定积分的概念与性质

合集下载

高等数学-定积分的概念与性质

高等数学-定积分的概念与性质

= σ=1 ( ) .
→0
其中()称为被积函数,()称为被积表达式,称为积分变量,
[, ]称为积分区间,称为积分下限,称为积分上限.
15
02 定积分的定义


注(1)定积分‫)( ׬‬是一个数值,它只与被积函数()

和积分区间[, ]有关,而与积分变量的符号无关,即
(2)近似(“以直代曲”)
在区间 [−1 , ] 上任取一点 ,以 ( ) 为高,
y
y=()
以 为底,作小矩形.小矩形的面积为
( ) ,用该结果近似代替[−1 , ]上的小
O
a
x i -1 ξ i x i
b
x
曲边梯形的面积 ,即
≈ ( ) ( = 1, 2, ⋯ , ).

‫)( ׬‬
=

‫)( ׬‬
=

‫)( ׬‬.
(2)定积分存在,与区间的分法和每个小区间内 的取法无关.
Hale Waihona Puke (3)按照定积分的定义,记号‫)( ׬‬中的, 应满足关系
< ,为了研究的方便,我们补充规定:
① 当 =
② 当 >


时,‫ = )( ׬ = )( ׬‬0;
在区间 [1,2] 内, 0 ≤ < 2 < 1 ,
则( )3 < .由性质5.5的推论1,得
2
‫׬‬1
>
2
‫׬‬1 ( )3 .
28
极限,得 σ=1 ( ) .
→0
如果对于[, ]的任意分法及小区间[−1 , ]上点 的任意
取法,上述极限都存在,则称函数()在区间[, ]上可积,

定积分的概念与性质

定积分的概念与性质

x
区间长度为: xi xi xi 1 , i 1,2,
,n
将曲边 梯形AabB 分成 n 个小曲边梯形,
si 表示第 i 个小曲边梯形的面积, 用s 表示曲边梯形 AabB 的面积, 则有: n s s1 s2 sn si
i 1
(2)近似求和 在每个小区间[ xi 1 , xi ] 上任取一点 i ( xi 1 i xi ),
n
当 0 时,和 总有共同的极限 I ,则称 I 为函数 b f ( x ) 在 [a , b] 上的定积分, 记为 f ( x )dx , 即

b
a
f ( x )dx I lim f ( i )xi
0
i 1
n
a
积分上限
[a , b] 称为积分区间
a
积分下限
s
i 1
n
i
si v ( i )t i
并作和:
( i 1,2, , n)
i
sn
v( )t
i 1 i n
n
则有 s sn v ( i )t i
i 1
n
(3)求极限 记 max{t i }, 当 0 时, 1 i n 有: s lim v ( i )t i
匀速直线运动: s v t 变速直线运动:
O
v(t )
T1
.
T2
.
t
用类似的方法解决如下: (1)分割
OT
1
t0
t1 t 2
ti
t i 1 tn T2
t
用 si 表示第 i 个小时间段行驶的距离, 则 s (2)近似求和 在每个时间段 [t i 1 , t i ] 上任取一时刻 i ,

第5.1节 定积分的概念及性质

第5.1节  定积分的概念及性质

§5.1 定积分的概念及性质一、定积分的定义5.1.1 定积分: 设)(x f 是定义在],[b a 上的有界函数,在],[b a 上任取一组分点b x x x x x a n i i =<<<<<<=−L L 110,这些分点将],[b a 分为n 个小区间],[10x x ,],[21x x ,…,],[1n n x x −记每个小区间的长度为:),,2,1(1n i x x x i i i L =−=∆−,并记},,,max{21n x x x ∆∆∆=L λ再任取点),,2,1(],[1n i x x i i i L =∈−ξ,作和式:∑=∆ni i i x f 1)(ξ,若和式的极限∑=→∆ni i i x f 1)(lim ξλ存在,则称)(x f 在区间],[b a 上可积,并称该极限为)(x f 在区间],[b a 上的定积分,记为∫b adx x f )(,即∑∫=→∆=ni i i bax f dx x f 1)(lim )(ξλ其中)(x f 称为被积函数,x 称为积分变量,a 称为积分下限,b 称为积分上限,],[b a 称为积分区间。

注:(1)定积分∫b adx x f )(表示一个常数值,它与被积函数)(x f 和积分区间],[b a 有关;(2)定积分的本质是一个和式的极限,该极限与区间的划分以及点i ξ的取法无关;5.1.2 函数可积的条件:(1)若)(x f 在],[b a 上连续,则)(x f 在],[b a 上可积; (2)若)(x f 在],[b a 上有界,且只有有限个间断点,则)(x f 在],[b a 上可积; (3)若)(x f 在],[b a 上单调有界,则)(x f 在],[b a 上可积; (4)有界不一定可积,可积一定有界,无界函数一定不可积。

5.1.3 定积分的几何意义:∫b adx x f )(表示以)(x f y =为曲边,以b x a x ==,为侧边,x 轴上区间],[b a 为底边的曲边梯形面积的代数和。

定积分的概念及性质

定积分的概念及性质

定积分的概念、微积分基本定理及其简单应用一. 定积分的定义A )定义: 设函数f(x)在[a,b]上有界,在[a,b]中任意插入若干个分点,把区间[a,b]分成n 个小区间,记},......,,max{,,......2,1,211n i i i x x x n i x x x ∆∆∆==-=∆-λ在[i i x x ,1-]上任意取一点i ξ,作和式:)1.......()(1ini ix f ∆∑=ξ 如果无论[a,b]作怎样分割,也无论i ξ在[i i x x ,1-]怎样选取,只要0→λ有→∆∑=ini ixf 1)(ξI (I 为一个确定的常数),则称极限I 是f(x)在[a,b]上的定积分,简称积分,记做⎰b adx x f )(即I=⎰badx x f )(其中f(x)为被积函数,f(x)dx 为积分表达式,a 为积分下限,b 为积分上限,x 称为积分变量,[a,b]称为积分区间。

例:求曲边图形面积:3x y =的图像在[]1,0∈x 间与1=x 及x 轴围成的图形面积。

注:1、有定义知道⎰ba dx x f )(表示一个具体的数,与函数f(x)以及区间[a,b]有关,而与积分变量x 无关,即⎰badx x f )(=⎰badu u f )(=⎰badt t f )(2、定义中的0→λ不能用∞→n 代替3、如果ini ix f Lim∆∑=→1)(ξλ存在,则它就是f(x)在[a,b]上的定积分,那么f(x)必须在[a,b]上满足什么条件f(x)在[a,b]上才可积分呢?经典反例:⎩⎨⎧=中的无理点,为,中的有理点,为]10[0]10[,1)(x x x f 在[0,1]上不可积。

可见函数f(x)在什么情况下可积分并不是一件容易的事情。

以下给出两个充分条件。

定理1 设f(x)在区间[a,b]上连续,则f(x)在[a,b]上可积。

定理2 设f(x)在区间[a,b]上有界,且只有有限个间断点,则f(x)在[a,b]上可积。

定积分的概念、性质

定积分的概念、性质
*
三、定积分的性质
§5.1 定积分的概念与性质
一、定积分问题举例
演讲人姓名
二、定积分定义
一、定积分问题举例
曲边梯形 设函数yf(x)在区间[a, b]上非负、连续. 由直线xa、xb、y0及曲线yf (x)所围成的图形称为 曲边梯形, 其中曲线弧称为曲边.
曲边梯形的面积
*
观察与思考
定积分的定义
*
二、定积分定义
例1 用定积分表示极限 解 定积分的定义
*
二、定积分定义
定积分的定义
注: 设f (x)在[0, 1]上连续, 则有
*
定积分的几何意义
这是因为 曲边梯形面积 曲边梯形面积的负值
*
定积分的几何意义
各部分面积的代数和 曲边梯形面积 曲边梯形面积的负值
*
例2
在曲边梯形内摆满小的矩形, 当小矩形的宽度减少时, 小矩形面积之和与曲边梯形面积之间的误差将如何变化? 怎样求曲边梯形的面积?
*
(2)近似代替:
求曲边梯形的面积
(1)分割:
ax0< x1< x2< < xn1< xn b, Dxi=xi-xi1;
小曲边梯形的面积近似为f(xi)Dxi (xi1<xi<xi);
如果在区间[a b]上 f (x)g(x) 则
如果在区间[a b]上 f (x)0 则
性质5
推论2
性质6
设M及m分别是函数f(x)在区间[a b]上的最大值及最小值 则
例4 试证:
证明 设 则在 上, 有 即 故 即
*
性质7(定积分中值定理)
如果函数f(x)在闭区间[a b]上连 续 则在积分区间[a b]上至少存在一个点x 使下式成立 这是因为, 由性质6 ——积分中值公式 由介值定理, 至少存在一点x[a, b], 使 两端乘以ba即得积分中值公式.

初中数学知识归纳定积分的基本概念和性质

初中数学知识归纳定积分的基本概念和性质

初中数学知识归纳定积分的基本概念和性质定积分作为数学中的一个重要概念,是初中数学学习中必须掌握的内容之一。

本文将从定积分的基本概念和性质两个方面进行归纳,帮助初中生更好地理解和掌握这一知识点。

1. 定积分的基本概念定积分是对函数在一定区间上的积分,可以理解为曲线与x轴所夹的面积。

具体而言,定积分可以表示为∫ab f(x)dx,其中a和b分别表示积分的下限和上限,f(x)表示被积函数。

定积分的计算方法有多种,常见的有几何法和定积分的运算法则。

几何法是通过图形的面积进行计算,而定积分的运算法则则利用不定积分求解。

2. 定积分的性质定积分具有以下几个性质:(1)可加性:对于函数f(x)和g(x),定积分具有可加性,即∫ab[f(x) + g(x)] dx = ∫ab f(x) dx + ∫ab g(x) dx。

(2)线性性:对于任意实数k,定积分具有线性性质,即∫ab kf(x) dx = k∫ab f(x) dx。

(3)区间可加性:对于函数f(x)在区间[a, b]上的定积分,可以将该区间分割成若干小区间,然后进行分别计算再求和,即∫ab f(x) dx =∑(i=1 to n) ∫xi-1 xi f(x) dx,其中[xi-1, xi]表示分割后的小区间。

(4)定积分的性质与原函数相关:如果函数F(x)在区间[a, b]上是函数f(x)的原函数,则∫ab f(x) dx = F(b) - F(a)。

(5)无关紧要的加法常数:定积分无关紧要的加法常数,即∫abf(x) dx = ∫ab [f(x) + C] dx,其中C为任意常数。

3. 定积分的应用定积分不仅仅在数学理论中有重要应用,还广泛应用于物理、经济学等实际问题中。

以下是一些常见的应用场景:(1)面积计算:定积分可以用来计算曲线与x轴所夹的面积,从而解决几何学中的面积问题。

(2)求解平均值:对于某些变量随时间变化的过程,可以通过定积分计算平均值,如平均速度、平均密度等。

定积分的概念和性质

定积分的概念和性质
b a
a
性质1 函数的和(差)的定积分等于它们的定 积分的和(差)。即
∫ [ f ( x) ± g ( x)]dx = ∫
a
b
b
a
f ( x ) dx ± ∫ g ( x ) dx
a
b
• 证
∫ [ f ( x) ± g ( x)]dx = lim ∑ [ f (ξ ) ± g (ξ )]∆x λ
a →0 i =1 n i i
y y=f(x)
0
a=x0 x1 x2 x3 xi −1
xi
xn −1 x = b n
x
(2)取近似:将这些细长条近似地看作一个个小矩形
在第 i个小曲边梯形的底 [ x i −1 , x i ]上任取一点 ξ i x i −1 ≤ ξ ≤ x i ), ( 它所对应的函数值是 f (ξ i ).用相应的宽为 ∆x i , 长为 f (ξ i )的小矩形 面积来近似代替这个小 曲边梯形的面积,即 ∆Ai ≈ f (ξ i ) ∆x i
• 证
b
a
kf ( x)dx = k ∫ f ( x)dx
a
b
(k为常数)

b
a
kf ( x)dx = lim ∑ kf (ξ i )∆xi
λ →0
i =1 n b
n
= k lim ∑ f (ξ i )∆xi = ∫ f ( x)dx
λ →0
i =1 a
• 性质3 (定积分的区间可加性) 若a < c < b,则
f (ξ i ) ∆ x i .
f(ξ) i
0
a=x0 x1
x2 xi −1ξixi
xn −1 x = b n
x

定积分的概念与性质

定积分的概念与性质

定积分的概念与性质在数学中,定积分是一种重要的数学工具,用于求解曲线下的面积以及计算函数的平均值和总和。

本文将介绍定积分的概念与性质,帮助读者更好地理解和应用该概念。

一、定积分的概念定积分是微积分中的一种方法,用于计算曲线下的面积。

它是对函数在给定区间上的求和过程。

我们将一个区间划分成无穷小的小区间,并在每个小区间上选择一个点,然后将每个小区间的函数值和小区间长度相乘,再将这些乘积相加,最终得到定积分的值。

定积分的表示方法是∫[a, b] f(x)dx,其中a和b是积分区间的边界,f(x)是要进行积分的函数。

定积分代表了函数f(x)在[a, b]区间上的总和或者面积。

二、定积分的计算方法1. 用基本定积分公式计算定积分。

对于一些简单的函数,我们可以直接使用基本定积分公式进行计算。

例如,∫x^2 dx = 1/3x^3 + C,其中C是常数。

2. 使用不定积分和积分区间上的定义进行计算。

如果我们已知函数f(x)在区间[a, b]上的原函数F(x),那么定积分的值就等于F(b) - F(a)。

这是因为定积分可以看作是函数在两个边界上的累积变化量。

3. 利用定积分的性质进行计算。

定积分具有线性性质,即∫[a, b] (f(x) + g(x))dx = ∫[a, b] f(x)dx + ∫[a, b] g(x)dx。

此外,如果函数f(x)在区间[a,b]上连续,且f(x)≥0,则定积分的值表示了曲线下的面积。

三、定积分的性质1. 定积分与原函数的关系。

如果函数f(x)在区间[a, b]上连续,且F(x)是f(x)的一个原函数,则∫[a, b] f(x)dx = F(b) - F(a)。

这个公式可以用来计算一些不易积分的函数。

2. 定积分的加法性质。

对于两个函数f(x)和g(x),以及一个常数k,有∫[a, b] (f(x) + g(x))dx = ∫[a, b] f(x)dx + ∫[a, b] g(x)dx,以及∫[a, b] kf(x)dx = k∫[a, b] f(x)dx。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

n
n
(2)求和 s si v( i )ti
i 1
i 1
(3)取极限 max{t1, t2 ,, tn }
n
路程的精确值
s
lim
0
i 1
v(
i
)ti
整理课件
9
问题
以上两个例子,一个是几何问题,求的 是以曲线 y = f(x)为曲边,以 [a,b] 为底边的 曲边梯形的面积。一个是物理问题,求的是 速度函数为v(t)的变速直线运动的物体在时 间区间 [a,b] 所走过的路程
整理课件
16
例1 利用定义计算定积分 1 x2dx. 0
归纳 它们求的都是展布在某个区间上的总
量(总面积或总路程)
解决方法:
通过局部取近似(求微分),求和取极限
(微分的无限求和)的方法,把总量归结为
求一种特定和式的极整限理课件
10
类似的例子还可以举出很多(几何、物 理的,在下一章定积分应用中即可见到)
这些问题虽然研究的对象不同,但解决 问题的思路及形式都有共同之处。为了一般 地解决这类问题,就有必要撇开它们的具体 含义,而加以概括、抽象得出定积分的概念
整理课件
2
一、问题的提出
实例1 (求曲边梯形的面积)
求面积问题由来已久,对于由直线所围成的
平面图形的面积我们已经会求,下图所示的图形
如何求面积
ym
将其置于直角
坐标系下考察 A
B
问题归结为AmBbaA与AnBbaA
n
的面积之差
曲边梯形整理课件
o
a
3b x
曲边梯形由连续曲线 y f ( x)( f ( max{x1 , x2 ,, xn }, i 1 如果不论对[a, b] 怎样的分法,也不论在小区间[ xi1 , xi ]上
点i 怎样的取法, 只要当 0时, 和 S 总趋于
确定的极限I ,我们称这个极限I 为函数 f ( x)
整理课件
12
在区间[a, b]上的定积分,记为
式,定积分的换元法和分部积分法
难点 定义及换元法和分部法的运用
整理课件
1
基本要求
①正确理解定积分的概念及其实际背景
②记住定积分的性质并能正确地运用
③掌握变上限定积分概念,微积分基本定理, 并会用N-L公式计算定积分,
④能正确熟练地运用换元法和分部积分法
计 算定积分
⑤正确理解两类广义积分概念, 并会用定义 计算一些较简单的广义积分。
Ai f (i )xi
整理课件
6
曲边梯形面积的近似值为
n
A f (i )xi
i 1
当分割无限加细,即小区间的最大长度
max{x1, x2 ,xn } 趋近于零 ( 0) 时,
n
曲边梯形面积为
A
lim
0
i 1
f
(i )xi
整理课件
7
实例2 (求变速直线运动的路程)
设某物体作直线运动,已知速度v v(t ) 是 时 间 间 隔[T1 ,T2 ] 上 t 的 一 个 连 续 函 数 , 且 v(t ) 0,求物体在这段时间内所经过的路程.
x轴与两条直线 x a、 x b所围成.
y f (x) y
A?
oa
bx
用矩形面积近似取代曲边梯形面积
整理课件
4
y
y
oa
b xo a
bx
(四个小矩形)
(九个小矩形)
显然,小矩形越多,矩形总面积越接近 曲边梯形面积.
注意当分割加细时,矩形面积和与曲边梯形 面积的关系是越来越接近.
整理课件
5
曲边梯形如图所示 在区间 [a,b]内插入若干
思路:把整段时间分割成若干小段,每小段上 速度看作不变,求出各小段的路程再相加,便 得到路程的近似值,最后通过对时间的无限细 分过程求得路程的精确值.
整理课件
8
(1)分割 T1 t0 t1 t2 tn1 tn T2
ti ti ti1 si v( i )ti
部分路程值
某时刻的速度
定积分的概念
前一章我们从导数的逆运算引出了不定积 分,系统地介绍了积分法,这是积分学的第一类 基本问题。本章先从实例出发,引出积分学的第 二类基本问题——定积分,它是微分(求局部量 )的逆运算(微分的无限求和——求总量),然 后着重介绍定积分的计算方法,它在科学技术领 域中有着极其广泛的应用。
重点 定积分的概念和性质,微积分基本公
整理课件
11
二、定积分的定义
定义 设函数 f ( x)在[a, b]上有界,在[a, b]中任意插入
若干个分点 a x x x x x b
0
1
2
n1
n
把区间[a, b]分成n个小区间,各小区间的长度依次为
xi xi xi1,(i 1,2,),在各小区间上任取 一点i (i xi ),作乘积 f (i )xi (i 1,2,)
整理课件
13
(3)当函数 f ( x)在区间[a, b]上的定积分存在时, 称 f ( x)在区间[a,b]上可积.
三、存在定理
定理1 当函数 f ( x)在区间[a, b]上连续时, 称 f ( x)在区间[a, b]上可积.
定理2
设函数 f ( x)在区间[a, b]上有界, 且只有有限个间断点,则 f ( x)在 区间[a, b]上可积.
个分点,a x0 x1 x2 xn1 xn b,
把区间 [a,b] 分成 n y
个小区间 [ xi1, xi ], 长度为 xi xi xi1;
在每个小区间 [ xi1, xi ]
上任取一点

i
o a x1
b xi1i xi xn1
x
以 [ xi1, xi ]为底,f (i ) 为高的小矩形面积为
积分上限
b a
f
( x)dx
I
lim 0
n i 1
f (i )xi
数 积分下限 被 式 被 量 积
积分和
积 函
积 表
分 变
[a,b] 积分区间
注意:

(1) 积分值仅与被积函数及积分区间有关, 而与积分变量的字母无关.
b
b
b
a f ( x)dx a f (t)dt a f (u)du
(2)定义中区间的分法和i 的取法是任意的.
整理课件
14
四、定积分的几何意义
b
f ( x) 0, a f ( x)dx A
f ( x) 0,
b
a
f
(
x)dx
A
曲边梯形的面积
曲边梯形的面积 的负值
A1 A2
A3
A4
b
a
f
(
x)dx
A1
A2
A3
A4
整理课件
15
几何意义:
它是介于 x 轴、函数 f ( x) 的图形及两条 直线 x a, x b 之间的各部分面积的代 数和. 在 x 轴上方的面积取正号; 在 x 轴下方的面 积取负号.
相关文档
最新文档