)如果点P在线段BO的延长线上,且∠PAO =∠BAO,求点P的坐标.xO(第24题图)【2019届一模虹口】24.(本题满分12分,第(1)小题满分4分,第(2)小题满分4分,第(3)小题满分4分)如图,在平面直角坐标系xOy 中,抛物线2y x bx c =−++与x 轴相交于原点O 和点B (4,0),点A (3,m )在抛物线上.(1)求抛物线的表达式,并写出它的对称轴; (2)求tan ∠OAB 的值;(3)点D 在抛物线的对称轴上,如果∠BAD =45°,求点D 的坐标.Ⅳ第25题(压轴题)【2019届一模徐汇】25. (本题满分14分,第(1)小题4分,第(2)小题4分,第(3)小题6分)已知:在梯形ABCD 中,AD //BC ,AC =BC =10,54cos =∠ACB ,点E 在对角线AC 上(不与点A 、C 重合),EDC ACB ∠=∠,DE 的延长线与射线CB 交于点F ,设AD 的长为x . (1)如图1,当DF BC ⊥时,求AD 的长;(2)设EC 的长为y ,求y 关于x 的函数解析式,并直接写出定义域;(3)当△DFC 是等腰三角形时,求AD 的长.OAy xB【2019届一模浦东】25. (本题满分14分,其中第(1)小题3分,第(2)小题5分,第(3)小题6分)将大小两把含30°角的直角三角尺按如图10-1位置摆放,即大小直角三角尺的直角顶点C重合,小三角尺的顶点D、E分别在大三角尺的直角边AC、BC上,此时小三角尺的斜边DE恰好经过大三角尺的重心G. 已知∠A=∠CDE=30°,AB=12.(1)求小三角尺的直角边CD的长;(2)将小三角尺绕点C逆时针旋转,当点D第一次落在大三角尺的边AB上时(如图10-2),求点B、E之间的距离;(3)在小三角尺绕点C旋转的过程中,当直线DE经过点A时,求∠BAE的正弦值.(第25题图1)(第25题图)CE【2019届一模杨浦】25.(本题满分14分,第(1)小题4分,第(2)、(3)小题各5分)已知:梯形ABCD 中,AD //BC ,AB ⊥BC ,AD =3,AB =6,DF ⊥DC 分别交射线AB 、射线CB 于点E 、F . (1)当点E 为边AB 的中点时(如图1),求BC 的长;(2)当点E 在边AB 上时(如图2),联结CE ,试问:∠DCE 的大小是否确定?若确定,请求出∠DCE 的正切值;若不确定,则设AE =x ,∠DCE 的正切值为y ,请求出y 关于x 的函数解析式,并写出定义域; (3)当△AEF 的面积为3时,求△DCE 的面积.A BC D EF (图1) (第25题图) A B C D E F (图2)【2019届一模普陀】25.(本题满分14分)如图11,点O 在线段AB 上,22AO OB a ==,60BOP ∠=°,点C 是射线OP 上的一个动点. (1)如图11①,当90ACB ∠=°,2OC =,求a 的值;(2)如图11②,当AC =AB 时,求OC 的长(用含a 的代数式表示);(3)在第(2)题的条件下,过点A 作AQ ∥BC ,并使∠QOC=∠B ,求:AQ OQ 的值.A BCP OABCPO图11①图11②【2019届一模奉贤】25.(本题满分14分,第(1)小题满分4分,第(2)小题满分5分,第(3)小题满分5分)如图11,已知梯形ABCD 中,AB ∥CD ,∠DAB =90°,AD =4,26AB CD ==,E 是边BC 上一点,过点D 、E 分别作BC 、CD 的平行线交于点F ,联结AF 并延长,与射线DC 交于点G . (1)当点G 与点C 重合时,求:CE BE 的值;(2)当点G 在边CD 上时,设CE m =,求△DFG 的面积;(用含m 的代数式表示) (3)当AFD ∆∽ADG ∆时,求∠DAG 的余弦值.图11ABC D F E G 备用图ABC D【2019届一模松江】25.(本题满分14分,第(1)小题4分,第(2)、(3)小题各5分)如图,已知△ABC 中,∠ACB =90°,D 是边AB 的中点,P 是边AC 上一动点,BP 与CD 相交于点E . (1)如果BC =6,AC =8,且P 为AC 的中点,求线段BE 的长; (2)联结PD ,如果PD ⊥AB ,且CE =2,ED =3,求cosA 的值; (3)联结PD ,如果222BP CD =,且CE =2,ED =3,求线段PD 的长. (备用图2)ABCD(备用图1)ABCD(第25题图)ABPCD E【2019届一模嘉定】25.(满分14分,第(1)小题4分,第(2)、(3)小题各5分)在矩形ABCD 中,6=AB ,8=AD ,点E 是边AD 上一点,EC EM ⊥交AB 于点M ,点N 在射线MB 上,且AE 是AM 和AN 的比例中项. (1)如图8,求证:DCE ANE ∠=∠;(2)如图9,当点N 在线段MB 之间,联结AC ,且AC 与NE 互相垂直,求MN 的长; (3)联结AC ,如果△AEC 与以点E 、M 、N 为顶点所组成的三角形相似,求DE 的长.A 备用图BDCA 图8B M E DC N A 备用图 BD C ME N A 图9 B D C【2019届一模青浦】25.(本题满分14分,其中第(1)小题4分,第(2)小题6分,第(3)小题4分)如图,在梯形ABCD 中,AD//BC ,BC =18,DB =DC =15,点E 、F 分别在线段BD 、CD 上,DE =DF =5. AE 的延长线交边BC 于点G , AF 交BD 于点N 、其延长线交BC 的延长线于点H . (1)求证:BG =CH ;(2)设AD =x ,△ADN 的面积为y ,求y 关于x 的函数解析式,并写出它的定义域; (3)联结FG ,当△HFG 与△ADN 相似时,求AD 的长. NHGFEDC AB (第25题图)图11ABCPQM【2019届一模静安】25.(本题满分14分,其中第(1)小题4分,第(2)小题5分,第(3)小题5分)已知:如图11,在ABC ∆中,6AB =,9AC=,tan ABC ∠.过点B 作BM //AC ,动点P 在射线BM 上(点P 不与点B 重合),联结PA 并延长到点Q ,使AQC ABP ∠=∠. (1)求ABC ∆的面积;(2)设BP x =,AQ y =,求y 关于x 的函数解析式,并写出x 的取值范围; (3)联结PC ,如果PQC ∆是直角三角形,求BP 的长.【2019届一模宝山】25.(本题满分14分,第(1)小题满分4分,第(2)小题满分6分,第(3)小题满分4分)如图10,已知:梯形ABCD 中,∠ABC =90°,∠A =45°,AB ∥DC ,DC =3,AB =5,点 P 在AB 边上,以点A 为圆心AP 为半径作弧交边DC 于点E ,射线EP 与射线CB 交于点F .(1)若DE 的长; (2)联结CP ,若CP=EP ,求AP 的长;(3)线段CF 上是否存在点G ,使得△ADE 与△FGE 相似,若相似,求FG 的值;若不相似,请说明理由.【2019届一模长宁】25.(本题满分14分,第(1)小题4分,第(2)小题6分,第(3)小题4分)已知锐角MBN ∠的余弦值为53,点C 在射线BN 上,25=BC ,点A 在MBN ∠的内部, 且°=∠90BAC ,MBN BCA ∠=∠.过点A 的直线DE 分别交射线BM 、射线BN 于点D 、E . 点F 在线段BE 上(点F 不与点B 重合),且MBN EAF ∠=∠. (1)如图1,当BN AF ⊥时,求EF 的长;(2)如图2,当点E 在线段BC 上时,设x BF =,y BD =,求y 关于x 的函数解析式并写出函数定义域; AP 备用图A BCD A(图10)(3)联结DF ,当ADF ∆与ACE ∆相似时,请直接写出BD 的长.【2019届一模金山】25.已知多边形ABCDEF 是⊙O 的内接正六边形,联结AC 、FD ,点H 是射线AF 上的一个动点,联结CH ,直线CH 交射线DF 于点G ,作CH MH ⊥交CD 的延长线于点M ,设⊙O 的半径为()0>r r . (1)求证:四边形ACDF 是矩形.(2)当CH 经过点E 时,⊙M 与⊙O 外切,求⊙M 的半径(用r 的代数式表示).(3)设()o900<<=∠ααHCD ,求点C 、M 、H 、F 构成的四边形的面积(用r 及含α的三角比的式子表示). 第25题图图2 BFEC NDA MB FCE N A DM图1备用图BC NAMA B FOHEO【2019届一模闵行】25.(本题满分14分,其中第(1)小题4分、第(2)、(3)小题各5分)如图,在梯形ABCD中,AD // BC,AB = CD,AD = 5,BC = 15,5cos13ABC∠=.E为射线CD上任意一点,过点A作AF // BE,与射线CD相交于点F.联结BF,与直线AD相交于点G.设CE = x,AG yDG=.(1)求AB的长;(2)当点G在线段AD上时,求y关于x的函数解析式,并写出函数的定义域;(3)如果23ABEFABCDSS=四边形四边形,求线段CE的长.A DFGA D【2019届一模虹口】25.(本题满分14分,第(1)小题满分4分,第(2)小题满分6分,第(3)小题满分4分)如图,在四边形ABCD 中,AD ∥BC ,∠A =90°,AB =6,BC =10,点E 为边AD 上一点,将△ABE 沿BE 翻折,点A 落在对角线BD 上的点G 处,联结EG 并延长交射线BC 于点F . (1)如果cos ∠DBC =23,求EF 的长;(2)当点F 在边BC 上时,联结AG ,设AD=x ,ABG BEFS y S ∆∆= ,求y 关于x 的函数关系式,并写出x 的取值范围;(3)联结CG ,如果△FCG 是等腰三角形,求AD 的长. 第25题备用图第25题图EABCFDG。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年上海初三年级数学各区一模压轴题汇总[15套全]2016~2017学年度上海市各区初三一模数学压轴题汇总(18+24+25)共15套整理廖老师宝山区一模压轴题18(宝山)如图,D 为直角ABC D 的斜边AB 上一点,DE AB ^交AC 于E ,如果AED D 沿着DE 翻折,A 恰好与B 重合,联结CD 交BE 于F ,如果8AC =,1tan 2A =,那么:___________.CF DF =24(宝山)如图,二次函数232(0)2y ax x a =-+?的图像与x 轴交于A B 、两点,与y 轴交于点,C 已知点(4,0)A -.(1)求抛物线与直线AC 的函数解析式;(2)若点(,)D m n 是抛物线在第二象限的部分上的一动点,四边形OCDA 的面积为S ,求S 关于m 的函数关系;(3)若点E 为抛物线上任意一点,点F 为x 轴上任意一点,当以A C E F 、、、为顶点的四边形是平行四边形时,请直接写出满足条件的所有点E 的坐标.第18题第24题25(宝山)如图(1)所示,E 为矩形ABCD 的边AD 上一点,动点P Q 、同时从点B 出发,点P 以1/cm s 的速度沿着折线BE ED DC --运动到点C 时停止,点Q 以2/cm s 的速度沿着BC 运动到点C 时停止。
设P Q 、同时出发t 秒时,BPQ D 的面积为2ycm ,已知y 与t 的函数关系图像如图(2)(其中曲线OG 为抛物线的一部分,其余各部分均为线段).(1)试根据图(2)求05t(2)求出线段BC BE ED 、、的长度;(3)当t 为多少秒时,以B P Q 、、为顶点的三角形和ABE D 相似;(4)如图(3)过点E 作EF BC ^于F ,BEF D 绕点B 按顺时针方向旋转一定角度,如果BEF D 中E F 、的对应点H I 、恰好和射线BE CD 、的交点G 在一条直线,求此时C I 、两点之间的距离.(3)(2)(1)第25题BB崇明县一模压轴题18(崇明)如图,已知 ABC ?中,45ABC ∠=o ,AH BC ⊥于点H ,点D 在AH 上,且DH CH =,联结BD ,将B H D V 绕点H 旋转,得到EHF ?(点B 、D 分别与点E 、F 对应),联结AE ,当点F 落在AC 上时,(F 不与C 重合)如果4BC =,tan 3C =,那么AE 的长为;24(崇明)在平面直角坐标系中,抛物线235y x bx c =-++与y 轴交于点(0,3)A ,与x 轴的正半轴交于点(5,0)B ,点D 在线段OB 上,且1OD = ,联结AD 、将线段AD 绕着点D 顺时针旋转90?,得到线段DE ,过点E 作直线l x ⊥轴,垂足为H ,交抛物线于点F .(1)求这条抛物线的解析式;(2)联结DF ,求cot EDF ∠的值;(3)点G 在直线l 上,且45EDG ?∠=,求点G 的坐标.25(崇明)在ABC ?中,90ACB ?∠=,3cot 2A =,AC =,以BC 为斜边向右侧作等腰直角EBC ?,P 是BE 延长线上一点,联结PC ,以PC 为直角边向下方作等腰直角PCD ?,CD 交线段BE 于点F ,联结BD .(1)求证:PC CECD BC=;(2)若PE x =,BDP ?的面积为y ,求y 关于x 的函数解析式,并写出定义域;(3)当BDF ?为等腰三角形时,求PE 的长.奉贤区一模压轴题18(奉贤)如图3,在矩形ABCD 中,AB =6,AD =3,点P 是边AD 上的一点,联结BP ,将△ABP 沿着BP 所在直线翻折得到△EBP ,点A 落在点E 处,边BE 与边CD 相交于点G ,如果CG=2DG ,那么DP 的长是__ ____.24(奉贤)如图,在平面直角坐标系中xOy 中,抛物线2y x bx c =-++与x 轴相交于点A (-1,0)和点B ,与y 轴相交于点C (0,3),抛物线的顶点为点D ,联结AC 、BC 、DB 、DC .(1)求这条抛物线的表达式及顶点D 的坐标;(2)求证:△ACO ∽△DBC ;(3)如果点E 在x 轴上,且在点B 的右侧,∠BCE=∠ACO ,求点E 的坐标。
25(奉贤)已知,如图8,Rt△ABC中,∠ACB=90°,BC=8,cot∠BAC=34,点D在边BC上(不与点B、C重合),点E在边BC的延长线上,∠DAE=∠BAC,点F在线段AE上,∠ACF=∠B.设BD=x.(1)若点F恰好是AE的中点,求线段BD的长;(2)若AFyEF,求y关于x的函数关系式,并写出它的定义域;(3)当△ADE是以AD为腰的等腰三角形时,求线段BD的长.虹口区一模压轴题18(虹口)如图,在梯形中ABCD ,1,3AD BC AB BC AD BC ==∥,⊥,,点P 是边AB 上一点,如果把BCP ? 沿折痕CP 向上翻折,点B 恰好与点D 重合,那么sin ADP ∠ 为_____24(虹口)如图,抛物线25y x bx =++与x 轴交于点A 与(5,0)B 点,与y 轴交于点C ,抛物线的顶点为点P . (1)求抛物线的表达式并写出顶点P 的坐标(2)在x 轴上方的抛物线上有一点D ,若ABDABP ??,试求点D 的坐标(3)设在直线BC 下方的抛物线上有一点Q ,若15BCQ S D =,试写出点Q 坐标25(虹口)如图在Rt ABC 中,90ACB°?,4,3AC BC ==,点D 为边BC 上一动点,(不与点B 、C 重合),联结AD ,过点C 作CF AD ^,分别交AB AD 、于点E F 、,设DC x =,AEy BE=, (1)当1x =时,求tan BCE D的值(2)求y 与x 的函数关系式,并写出x 的取值范围(3)当1x =时,在边AC 上取点G ,联结BG ,分别交CE AD 、于点M N 、,当MNF ABC 时,请直接写出AG 的长。
黄浦区一模压轴题18(黄浦)如图10,菱形ABCD 形内两点M 、N ,满足MB ⊥BC ,MD ⊥DC ,NB ⊥BA ,ND ⊥DA ,若四边形BMDN 的面积是菱形ABCD 面积的15,则cos A = .24(黄浦)在平面直角坐标系xOy 中,对称轴平行于y 轴的抛物线过点A (1,0)、B (3,0)和C (4,6).(1)求抛物线的表达式;(2)现将此抛物线先沿x 轴方向向右平移6个单位,再沿y 轴方向平移k 个单位,若所得抛物线与x 轴交于点D 、E (点D 在点E 的左边),且使△ACD ∽△AEC (顶点A 、C 、D 依次对应顶点A 、E 、C ),试求k 的值,并注明方向.NMCBA图10O xy图1625(黄浦)如图17,△ABC边AB上点D、E(不与点A、B重合),满足∠DCE=∠ABC.已知∠ACB=90°,AC=3,BC=4.(1)当CD⊥AB时,求线段BE的长;(2)当△CDE是等腰三角形时,求线段AD的长;(3)设AD=x,BE=y,求y关于x的函数关系式,并写出定义域.CB DECB A备用图图17嘉定区一模压轴题18(嘉定)在Rt△ABC 中,D 是斜边AB 的中点(如图3),点M 、N 分别在边AC 、BC 上,将△CMN 沿直线MN 翻折,使得点C 的对应点E 落在射线CD 上.如果α=∠B ,那么∠AME 的度数为(用含α的代数式表示).24(嘉定)已知在平面直角坐标系xOy (如图9)中,已知抛物线42++-=bx x y 与x 轴的一个交点为A (1-,0),与y 轴的交点记为点C .(1)求该抛物线的表达式以及顶点D 的坐标;(2)如果点E 在这个抛物线上,点F 在x 轴上,且以点O 、C 、E 、F 为顶点的四边形是平行四边形,直接写出点F 的坐标(写出两种情况即可);(3)点P 与点A 关于y 轴对称,点B 与点A 关于抛物线的对称轴对称,点Q 在抛物线上,且∠PCB =∠QCB ,求点Q 的坐标.ABCD图325(嘉定)已知:点P 不在..⊙O 上,点Q 是⊙O 上任意..一点.定义:将线段PQ 的长度中最小的值称为点P 到⊙O 的“最近距离”;将线段PQ 的长度的最大的值称为点P 到⊙O 的“最远距离”.(1)(尝试)已知点P 到⊙O 的“最近距离”为2,点P 到⊙O 的“最远距离”为6,求⊙O 的半径长(不需要解题过程,直接写出答案).(2)(证明)如图10,已知点P 在⊙O 外,试在⊙O 上确定一点Q ,使得PQ 最短,并简要说明PQ 最短的理由. (3)(应用)已知⊙O 的半径长为5,点P 到⊙O 的“最近距离”为1,以点P 为圆心,以线段PO 为半径画圆.⊙P 交⊙O 于点A 、B ,联结OA 、PA .求OAP 的余弦值.P备用图1备用图2P静安区一模压轴题18(静安)一张直角三角形纸片ABC ,∠C =90°,AB =24, 3 2tan =B (如图),将它折叠使直角顶点C 与斜边AB 的中点重合,那么折痕的长为.24(静安)如图,在平面直角坐标系xOy 中,抛物线42++=bx ax y 与x 轴的正半轴相交于点A 、与y 轴相交于点B ,点C 在线段OA 上,点D 在此抛物线上,CD ⊥x 轴,且∠DCB =∠DAB ,AB 与CD 相交于点E .(1)求证:△BDE ∽△CAE ;(2)已知OC =2,3tan =∠DAC ,求此抛物线的表达式.(第18题图)25(静安)如图,在梯形ABCD 中,AD //BC ,AC 与BD 相交于点O ,AC =BC ,点E 在DC 的延长线上,∠BEC =∠ACB .已知BC =9,cos∠ABC=31.(1)求证:BC 2= CD · BE ;(2)设AD =x ,CE =y ,求y 与x 之间的函数解析式,并写出定义域;(3)如果△DBC ∽△DEB ,求CE 的长.(第25题图)ABCDEO闵行区一模压轴题18(闵行)如图,已知△ABC 是边长为2的等边三角形,点D 在边BC 上,将△ABD 沿着直线AD 翻折,点B落在点1B 处,如果1B D AC ⊥,那么BD =24(闵行)已知在平面直角坐标系xOy 中,二次函数2y x mx n =-++的图像经过点(3,0)A ,(,1)B m m +,且与y 轴相交于点C ;(1)求这个二次函数的解析式并写出其图像顶点D 的坐标;(2)求CAD ∠的正弦值;(3)设点P 在线段DC 的延长线上,且PAO CAD ∠=∠,求点P 的坐标;25(闵行)如图,已知在梯形ABCD 中,AD ∥BC ,5AB AD ==,3tan 4DBC ∠=,点E 为线段BD 上任意一点(点E 与点B 、D 不重合),过点E 作EF ∥CD ,与BC 相交于点F ,联结CE ,设BF x =,ECF BCDSy S ??=;(1)求BD 的长;(2)如果BC BD =,当△DCE 是等腰三角形时,求x 的值;(3)如果10BC =,求y 关于x 的函数解析式,并写出自变量x 的取值范围;浦东新区一模压轴题18(浦东)如图,在Rt ABC ?中,o =90C ∠,o =60B ∠,将ABC ?绕点A 逆时针旋转o 60,点B C 、分别落在点''B C 、处,联结'BC 与AC 边交于点D ,那么'BDDC = 。