统计学 参数统计估计(区间估计)
区间估计

常见形式
间估计的区间上、下界通常形式为:“点估计±误差” “总体均值”的区间估计
总体均值:μ 总体方差:σ 样本均值:x =(1/n)×Σ(Xi) 样本方差:s =(1/(n-1))×Σ(Xi-x)^2 符号假设置信水平:1-α 显著水平:α
已知n个样本数据Xi (i=1,2,...,n),如何估计总体的均值? 首先,引入记号: 区间估计σ'=σ/sqrt(n) s'=s/sqrt(n) 然后,分情况讨论: 情况1 小样本(n<30),σ已知,此时区间位于 x ± z(α/2)×σ' 情况2 小样本(n<30),σ未知,此时区间位于 x ± t(α/2)×s' 区间估计情况3 大样本(n≥30),σ已知,此时区间位于 x ± z(α/2)×σ' 情况4 大样本(n≥30),σ未知,此时区间位于 x ± z(α/2)×s' 其中, z(α/2)表示:正态分布的水平α的分位数 t(α/2)表示:T分布的水平α的分位数
置信区间
区间估计有时,对所考虑的置信区间(或上、下限)加上某种一般性限制,在这个前提下寻找最优者。无偏 性是经常用的限制之一,如果一个置信区间(上、下限)包含真值θ的概率,总不小于包含任何假值θ┡的概率, 则称该置信区间(上、下限)是无偏的。同变性(见统计决策理论)也是一个常用的限制。
求置信区间的方法 最常用的求置信区间及置信上、下限的方法有以下几种。
即
费希尔把这个等式解释为:在抽样以前,对于θ落在区间内的可能性本来一无所知,通过抽样,获得了上述 数值,它表达了统计工作者对这个区间的"信任程度",若取b)=-α=uα/2,则得到区间,其信任程度为 1-α。即 当用上述区间作为θ的区间估计时,对于“它能包含被估计的θ”这一点可给予信任的程度为1-α。
统计学中的参数估计方法

统计学中的参数估计方法统计学中的参数估计方法是研究样本统计量与总体参数之间关系的重要工具。
通过参数估计方法,可以根据样本数据推断总体参数的取值范围,并对统计推断的可靠性进行评估。
本文将介绍几种常用的参数估计方法及其应用。
一、点估计方法点估计方法是指通过样本数据来估计总体参数的具体取值。
最常用的点估计方法是最大似然估计和矩估计。
1. 最大似然估计(Maximum Likelihood Estimation)最大似然估计是指在给定样本的条件下,寻找最大化样本观察值发生的可能性的参数值。
它假设样本是独立同分布的,并假设总体参数的取值满足某种分布。
最大似然估计可以通过求解似然函数的最大值来得到参数的估计值。
2. 矩估计(Method of Moments)矩估计是指利用样本矩与总体矩的对应关系来估计总体参数。
矩估计方法假设总体参数可以通过样本矩的函数来表示,并通过求解总体矩与样本矩的关系式来得到参数的估计值。
二、区间估计方法区间估计是指根据样本数据来估计总体参数的取值范围。
常见的区间估计方法有置信区间估计和预测区间估计。
1. 置信区间估计(Confidence Interval Estimation)置信区间估计是指通过样本数据估计总体参数,并给出一个区间,该区间包含总体参数的真值的概率为预先设定的置信水平。
置信区间估计通常使用标准正态分布、t分布、卡方分布等作为抽样分布进行计算。
2. 预测区间估计(Prediction Interval Estimation)预测区间估计是指根据样本数据估计出的总体参数,并给出一个区间,该区间包含未来单个观测值的概率为预先设定的置信水平。
预测区间估计在预测和判断未来观测值时具有重要的应用价值。
三、贝叶斯估计方法贝叶斯估计方法是一种基于贝叶斯定理的统计推断方法。
贝叶斯估计将先验知识与样本数据相结合,通过计算后验概率分布来估计总体参数的取值。
贝叶斯估计方法的关键是设定先验分布和寻找后验分布。
吴喜之-统计学基本概念和方法-总体参数的区间估计

x
s
n
15
2
53.87
样本标准差 误差边际
( x x)
n 1
s 6.82 x t 2 2.145* 3.78 n 15
651.73 6.82 14
95%的置信区间为
53.87 ±3.78
即(50.09,57.65)天。
确定样本容量
确定样本容量 误差边际 Z x 2 n
根据选择的在 x1 、x2 、x3
位置的样本均值建立的区间
x 的抽样分布
x 2
95%的所有x的值
3.92 3.92
x1
基于x2 3.92的 区间
基于x1 3.92的 区间
x3
x2
基于x3 3.92的区间(该区间不包含)
上图中,有95%的样本均值落在阴影部分,这个区域的样本 均值±3.92的区间能够包含总体均值。
因此,总体均值的区间的含义为,我们有95%的把握认为, 以样本均值为中心的±3.92的区间能够包含总体均值。 通常,称该区间为置信区间,其对应的置信水平为 1 置信区间的估计包含两个部分:点估计和描述估计精确度 的正负值。也将正负值称为误差边际或极限误差,反映样本估 计量与总体参数之间的最大误差范围。 总结: 已知时的大样本下的区间估计
•
•
q=1-p
n表示样本容量(试验重复次数)
总体比率的区间估计
• 以比率的抽样分布为理论依据,按一定的概
率要求估计总体比率的所在范围就叫做总体比率
的区间估计。
正态近似法
• 当样本容量n比较大,np和nq中较小的那个数
等于或大于5时,二项分布已经接近于正态分布,
此时可以按照正态分布来估计总体比率0.95和
统计学02-第三讲 两个总体参数的区间估计_24

2 p
(n1
1)s12
(n2
1)s
2 2
n1 n2 2
3. 估计量x1-x2的抽样标准差
s
2 p
s
2 p
n1 n2
sp
11 n1 n2
两个总体均值之差的估计
(小样本: 1222 )
1. 两个样本均值之差的标准化
t
( x1
x2 ) 1
s p n1
(1
1 n2
2 )
~
t (n1
n2
2)
2. 两个总体均值之差1-2在1- 置信水平下的
x1
32.5
s12
15.996 x2
27.875
s
2 2
23.014
自由度为
15.996
23.014
2
v 12
8
13.188 13
15.996 122 23.014 82
12 1
8 1
(32.5 27.875) 2.1604 15.996 23.014 4.625 4.433
女学生: x2 480
s
2 2
280
试以90%置信水平估计男女学生生活费支出方 差比的置信区间
两个总体方差比的区间估计 (例题分析)
解 : 根 据 自 由 度 n1=25-1=24 , n2=25-1=24 , 查 得 F/2(24)=1.98, F1-/2(24)=1/1.98=0.505
12 /22置信度为90%的置信区间为
两个总体均值之差1-2在1- 置信水平下的置
信区间为
x1 x2 t 2 (v)
s12
s
2 2
n1 n2
自由度 v
总体参数的区间估计必须具备的三个要素

一、概述总体参数的区间估计是统计学中一个重要的概念,在实际应用中具有广泛的应用。
区间估计的目的是利用样本数据对总体参数进行估计,以确定参数的取值范围。
在进行区间估计时,需要考虑三个重要的要素,以确保估计结果的准确性和可靠性。
二、总体参数的定义在统计学中,总体参数指的是对整个总体的某一特征进行描述的指标。
例如总体均值、总体比例等。
总体参数通常是未知的,需要通过样本数据来进行估计。
区间估计就是利用样本数据对总体参数进行估计,给出一个区间,以确定参数的取值范围。
三、区间估计的三个要素1. 置信水平置信水平是区间估计中非常重要的一个要素。
它指的是对总体参数估计的准确程度的度量,通常用1-α来表示,其中α称为显著性水平,通常取0.05或0.01。
置信水平越高,说明对总体参数的估计越可信。
在实际应用中,常用的置信水平为95或99。
2. 样本容量样本容量是另一个影响区间估计结果的重要要素。
样本容量的大小直接影响了估计结果的精确度。
通常来说,样本容量越大,估计结果越精确。
在进行区间估计时,一般需要根据置信水平和总体参数的方差来确定合适的样本容量。
3. 统计分布在进行区间估计时,需要考虑所使用的统计分布。
常用的统计分布包括正态分布、t分布、F分布等。
选择合适的统计分布对区间估计的结果具有重要影响。
通常在实际应用中,根据样本容量和总体参数的分布情况来选择合适的统计分布。
四、区间估计的计算方法区间估计的计算方法通常包括以下几个步骤:1. 确定置信水平,通常取95或99。
2. 根据置信水平和总体参数的分布情况,选择合适的统计分布。
3. 根据样本数据计算得到统计量的值。
比如样本均值、样本比例等。
4. 根据统计量的值,计算得到区间估计的上限和下限。
通常使用公式:点估计值±临界值×标准误差。
五、实际应用区间估计在实际应用中具有广泛的应用,比如医学研究、市场调研、经济预测等领域。
在这些领域中,通常需要对总体参数进行估计,以确定参数的取值范围。
统计学中的区间估计方法及其应用

统计学中的区间估计方法及其应用统计学是一门研究数据收集、分析和解释的学科。
在统计学中,区间估计是一种常用的方法,用于估计总体参数的范围。
本文将介绍区间估计的基本概念和常见方法,并探讨其在实际应用中的意义。
一、区间估计的基本概念区间估计是通过样本数据对总体参数进行估计,并给出一个范围,使得该范围内有一定的置信水平包含真实的总体参数值。
常见的区间估计方法有点估计法、区间估计法和极大似然估计法等。
点估计法是通过样本数据计算得到一个点估计值,作为总体参数的估计值。
例如,通过样本均值估计总体均值,通过样本方差估计总体方差等。
区间估计法是在点估计的基础上,给出一个置信区间,该区间包含了总体参数的真实值。
置信区间的计算依赖于样本数据的分布和样本容量等因素。
极大似然估计法是通过最大化似然函数,寻找最有可能生成观测数据的参数值。
该方法常用于对总体分布的参数进行估计。
二、常见的区间估计方法1. 正态分布的区间估计在正态分布的区间估计中,常用的方法有Z检验和T检验。
Z检验适用于大样本,T检验适用于小样本。
这两种方法都是基于正态分布的性质,通过计算样本均值与总体均值之间的差异,得出置信区间。
2. 二项分布的区间估计对于二项分布的区间估计,常用的方法是Wald区间估计和Wilson区间估计。
Wald区间估计是基于正态近似的方法,适用于大样本。
Wilson区间估计是一种修正的方法,适用于小样本。
3. 指数分布的区间估计对于指数分布的区间估计,常用的方法是对数似然比法和置信上限法。
对数似然比法是通过最大化似然函数,得到参数的估计值,并计算置信区间。
置信上限法是寻找参数的最大值,使得观测值在该上限下的概率达到一定的置信水平。
三、区间估计的应用意义区间估计在实际应用中具有重要的意义。
首先,区间估计提供了对总体参数范围的估计,使得我们能够更准确地了解总体的特征。
其次,区间估计能够帮助我们进行决策和预测。
例如,在市场调研中,我们可以通过区间估计来估计产品的需求量,从而制定合理的生产计划。
参数的区间估计

参数的区间估计1. 参数的概念参数是指一种描述总体特性的量,通常用符号表示。
以样本均值为例,我们通常用$\bar{x}$表示样本均值,用$\mu$表示总体均值,$\bar{x}$就是关于$\mu$的一个参数。
2. 区间估计的基本思想区间估计是通过样本的统计量来估计总体的参数,因为样本数据毕竟是有限的,所以估计值与真实值之间必然存在误差。
为了消除这种误差,我们采用确定一个区间的方法,即“置信区间”。
置信区间是指用样本数据计算出来的一个范围,其含义是真实的总体参数值有一定的置信水平(置信度)落在这个区间内。
①确定信赖水平(置信度)$1-\alpha$,$\alpha$称为显著性水平。
②根据样本均值选择合适的经验公式或理论公式来计算样本估计量的标准误差。
③根据置信度$1-\alpha$,查找$t$分布表或正态分布表,得到置信水平为$1-\alpha$的$t$值或$z$值。
④根据样本容量和总体方差是否已知,确定区间估计公式。
⑤根据置信度和样本数据计算出置信区间。
下面具体介绍区间估计的步骤:A. 确定总体所服从的概率分布总体可以服从正态分布、泊松分布、二项分布等概率分布,其中正态分布是最为常用的一种分布。
B. 确定样本容量$n$样本容量$n$的大小直接影响到置信区间的精度,当样本容量越大,置信区间的长度就越短。
一般观测数据越多,则样本容量越大。
C. 确定置信度$1-\alpha$置信度是指总体参数落在某一特定区间内的概率,一般取$95\%$或$99\%$。
D. 求出样本均值$\bar{x}$样本均值$\bar{x}$是样本中所有元素值的总和除以样本容量$n$,即$\bar{x}=\frac{\sum_{i=1}^nx_i}{n}$E. 求出样本方差$s^2$若总体标准差未知,用样本标准差$s$代替,$S(\bar{x})=\frac{s}{\sqrt{n}}$G. 选择合适的分布当总体服从正态分布,$\frac{\bar{x}-\mu}{\frac{\sigma}{\sqrt{n}}}$服从标准正态分布;当总体未知且样本容量$n$较小($n<30$),$\frac{\bar{x}-\mu}{\frac{s}{\sqrt{n}}}$服从$t$分布。
区间估计的习题和答案

区间估计的习题和答案区间估计的习题和答案区间估计是统计学中一种常用的方法,用于估计总体参数的范围。
通过样本数据,我们可以根据一定的置信水平构建一个区间,该区间包含了总体参数的真实值的概率。
本文将介绍一些区间估计的习题,并提供相应的答案。
1. 问题:某电商平台声称其平均每日订单数超过10000,现从该平台随机抽取了100个订单进行统计,得到平均每日订单数为9800,标准差为2000。
请构建一个95%的置信区间。
解答:根据中心极限定理,样本均值服从正态分布,当样本容量大于30时,可以使用正态分布进行区间估计。
根据题目信息,样本容量为100,标准差为2000,所以我们可以使用正态分布进行估计。
置信水平为95%,对应的α为0.05。
查找标准正态分布表得到α/2对应的临界值为1.96。
计算得到置信区间为:9800 ± 1.96 * (2000 / √100) = 9800 ± 392因此,95%的置信区间为[9408, 10192]。
2. 问题:某服装品牌声称其销售额的年增长率不低于10%。
现从该品牌的10个门店中随机抽取了销售额的年增长率数据,得到样本均值为8%,样本标准差为2%。
请构建一个90%的置信区间。
解答:根据题目信息,样本容量为10,样本标准差为2%,样本均值为8%。
由于样本容量较小,无法使用正态分布进行区间估计,需要使用t分布。
置信水平为90%,对应的α为0.1。
查找t分布表得到自由度为9时,α/2对应的临界值为1.83。
计算得到置信区间为:8% ± 1.83 * (2% / √10) = 8% ± 1.16因此,90%的置信区间为[6.84%, 9.16%]。
3. 问题:某医院声称其糖尿病患者的平均住院天数不超过7天。
现从该医院随机选取了50名糖尿病患者,得到平均住院天数为8天,样本标准差为2天。
请构建一个99%的置信区间。
解答:根据题目信息,样本容量为50,样本标准差为2天,样本均值为8天。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
△ 概率(可靠性)大; x 随之增大, 精确度就差.
王 静
第三节 总体均值
μ 的区间估计(单个总体)
x ± Zα
2
σ 2 已知 1,
σ 已知时的大样本下μ的区间估计
2
σ
n
式中,( α)为置信系数; 1 Z α 2为在标准正态分布的右侧尾部中所提供的面积为α 的Z值. 2
王 静
σ 2 未知,小样本 2,
2009-2010(二)
(教 学 课 件)
王
静
2009.2 – 2009.6
第八章(区间估计)
第八章 参数统计估计
第二节 区间估计的基本问题
( 设总体X的分布函数为 F ( X ;θ ), θ 为未知参数, x1 , x2 ,...xn )为X的 样本,给定 α ∈ (0,1) ,若统计量 θ = θ ( x1 ...., xn ) 和 θ = θ ( x1 ...., xn )
P (θ < θ < θ ) = 1 α
精确度 随机区间
(θ , θ )
总体参数 估计值 误差范围 △:一定倍数的抽样误差 σ △ x = Zα 例如: n 2 Z 抽样误差 σ / n 一定时, α 越大,
2
包含 θ 的概率 的平均长度 E (θ , θ ) (即可靠程度 )越大越好. (误差范围 )越小越好
总体分布未知时的大样本下的区间估计:
S x ± Zα 2 n
式中,( α)为置信水平; 1 Zα 2 为在标准正态分布的右侧尾部中所提供的面积为 α 的Z值. 2
王 静
第三节 正态总体方差 σ 2 的区间估计(单个总体) 1, μ 已知
正态总体的假设下,利用 χ 分布来构造 σ 2 的置信区间:
满足:P(θ < θ < θ ) = 1 α ,则称区间 (θ , θ ) 为 θ 的置信区间, 且这个置信区间的置信水平为 1 α , θ 和 限,置信下限.
θ
分别为置信上
出错概率
置信区间不含总 体参数的概率
α
P(θ < θ ,θ > θ ) = α
王 静
区间估计
或
估计未知参数所在的可能区间 评价准则 一般形式 置信度 (θ △)< <θ +△) θ ( 随机区间 θ = θ ±△ (θ , θ )
δ x = Zα
2
σ
n
n = Zα 2
σ σ2 n = (Zα )2 2 δx δx
2
王 静
~End~
王 静
�
在小样本的情况下,样本均值的抽样分布依赖于总体的抽样 分布.我们讨论总体服从正态分布的情况.
总体标准差σ已知 → x服从正态分布 小样本n < 30 总体标准差σ未知 → x服从t分布( s σ )
t分布的图形和标准正态分布的图形类似,如下图示:
王 静
标准正态分布 t分布(自由度为20) t分布(自由度为10)
假定总体服从正态分布;
式中,( α)为置信水平;s为修正样本的标准差;tα 2 为在 1 自由度为(n-1)的t分布的右侧尾部中所提供的面积为 α 的t值. 2
王 静
σ 2 未知,大样本 3,
在大多数的情况下,总体的标准差都是未知的.根据抽样 分布定理,在大样本的情况下,可用样本的标准差s作为总体标 准差的点估计值,仍然采用上述区间估计的方法进行总体参数 的估计.
王 静
找出在限定费用范围 内的最大样本容量
误差边际
E = Zα 2
2
σ
n
即最大允许误差
δx
其计算需要已知 Zα , σ和样本容量n. 若我们选择了置信度 1 α , 就可以确定Z α 2
在已知σ 和Zα 后,我们可以求出误差边际为任何数值时的
2
样本容量n 由此,得到计算必要样本容量的计算公式:
σ 未知时的大样本下的区间估计
式中,(1 α)为置信系数;
S x ± Zα 2 n
பைடு நூலகம்
Z α 2为在标准正态分布的右侧尾部中所提供的面积为α 的Z值. 2
王 静
4,总体分布未知,大样本
大样本的情况下,由中心极限定理,可用样本的标准差s作为总 体标准差的点估计值,仍然采用上述区间估计的方法进行总体 参数的估计.
0 图2标准正态分布与t分布的比较
王 静
在t分布中,对于给定的置信度,同样可以通过查表找到其对 应的临界值 tα ,利用临界值也可计算区间估计的半径
2
s E = tα (n 1) 2 n
因此,总体均值的区间估计在总体标准差未知的小样本情况 下可采用下式进行: s
x ± tα (n 1)
2
n
2
2 2 nS nS χ 2 ( n) , χ 2 ( n) α α 1 2 2
2 2 (n 1) S (n 1) S χ 2 (n 1) , χ 2 (n 1) α α 1 2 2
王 静
2, μ 未知
第四节 样本容量的确定
找出在规定误差范围内的 最小样本容量 小样本容量节省费 用但调查误差大 调查误差 样本容量 调查费用 大样本容量调查 精度高但费用较 大